
Planar Separators and the Euclidean Norm

H i l l e l Gaz i t *

D e p a r t m e n t o f C o m p u t e r S c i e n c e

D u k e U n i v e r s i t y

Gary L. Miller t

School of Computer Science
Carnegie Mellon University &

Dept of Computer Science
University of Southern California

Abstract
In this paper we show that every 2-connected embedded planar graph with faces of sizes

d! df has a simple cycle separator of size 1.58~,/dl 2 + . . . + d } and we give an almost
linear time algorithm for finding these separators, O(m~(n. n)). We show that the new upper
bound expressed as a function of IG{ = ~/d~ +..- + d} is no larger, up to a constant factor than

previous bounds that where expressed in terms of ~ S . v where d is the maximum face size and
/

v is the number of vertices and is much smaller for many graphs. The algorithms developed
are simpler than earlier algorithms in that they work directly with the planar graph and its dual.
They need not construct or work with the face-incidence graph as in [Mi186, GM87, GM].

1 I n t r o d u c t i o n

Planar graphs have played an important role in both sequential as well as parallel algorithm
design. They arise in may areas of computation including: numerical analysis, animation, and
VLSI. One of the important properties possessed by planar graphs, but not true for general
graphs, is that they have small separators. Historically, a separator, in a graph G = (V, E), is a
subset C C V such that (1) the remaining vertices can be partitioned into two sets: A and B, (2)
IAI. IB{ ~ 2/3{VI, and (3) there are no edges between vertices in A and vertices in B. Lipton and
Tarjan were the first to show that paper graphs have O(,fv) separators, [LT79]. Improvements
in the constant have been made by Djidjev and the first author, [Dji81, Gaz86]. There are two
important additional properties we require of separators. First, we shall assign a weighting
function # to the vertices, edges, and faces of the embedded planar graph and require that the
separator will "separate" the weighted graph. Second, we shall require that the separator be a
cycle or collection of cycles. Intuitively, this means that we separate the planar graph "drawn"
on the plane by cutting along the edges of the graph. Since all the separators we construct in
this paper are in fact simple cycles, we will restrict our attention to the simple cycle case. These
two restrictions have been addressed by the second author in [Mi186]. We will assume that the
reader has some knowledge of this paper. The following definition is from [Mi186].

~This work was supported in part by grant number N00014-88-K-0623
iT his work was supported in part by National Science Foundation grant DCR-8713489.

339

Definition 1.1 Let G be an embedded planar graph and # an assignment of nonnegative weights
to the vertices, edges and faces of G which sums to 1. We say that a simple cycle C of G is a
weighted-simple-cycle separa tor if both the weight of the interior of C and the weight of the
exterior is <_ 2/3.

Let G be an embedded planar graph. The size of a face of G is the number of edges,
equivalently the number of faces, on its boundary counting multiplicity. The Euclid norm of
G equals

IGI2 = \/cl~t + . . . + ~ where d; is the size of the ith face of G.

We can now state the main theorem of this paper.

Theorem 1.2 A planar embedded graph G has a weighted-simple-cycle separator of size <_
1.581GIz. The separator is computable in O(nc~(n. n)) sequential time where ~ (n. n) is the inverse
of Ackerman s fun,~tton.

We first observe, up to a constant factor that Theorem 1.2 is stronger than the best previous
bound of 2 ~/d. v where d is the maximum face size and v is the number of vertices, [Mi186].

Lemma 1.3 The Euclidean norm [a12 < 6~-6-d-: v if G has no faces of size <_ 2.

Proof: It will suffice to show (IG[2) 2 < 6d. v. We first observe that ~{=l di < 6v. By Euler's
¢ d _ formula e - f < v. Substituting in the facts that Y~f=l d; = 2e and ~i=1 ; > 3f into the Euler

equality from above we get:

f f f
d; = 3 ~ di - 2 ~ di <_ 6e - 6f < 6v.

i=1 i=1 i=l

To finish the proof consider the following equalities:

f f
(tGI2) 2 = ~ d{ ~ d ~ d; < 6d. v.

i=1 i=1

2 A New Way to Level a Planar Graph

In our previous papers we performed a BFS numbering in the face-incidence graph. We
performed the numbering in this graph so that frontier of the search at any stage will always
be a collection of cycles. In the previous papers we assumed that all the faces were basically
the same size. Therefore, we added to the new level all the faces adjacent to the frontier at
the same time. Here we do not assume that all the faces are the same size. Therefore, we add
faces adjacent to the frontier in a more judicious manner. The main new idea in this section is
to perform the BFS numbering in G itself, and to introduce artificial edges called level-edges,
to be defined later, such that the frontier is again a set of simple cycles. We can not use these
edges in the final cycle separator, but they will be important for bookkeeping.

A BFS number ing of G from a subset of vertices S C V is an assignment of a number to
each vertex of G equal to its distance to the nearest vertex in S.

340

Let L be BFS numbering of G from a single source s. Let v be some vertex at level i > 0.
The neighboring vertices of v will be at levels i - 1, i or i + t. We introduce two level-edges at v
for each consecutive, with respect to the cyclic ordering derived from the embedding of G in the
plane, block of level i + I vertices adjacent to v. I f some edge e common to v is also common to
another vertex at level i, then mark e level i, Otherwise, let F be the face common to v such that
one edge at v is common to a level i + 1 vertex, and the other edge is common to one with level
number i - 1, In this case, a level i edge will be added to the face F and the other attachment of
this level-edge is obtained by following the boundary of F, using vertices of BFS number < i,
around until a vertex of level i is found, see figure 1. Weight on the level-edge (x. y) in face F is
the distance between x and y by following the boundary of F in the shorter of the two possible
ways. 7

/ t

3~

\ ~ - - - . . 2 - - - ' ~ ~ / 1 3

\ X. \ " ..." <" I

\ 2 2 /

7

Figure 1: A BFS Number and Its Level-Edges with Weights. The solid edges are the graph edges
and the dashed are the level-edges.

In prior separator papers the size of the separator was determined partly in terms of the
number of vertices. In this paper it will be solely in terms of the sum of the weights on the
level-edges. Let W(G) equal the sum of the weights on the level-edges with respect to some
BFS of G. We next show that W(G) is bounded by ([G]2):.

Lemma 2.1 The sum of the level weights W(G) < ~(Jalz) z.

Proof: We show the inequality in the lemma holds for each face, and thus for the sum of the
faces as a whole, Consider the following combinatorial problem: Let C be a simple cycle of
size n drawn in the plane and A a set of noncrossing, vertex disjoint chords of C, i.e., C plus A
forms an outer planar graph of degree at most 3. Let the weight of each chord (x, y) in A by equal
to the distance between x and y in C. We will show that the sum of the weights of the chords
W(A) <_ n2/8. It should be clear that if we prove the last inequality then the lemma follows.

Suppose that W(A) is a maximum over all such sets of chords. We first observe that no
interior face of the corresponding outerplanar graph contains more than two chords or two cycle
edges. I f the chords of A form faces with more chords or cycle edges, we can rearrange the
chords of A to strictly increase the value of W(A).

341

Except for the middle chord, if it exists, each chord has a unique shortest path in C. Thus,
we can partition the chords into two sets, two chords belong to the same set if their shortest paths
intersect. Thinking of the chords as drawn vertically, we therefore partition the chords in the the
left, middle, and right chords. There are several cases depending on whether the left, middle,
and right chords have even or odd length and whether or not the middle chord exists. We will
only handle the case when the chords all have even length and the middle chord exists. The other
cases are similar. Let 2k+2 be the length of the middle chord. Thus n = 2(2k+2) = 4(k+ 1). In
this case weight of the left chord equals those from the right and therefore we get the following
equalities:

W(A) = (2 k + 2) + 2 ~ 2 i = (2 k + 2) + 2 (k + l)k= 2(k+ 1) 2 = n2/8.
i=l

[3
As in [Mi186] the level edges are formally directed edges or arcs. We decompose the level-

edges into a collection of simple cycles called level-cycles. Since the edges in the level-cycle
need not be edges in G, we will "pull" the level-edges back to paths in G. The pull-back of a
level-cycle C is defined as follows: Let e = (x, y) be level-edge in C which belongs to a face F.
The vertices x and y decompose the boundary o f F into two paths PI and P2 from x to y. We
replace e by the shorter of Pv or P2. If they are equal, we pick the one consisting of smaller
BFS numbers, see Figure 2. Observe that the number of edges on the pull-back of level-cycle
is at most the weight of the level-cycle. Thus the length of a level-cycle is greater than or equal
to its pull-back.

.<:7-

"~, .z, "~ "<-~g"

Figure 2: A Level-Cycle, Its Pull-back, and Its Retrack. The first is a graph and a level-cycle, the
second is its pull-back, and the third is its retrack-cycle.

342

In the remainder of the paper we will assume the BFS is performed from the boundary
vertices of some face F0 of G. In this case we get the notion of a retract. The retract of a
level-cycle C is the subgraph pt contained in the pull-back P of C defined as follows: Let H be
all the faces in G which are reachable from Fo in G ~ without using edges that cross edges in
P. The boundary-, see [Mi186], of H is the retract of C. In the ~ c i a l case when H contains all
the faces of G we return some fixed vertex in P such as the vertex with largest level number.
If there is more than one we pick the most centered one (if there are two just pick one), In
general P ' is not a simple cycle but we can decomposed it into simple cycles, as we did to get
the level-cycles.

The retrack-cycles form tree structure as did their level-cycles. In section 5 we show how
to determine this structure, the length of each cycle, and the weight on the exterior and interior
of each cycle. We will assume that we have computed this information.

Let Fo be the face of G from which we perform the BFS of G and RI Rk be the
corresponding set of retract-cycles. The rest of the algorithms will only work with this tree of
retrack-cycles. The retract-weight of G with respect to Fo is:

]GIR = IRll + " ' + [Re[where IRi[is the weighted length of its level-cycle.

Since the retack-cycles form a tree rooted at Fo, we get an ancestor/descendent relation. I f
R and R' are retrack-cycles where R' is a descendent of R, then the distance from R to R' is
the maximum distance from any point in R' to the closest point in R. The distance between
retrack-cycles may be quite large even though they are close in the descendent relation. We can
bound this distance as follows:

Lemma 2.2 i f R ~ is a kth direct descendent of R then the distance from R to R' is at most
k+]RI/2 + IR'I/2.

Proof: Observe that the distance in G from a level-cycle C and its retract can be at most half the
weighted length of C. Let C and C' be the level-cycles of R and R', respectively. Therefore the
distance from R' to C' is at most fR't/2 , the distance from C' to C is at most k, and the distance
f r o m C t o R i s a t m o s t l R l / 2 . Thus thed i s tance f romR' toRisa tmos t tR ' I /2+k+lRI /2 . []

3 Phase I

As in [Mi186], the algorithm shall have two phases° In the first phase, developed in this section,
we find a subgraph H of G with diameter and maximum face size IGI2. In phase 2, as described
in [Mi186], we find an o ([a h) separator in H.

In this section we show that

Theorem 3. l If G is a 2-connected embedded planar graph with weights which sums to I, no
face weight > 2/3, there exists a 2-connected subgraph H with spanning tree T satisfying."

1. The diameter dia of T plus the maximum size h of any non-leaf face of H is at most IGI2,
i.e., dia + h _< 1.58JG12.

2. The maximum induced weight on any face of H is < 2/3.

The form of the algorithm follows quite closely that of Section 4 from [Mi186]. We will use
the notation and idea from this section. Rather than use the branch cycles, defined in [Mi186],

343

we will use the retract-cycles. As in [Mi186], the t runk R1 Rt is a sequence of retract-cycles
where R~ is the root cycle, Ri+ I i s the direct descendence of Ri, where Ri+l has the largest exterior
weight amongst their siblings. Let C = R~ be the first cycle in the trunk with interior weight is
at least 1/3. Set nl = tRIt + ' - ' + IR~I and n2 equal to the sum of the weights of the remaining
retract-cycles. By the same arguments used in the proof of Lemma 5 in [Mi186] we get:

Lemma 3.2 There exists an integer ~ t > 0 such that some ~th ancestor of C, say B, satisfies
3

Proof: The proof is very similar to that of Lemma 5 in [Mi186]. We give the details for
completeness.

Suppose Bi ancestor fB, t 3
c a s e > i the lemma is false and is the ith of C. In this ~3- v n/~l

for 0 < i < [2x/2h~L]. Now the sum of the weights of the Bi satisfy the following:

[~ - i = ~ i > (, f ~ + l) (x / h ~) / 2 > ~ n ,
i=0 i=1

But this contradicts the fact that the sum can be at most an 1. []
Let H' be the subgraph consisting of vertices and edges "between" B and C. We next cap

the large faces of H' by simultaneously adding on retract-cycles. We stop after o2 levels where
-2 is given by the following lemma:

Lemma 3.3 There exists an integer o 2 ~ 0 such that after adding all ~ 2 direct descents of
the retract-cycles in H' the maximum retract-cycle size d, which is a leaf in the construction,
satisfies 2~2 + ~3 ~ v~vn~2.

Proof: The proof of this lemma is the same as that of Lemma 3.2.
The subgraph H will consist of a subtree of retract-cycles rooted at B plus all vertices and

edges in G "between" these cycles. The height of this tree of retract-cycles will be ~ l + -z. Our
spanning tree of H will consist of all edges in B but one plus a BFS spanning tree from B into H.
By Lemma 2.2 the total distance between the retract-cycles will be at most c~ + q2 + 4. Thus
the diameter of the spanning tree will be at most

3 ' B ' + 2 ~ ' +2°2 + I ~ ~743- ~/3 <_ 2 v :~ + v ~ v : ~ <_ v~W(G) <_ IGI2.

We next must bound the maximum nonleaf face size of H. The maximum face is either a face
from G or a new face in one of the caps. In the latter case, its size can be at most] from
Lemma 3.3. In the prior case it will be at most d, the largest size face in G. If we start the BFS
from the largest face, then the largest face from G in H can be at most the second largest face
of G, which can be; at most IG12 / x/2. We claim that :~ < IGI2 / v/2. By Lemma 3.3 we know
that ,~ < 2v/~ < \ 2W/'2-W~ < 41-1Gtz. Thus the diameter of the spanning treeplus the size of the

maximum nonleaf face size is at most V/~tGIz + ~f~5[GI2, < (~f~ + ~f~)lGIz- < 1.58.
The above discussion proves Theorem 3.1.

344

4 Phase II

In this section we simply observe that we can apply Theorem 5 from [Mi186]. We state the
Theorem here for completeness.

Theorem 4. ! If G is a 2-connected weighted and embedded planar graph with no face weight
> 2/3 and T is a spanning tree of G then there exists a weight-separator of size at most the
diameter of T ptus the maximum non-leaf face size.

Combining Theorems 3.1 and 4.1 we get a proof of Theorem 1.2.

5 Algorithms for Finding the Separator

In this section we discuss implementation details for finding the separator in Theorem 1.2. The
sequential algorithm we presented uses Union-Find, and thus is not linear, but may require time
O(nG(n)) time, see [AHU74]. The main difficulty is finding the tree of retract-cycles and the
associated weights. The rest of the construct is straight forward and follows, for the most part,
from the algorithms in [Mi186]. First we begin by determining when a face is interior to the
ith level and also interior to the ith retract. We start by constructing the geometric dual of G
and determining the size of each face. Next, we add the level edge to G in a BFS manner. We
determine as we go the weight of each level edge. Observe that when the weight on a level
reaches half the face size we use the face size in determining the rest of the edge weights. At
this point.the face, say F, is interior to the level. We mark the face as captured. To determine if
it is interior to the retract, we check if any of the faces adjacent to F in G ~ are in the retract. If
we find such a face we mark F interior and check i f F is adjacent to any faces which are marked
as captured but not interior. We mark each such face interior and inspect in a DFS manner their
adjacent faces~ It follows that we traverse each edge and its dual at most a constant number
of times, and determine for each face the level at which its is interior to the retract cycles, its
index.

We next compute the tree determined by the retract-cycles. Observe that we cannot even
explicitly write out these cycles because the sum of their lengths may be as large as n 2. Thus,
we must find this tree without expficitly computing the cycles. By Lemma 3 in [Mi186] each
retract-cycle at level i corresponds to the boundary of a connected component in the subgraph
G 7 of G ~ induced by the faces of index > i. We need the following three pieces of information:

s A rooted tree corresponding to the tree of retract-cycles.

® The length of each retract-cycle.

® The weight exterior to each retract-cycles.

We compute all the information in one pass using one Union-Find. Suppose the face indexes
run from 0 to k. We start by doing a Union for each edge between two faces of index k,
technically we are working in thedual G". Using Finds we determine a representative for each
connected component consisting of faces with index k. For a component, we determine its
weight and boundary length. Thus, we have computed the three pieces of information for the
leaf retact-cycles of index k. Suppose we have computed this information for index k' + 1. We
compute the information for index k as follows.

345

1. Perform a Urdon for each edge between two faces one of index k' and the other of index >_ k'.

2. Perform a Find for each face of index k' and each representative from level E + 1, obtaining
new representatives for level k'.

. The weight of each component at level k' will be the sum of the weights of the component
from level k' + 1 in it, plus the weight contributed to it from its faces of index k' and their
boundaries.

4. The new boundary will be the sum of its children's boundary sizes from level k' + 1, plus one
for each new edge on the boundary of an index k' face, minus one for each old edge.

With this tree, all the remaining algorithms implicit in Phase I can be done in linear time.
The algorithms for Phase II are in [Mi186].

6 Applications

6.1 E d g e S e p a r a t o r s

By considering the dual graph to G, we can construct edge separators.

Definition 6.1 I f G = (V.E) is a graph with nonnegative weights on the vertices and edges
which sums to one then a subset E' C E of edges is a weighted-edge separa tor irE' partitions
G into two disjoint subgraphs such that the weight of each is at most 2/3.

Theorem 6.2 below improves the previous best upper bound of ~/k. v obtained by [Mi186,
DDSV]. In [Mi186] the weaker bound was proved for 2-connected planar graphs and was
extended to all planar graphs in [DDSV]. By arguments similar to those used in Lemma 1.3,
we see that this new bound is better up to constant factor.

Theorem 6.2 A planar graph G with vertices of degree k~ k~. has an edge separator of size

158 +

Proof: Suppose G is an embedded planar for which we would like a separator. It is well
known that G is 2-connected if and only if its dual G* is 2-connected, see [Eve79], Thus, if
G is 2-connected, we simply find a simple cycle separator in G ~ where the weight on a vertex
is zero, the weight on an edge is the weight assigned to its dual, and the weight on a face is
the weight assigned to its dual, a vertex in G. It follows that the simple cycle separator of
G ~ corresponds to an edge separator in G. If G is not 2-connected, we compute the tree T of
2-connected components of G. The vertices of T are either 2-connected components of G or cut
points. We weight each vertex of T as in the proof of Theorem 2 in [Mi186]. I f T has a separating
vertex v, which is also a cut vertex of G, it follows that the edges of v form an edge separator
of G of size at most [G]2. If on the other hand, the only separating vertex of T corresponds to
a proper 2-connected component C then we proceed as follows: Consider the weight graph C
where the weight of each cut vertex x belonging to C includes the weight of the subtree of T
which was attached to x. The graph C is 2-connected, no vertex weight greater than 2/3, and
any weighted-edge separator of C is one for G. Thus, we have reduced the general case to the
2-connected case which we handle as above. []

346

6.2 The Finite Element Graph from Numerical Analysis

Planar separators can be used for direct as well as indirect methods for solving certain linear
systems. Possibly the most famous of these methods is nested and parallel nested dissection,
[LRT79, PR85].

Definition 6.3 The Finite Element graph G = (V. E') of a planar embedded graph G = (V. E)
has as its edge set

{(v. w)[v and w share a face of G. }

By Theorem t .2 a finite element graph G = (V. E) has a separator of size O(tE I). Thus if the
nonzero entries of an n by n matrix A form a finite element graph then the linear system Ax = b
can be solved in time O(w(A) 15) where w(A) is the number of nonzero entries in A.

7 Open Questions

It is open whether or not the O(xfn log n) time using xfn/log n processors parallel algorithms
in [GM] can also be used to find a Euclidean separator. It would be very interesting to know if
there is a processor-efficient NC algorithm which finds Euclidean separators, [GM87].

References

[AHU74] A. Aho, J. Hopcroft, and J. bqlman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[DDSV] K. Diks, H. N. Djidjev, O. Sykora, and I. Vrto. Edge separators for planar graphs and
their applications. In Borlin, editor, Proc. of l 3 th Mathematical Foundation of Computer
Science, pages 280-290, Cartsbad. Springer Verlage. LNCS 324.

[Dji8 I] H.N. Djidjev. A separator theorem. Compt. EndAcad. Bulg. Sci., 34(5):643-645, 1981.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland, 1979.

[Gaz86] HiUel Gazit. An improved algorithm for separating a planar graph, manuscript, 1986.

[GM] Hillel Gazit and Gary L. Miller. An O(~/n log n) optimal parallel algorithm for a separator
for planar graphs, manuscript.

[GM87] Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator in planar
graphs. In 28th Annual Symposium on Foundations of Computer Science, pages 238-
248, Los Angeles, October 1987. IEEE.

[LRT79] R.J. Lipton, D. L Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. on
Numerical Analysis, 16:346-358, 1979.

[LT79] R.J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SlAM J. of Appl.
Math., 36:177-189, April 1979.

347

[Mi186]

[PR85]

Gary L./Vliller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32(3):265-279, June 1986. invited publica-
tion.

Victor Pan and John Reif. Efficient parallel solution of linear systems. In Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, pages 143-152,
Providence,RI, May 1985. ACM.

