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Abstract

In this paper we provide faster algorithms for solving the geometric median problem: given n
points in Rd compute a point that minimizes the sum of Euclidean distances to the points. This
is one of the oldest non-trivial problems in computational geometry yet despite an abundance of
research the previous fastest algorithms for computing a (1 + ✏)-approximate geometric median
were O(d · n4/3✏�8/3

) by Chin et. al, ˜O(d exp ✏�4
log ✏�1

) by Badoiu et. al, O(nd+ poly(d, ✏�1
)

by Feldman and Langberg, and O((nd)O(1)
log

1
✏ ) by Parrilo and Sturmfels and Xue and Ye.

In this paper we show how to compute a (1 + ✏)-approximate geometric median in time
O(nd log3 1

✏ ) and O(d✏�2
). While our O(d✏�2

) is a fairly straightforward application of stochastic
subgradient descent, our O(nd log3 1

✏ ) time algorithm is a novel long step interior point method.
To achieve this running time we start with a simple O((nd)O(1)

log

1
✏ ) time interior point method

and show how to improve it, ultimately building an algorithm that is quite non-standard from
the perspective of interior point literature. Our result is one of very few cases we are aware
of outperforming traditional interior point theory and the only we are aware of using interior
point methods to obtain a nearly linear time algorithm for a canonical optimization problem
that traditionally requires superlinear time. We hope our work leads to further improvements
in this line of research.
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1 Introduction

One of the oldest easily-stated nontrivial problems in computational geometry is the Fermat-Weber
problem: given a set of n points in d dimensions a(1), . . . , a(n) 2 Rd, find a point x⇤ 2 Rd that
minimizes the sum of Euclidean distances to them:

x⇤ 2 argmin

x2Rd

f(x) where f(x)
def
=

X

i2[n]

kx� a(i)k
2

This problem, also known as the geometric median problem, is well studied and has numerous ap-
plications. It is often considered over low dimensional spaces in the context of the facility location
problem [29] and over higher dimensional spaces it has applications to clustering in machine learn-
ing and data analysis. For example, computing the geometric median is a subroutine in popular
expectation maximization heuristics for k-medians clustering.

The problem is also important to robust estimation, where we like to find a point representative
of given set of points that is resistant to outliers. The geometric median is a rotation and translation
invariant estimator that achieves the optimal breakdown point of 0.5, i.e. it is a good estimator even
when up to half of the input data is arbitrarily corrupted [18]. Moreover, if a large constant fraction
of the points lie in a ball of diameter ✏ then the geometric median lies in that ball with diameter
O(✏) (see Lemma 24). Consequently, the geometric median can be used to turn expected results
into high probability results: e.g. if the a(i) are drawn independently such that Ekx� a(i)k

2

 ✏ for
some ✏ > 0 and x 2 Rd then this fact, Markov bound, and Chernoff Bound, imply kx⇤�xk

2

= O(✏)
with high probability in n.

Despite the ancient nature of the Fermat-Weber problem and its many uses there are relatively
few theoretical guarantees for solving it (see Table 1). To compute a (1 + ✏)-approximate solution,
i.e. x 2 Rd with f(x)  (1+ ✏)f(x⇤), the previous fastest running times were either O(d ·n4/3✏�8/3

)

by [7], ˜O(d exp ✏�4

log ✏�1

) by [1], ˜O(nd+ poly(d, ✏�1
)) by [10], or O((nd)O(1)

log

1

✏ ) time by [24, 31].
In this paper we improve upon these running times by providing an O(nd log3 n

✏ ) time algorithm1 as
well as an O(d/✏2) time algorithm, provided we have an oracle for sampling a random a(i). Picking
the faster algorithm for the particular value of ✏ improves the running time to O(nd log3 1

✏ ). We
also extend these results to compute a (1 + ✏)-approximate solution to the more general Weber’s
problem, minx2Rd

P

i2[n]wikx� a(i)k
2

for non-negative wi, in time O(nd log3 1

✏ ) (see Appendix F).
Our O(nd log3 n

✏ ) time algorithm is a careful modification of standard interior point methods
for solving the geometric median problem. We provide a long step interior point method tailored
to the geometric median problem for which we can implement every iteration in nearly linear time.
While our analysis starts with a simple O((nd)O(1)

log

1

✏ ) time interior point method and shows
how to improve it, our final algorithm is quite non-standard from the perspective of interior point
literature. Our result is one of very few cases we are aware of outperforming traditional interior
point theory [20, 17] and the only we are aware of using interior point methods to obtain a nearly
linear time algorithm for a canonical optimization problem that traditionally requires superlinear
time. We hope our work leads to further improvements in this line of research.

Our O(d✏�2

) algorithm is a relatively straightforward application of sampling techniques and
stochastic subgradient descent. Some additional insight is required simply to provide a rigorous
analysis of the robustness of the geometric median and use this to streamline our application of
stochastic subgradient descent. We include it for completeness however, we defer its proof to
Appendix C. The bulk of the work in this paper is focused on developing our O(nd log3 n

✏ ) time
algorithm which we believe uses a set of techniques of independent interest.

1If z is the total number of nonzero entries in the coordinates of the a(i) then a careful analysis of our algorithm
improves our running time to O(z log3 n

✏
).

1



Year Authors Runtime Comments

1659 Torricelli [28] - Assuming n = 3

1937 Weiszfeld [30] - Does not always converge
1990 Chandrasekaran and Tamir[6] eO(n · poly(d) log ✏�1

) Ellipsoid method
1997 Xue and Ye [31] eO(

�

d3 + d2n
�p

n log ✏�1
) Interior point with barrier method

2000 Indyk [13] ˜O(dn · ✏�2
) Optimizes only over x in the input

2001 Parrilo and Sturmfels [24] eO(poly(n, d) log ✏�1
) Reduction to SDP

2002 Badoiu et al. [1] eO(d · exp(O(✏�4
))) Sampling

2003 Bose et al. [4] eO(n) Assuming d, ✏�1
= O(1)

2005 Har-Peled and Kushal [12] eO(n+ poly(✏�1
)) Assuming d = O(1)

2011 Feldman and Langberg [10] eO(nd+ poly(d, ✏�1
)) Coreset

2013 Chin et al. [7] eO(dn4/3 · ✏�8/3
) Multiplicative weights

- This paper O(nd log3(n/✏)) Interior point with custom analysis
- This paper O(d✏�2

) Stochastic gradient descent

Table 1: Selected Previous Results.

1.1 Previous Work

The geometric median problem was first formulated for the case of three points in the early 1600s
by Pierre de Fermat [14, 9]. A simple elegant ruler and compass construction was given in the same
century by Evangelista Torricelli. Such a construction does not generalize when a larger number
of points is considered: Bajaj has shown the even for five points, the geometric median is not
expressible by radicals over the rationals [2]. Hence, the (1 + ✏)-approximate problem has been
studied for larger values of n.

Many authors have proposed algorithms with runtime polynomial in n, d and 1/✏. The most cited
and used algorithm is Weiszfeld’s 1937 algorithm [30]. Unfortunately Weiszfeld’s algorithm may not
converge and if it does it may do so very slowly. There have been many proposed modifications to
Weiszfeld’s algorithm [8, 25, 23, 3, 27, 16] that generally give non-asymptotic runtime guarantees. In
light of more modern multiplicative weights methods his algorithm can be viewed as a re-weighted
least squares iteration. Chin et al. [7] considered the more general L

2

embedding problem: placing
the vertices of a graph into Rd, where some of the vertices have fixed positions while the remaining
vertices are allowed to float, with the objective of minimizing the sum of the Euclidean edge lengths.
Using the multiplicative weights method, they obtained a run time of O(d · n4/3✏�8/3

) for a broad
class of problems, including the geometric median problem.2

Many authors consider problems that generalize the Fermat-Weber problem, and obtain algo-
rithms for finding the geometric median as a specialization. Badoiu et al. gave an approximate
k-median algorithm by sub-sampling with the runtime for k = 1 of eO(d · exp(O(✏�4

))) [1]. Parrilo
and Sturmfels demonstrated that the problem can be reduced to semidefinite programming, thus
obtaining a runtime of eO(poly(n, d) log ✏�1

) [24]. Furthermore, Bose et al. gave a linear time al-
gorithm for fixed d and ✏�1, based on low-dimensional data structures [4] and it has been show
how to obtain running times of eO(nd + poly(d, ✏�1

)) for this problem and a more general class of
problems.[12, 10].

An approach very related to ours was studied by Xue and Ye [31]. They give an interior point
method with barrier analysis that runs in time ˜O((d3 + d2n)

p
n log ✏�1

).
2The result of [7] was stated in more general terms than given here. However, it easy to formulate the geometric

median problem in their model.
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1.2 Overview of O(nd log3 n
✏
) Time Algorithm

Interior Point Primer

Our algorithm is broadly inspired by interior point methods, a broad class of methods for efficiently
solving convex optimization problems [32, 22]. Given an instance of the geometric median problem
we first put the problem in a more natural form for applying interior point methods. Rather than
writing the problem as minimizing a convex function over Rd

min

x2Rd
f(x) where f(x)

def
=

X

i2[n]

kx� a(i)k
2

(1.1)

we instead write the problem as minimizing a linear function over a convex set:

min

{↵,x}2S
1

>↵ where S =

n

↵ 2 Rn, x 2 Rd | kx(i) � a(i)k
2

 ↵i for all i 2 [n]
o

. (1.2)

Clearly, these problems are the same as at optimality ↵i = kx(i) � a(i)k
2

.
To solve problems of the form (1.2) interior point methods replace the constraint {↵, x} 2 S

through the introduction of a barrier function. In particular they assume that there is a real valued
function p such that as {↵, x} moves towards the boundary of S the value of p goes to infinity.
A popular class of interior point methods known as path following methods [26, 11], they consider
relaxations of (1.2) of the form min{↵,x}2Rn⇥Rd t · 1>↵ + p(↵, x). The minimizers of this function
form a path, known as the central path, parameterized by t. The methods then use variants of
Newton’s method to follow the path until t is large enough that a high quality approximate solution
is obtained. The number of iterations of these methods are then typically governed by a property
of p known as its self concordance ⌫. Given a ⌫-self concordant barrier, typically interior point
methods require O(

p
⌫ log 1

✏ ) iterations to compute a (1 + ✏)-approximate solution.
For our particular convex set, the construction of our barrier function is particularly simple,

we consider each constraint kx � a(i)k
2

 ↵i individually. In particular, it is known that the
function p(i)(↵, x) = � ln

�

↵2

i � kx� a(i)k2
2

�

is a 2-self-concordant barrier function for the set S(i)
=

�

x 2 Rd,↵ 2 Rn | kx� a(i)k
2

 ↵i

 

[21, Lem 4.3.3]. Since \i2[n]S(i)
= S we can use the barrier

P

i2[n] p
(i)
(↵, x) for p(↵, x) and standard self-concordance theory shows that this is an O(n) self

concordant barrier for S. Consequently, this easily yields an interior point method for solving the
geometric median problem in O((nd)O(1)

log

1

✏ ) time.

Difficulties

Unfortunately obtaining a nearly linear time algorithm for geometric median using interior point
methods as presented poses numerous difficulties. Particularly troubling is the number of itera-
tions required by standard interior point algorithms. The approach outlined in the previous section
produced an O(n)-self concordant barrier and even if we use more advanced self concordance ma-
chinery, i.e. the universal barrier [22], the best known self concordance of barrier for the convex
set

P

i2[n] kx � a(i)k
2

 c is O(d). An interesting open question still left open by our work is to
determine what is the minimal self concordance of a barrier for this set.

Consequently, even if we could implement every iteration of an interior point scheme in nearly
linear time it is unclear whether one should hope for a nearly linear time interior point algorithm
for the geometric median. While there are a instances of outperforming standard self-concordance
analysis [20, 17], these instances are few, complex, and to varying degrees specialized to the problems
they solve. Moreover, we are unaware of any interior point scheme providing a provable nearly linear
time for a general nontrivial convex optimization problem.
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Beyond Standard Interior Point

Despite these difficulties we do obtain a nearly linear time interior point based algorithm that
only requires O(log

n
✏ ) iterations, i.e. increases to the path parameter. After choosing the natural

penalty functions p(i) described above, we optimize in closed form over the ↵i to obtain the following
penalized objective function:3

min

x
ft(x) where ft(x) =

X

i2[n]

q

1 + t2kx� a(i)k2
2

� ln



1 +

q

1 + t2kx� a(i)k2
2

�

We then approximately minimize ft(x) for increasing t. We let xt
def
= argminx2Rd ft(x) for x � 0,

and thinking of {xt : t � 0} as a continuous curve known as the central path, we show how to
approximately follow this path. As limt!1 xt = x⇤ this approach yields a (1 + ✏)-approximation.

So far our analysis is standard and interior point theory yields an ⌦(

p
n) iteration interior point

scheme. To overcome this we take a more detailed look at xt. We note that for any t if there is any
rapid change in xt it must occur in the direction of the smallest eigenvector of r2ft(x), denoted vt,
what we henceforth may refer to as the bad direction at xt. More precisely, for all directions d ? vt
it is the case that d>(xt � xt0) is small for t0  ct for a small constant c.

In fact, we show that this movement over such a long step, i.e. a constant increase in t, in the
directions orthogonal to the bad direction is small enough that for any movement around a ball of
this size the Hessian of ft only changes by a small multiplicative constant. In short, starting at xt
there exists a point y obtained just by moving from xt in the bad direction, such that y is close
enough to xt0 that standard first order method will converge quickly to xt0 ! Thus, we might hope
to find such a y, quickly converge to xt0 and repeat. If we increase t by a multiplicative constant in
every such iterations, standard interior point theory suggests that O(log

n
✏ ) iterations suffices.

Building an Algorithm

To turn the structural result in the previous section into a fast algorithm there are several further
issues we need to address. We need to

• (1) Show how to find the point along the bad direction that is close to xt0

• (2) Show how to solve linear systems in the Hessian to actually converge quickly to xt0

• (3) Show how to find the bad direction

• (4) Bound the accuracy required by these computations

Deferring (1) for the moment, our solution to the rest are relatively straightforward. Careful inspec-
tion of the Hessian of ft reveals that it is well approximated by a multiple of the identity matrix
minus a rank 1 matrix. Consequently using explicit formulas for the inverse of of matrix under
rank 1 updates, i.e. the Sherman-Morrison formula, we can solve such systems in nearly linear time
thereby addressing (2). For (3), we show that the well known power method carefully applied to the
Hessian yields the bad direction if it exists. Finally, for (4) we show that a constant approximate
geometric median is near enough to the central path for t = ⇥(

1

f(x⇤)
) and that it suffices to compute

a central path point at t = O(

n
f(x⇤)✏

) to compute a 1 + ✏-geometric median. Moreover, for these
values of t, the precision needed in other operations is clear.

3It is unclear how to extend our proof for the simpler function:
P

i2[n]

p
1 + t2kx� a(i)k22.
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The more difficult operation is (1). Given xt and the bad direction exactly, it is still not clear
how to find the point along the bad direction line from xt that is close to xt0 . Just performing
binary search on the objective function a priori might not yield such a point due to discrepancies
between a ball in Euclidean norm and a ball in hessian norm and the size of the distance from the
optimal point in euclidean norm. To overcome this issue we still line search on the bad direction,
however rather than simply using f(xt+↵ ·vt) as the objective function to line search on, we use the
function g(↵) = minkx�xt�↵·vtk2c f(x) for some constant c, that is given an ↵ we move ↵ in the bad
direction and take the best objective function value in a ball around that point. For appropriate
choice of c the minimizers of ↵ will include the optimal point we are looking for. Moreover, we can
show that g is convex and that it suffices to perform the minimization approximately.

Putting these pieces together yields our result. We perform O(log

n
✏ ) iterations of interior point

(i.e. increasing t), where in each iteration we spend O(nd log n
✏ ) time to compute a high quality

approximation to the bad direction, and then we perform O(log

n
✏ ) approximate evaluations on

g(↵) to binary search on the bad direction line, and then to approximately evaluate g we perform
gradient descent in approximate Hessian norm to high precision which again takes O(nd log n

✏ ) time.
Altogether this yields a O(nd log3 n

✏ ) time algorithm to compute a 1+ ✏ geometric median. Here we
made minimal effort to improve the log factors and plan to investigate this further in future work.

1.3 Overview of O(d✏�2

) Time Algorithm

In addition to providing a nearly linear time algorithm we provide a stand alone result on quickly
computing a crude (1+✏)-approximate geometric median in Section C. In particular, given an oracle
for sampling a random a(i) we provide an O(d✏�2

), i.e. sublinear, time algorithm that computes
such an approximate median. Our algorithm for this result is fairly straightforward. First, we show
that random sampling can be used to obtain some constant approximate information about the
optimal point in constant time. In particular we show how this can be used to deduce an Euclidean
ball which contains the optimal point. Second, we perform stochastic subgradient descent within
this ball to achieve our desired result.

1.4 Paper Organization

The rest of the paper is structured as follows. After covering preliminaries in Section 2, in Section 3
we provide various results about the central path that we use to derive our nearly linear time algo-
rithm. In Section 4 we then provide our nearly linear time algorithm. All the proofs and supporting
lemmas for these sections are deferred to Appendix A and Appendix B. In Appendix C we provide
our O(d/✏2) algorithm, in Appendix D we provide the derivation of our penalized objective function,
in Appendix E we provide general technical machinery we use throughout and in Appendix F we
show how to extend our results to Weber’s problem, i.e. weighted geometric median.

2 Notation

2.1 General Notation

We use bold to denote a matrix. For a symmetric positive semidefinite matrix (PSD), A, we let
�
1

(A) � ... � �n(A) � 0 denote the eigenvalues of A and let v
1

(A), ..., vn(A) denote corresponding
eigenvectors. We let kxkA

def
=

p
x>Ax and for PSD we use A � B and B � A to denote the

conditions that x>Ax  x>Bx for all x and x>Bx  x>Ax for all x respectively.

5



2.2 Problem Notation

The central problem of this paper is as follows: we are given points a(1), ..., a(n) 2 Rd and we wish
to compute a geometric median, i.e. x⇤ 2 argminx2Rd f(x) where f(x) =

P

i2[n] ka(i) � xk
2

. We
call a point x 2 Rd an (1 + ✏)-approximate geometric median if f(x)  (1 + ✏)f(x⇤).

2.3 Penalized Objective Notation

To solve this problem, we smooth the objective function f and instead consider the following family
of penalized objective functions parameterized by t > 0

min

x2Rd
ft(x) where ft(x) =

X

i2[n]

q

1 + t2kx� a(i)k2
2

� ln



1 +

q

1 + t2kx� a(i)k2
2

�

This penalized objective function is derived from a natural interior point formulation of the geometric
median problem (See Section D). For all path parameters t > 0, we let xt

def
= argminx ft(x). Our

primary goal is to obtain good approximations to the central path {xt : t > 0} for increasing values
of t.

We let g(i)t (x)
def
=

q

1 + t2kx� a(i)k2
2

and f
(i)
t (x)

def
= g

(i)
t (x)�ln(1+g

(i)
t (x)) so ft(x) =

P

i2[n] f
(i)
t (x).

We refer to the quantity wt(x)
def
=

P

i2[n]
1

1+g
(i)
t (x)

as weight as it is a natural measure of total con-

tribution of the a(i) to r2ft(x). We let

ḡt(x)
def
= wt(x)

2

4

X

i2[n]

1

(1 + g
(i)
t (xt))g

(i)
t (xt)

3

5

�1

=

P

i2[n]
1

1+g
(i)
t (xt)

P

i2[n]
1

(1+g
(i)
t (xt))g

(i)
t (xt)

denote a weighted harmonic mean of g that helps upper bound the rate of change of the central
path. Furthermore, we let u(i)(x) denote the unit vector corresonding to x� a(i), i.e. u(i)(x)

def
= x�

a(i)/kx�a(i)k
2

when kx�a(i)k
2

6= 0 and u(i)(x)
def
= 0 otherwise. Finally we let µt(x)

def
= �d(r2ft(x))

denote the minimum eigenvalue of r2ft(x), and let vt(x) denote a corresponding eigenvector. To
simplify notation we often drop the (x) in these definitions when x = xt and t is clear from context.

3 Properties of the Central Path

Here provide various facts regarding the penalized objective function and the central path. While
we use the lemmas in this section throughout the paper, the main contribution of this section is
Lemma 5 in Section 3.3. There we prove that with the exception of a single direction, the change in
the central path is small over a constant multiplicative change in the path parameter. In addition,
we show that our penalized objective function is stable under changes in a O(

1

t ) Euclidean ball
(Section 3.1), we bound the change in the Hessian over the central path (Section 3.2), and we relate
f(xt) to f(x⇤) (Section 3.4).

3.1 How Much Does the Hessian Change in General?

Here, we show that the Hessian of the penalized objective function is stable under changes in a
O(

1

t ) sized Euclidean ball. This shows that if we have a point which is close to a central path point
in Euclidean norm, then we can use Newton method to find it.

6



Lemma 1. Suppose that kx� yk
2

 ✏
t with ✏  1

20

. Then, we have

(1� 6✏2/3)r2ft(x) � r2ft(y) � (1 + 6✏2/3)r2ft(x).

3.2 How Much Does the Hessian Change Along the Path?

Here we bound how much the Hessian of the penalized objective function can change along the
central path. First we provide the following lemma bound several aspects of the penalized objective
function and proving that the weight, wt, only changes by a small amount multiplicatively given
small multiplicative changes in the path parameter, t.

Lemma 2. For all t � 0 and i 2 [n] the following hold
�

�

�

�

d

dt
xt

�

�

�

�

2

 1

t2
ḡt(xt) ,

�

�

�

�

d

dt
g
(i)
t (xt)

�

�

�

�

 1

t

⇣

g
(i)
t (xt) + ḡt

⌘

, and
�

�

�

�

d

dt
wt

�

�

�

�

 2

t
wt

Consequently, for all t0 � t we have that
�

t
t0
�

2

wt  wt0 
⇣

t0

t

⌘

2

wt.

Next we use this lemma to bound the change in the Hessian with respect to t.

Lemma 3. For all t � 0 we have

� 12 · t · wtI �
d

dt

⇥

r2ft(xt)
⇤

� 12 · t · wtI (3.1)

and therefore for all � 2 [0, 1
8

]

r2f(xt)� 15�t2wtI � r2f(xt(1+�)) � r2f(xt) + 15�t2wtI . (3.2)

3.3 Where is the Next Optimal Point?

Here we prove our main result of this section. We prove that over a long step the central path moves
very little in directions orthogonal to the smallest eigenvector of the Hessian. We begin by noting
the Hessian is approximately a scaled identity minus a rank 1 matrix.

Lemma 4. For all t, we have
1

2

h

t2 · wtI� (t2 · wt � µt)vtv
>
t

i

� r2ft(xt) � t2 · wtI� (t2 · wt � µt)vtv
>
t .

Using this and the lemmas of the previous section we bound the amount xt can move in every
direction far from vt.

Lemma 5 (The Central Path is Almost Straight). For all t � 0, � 2 [0, 1

600

], and any unit vector
y with |hy, vti|  1

t2· where  = max�2[t,(1+�)t]
w�
µ�

, we have y>(x
(1+�)t � xt)  6�

t .

3.4 Where is the End?

In this section, we bound the quality of the central path with respect to the geometric median
objective. In particular, we show that if we can solve the problem for some t = 2n

✏f(x⇤)
then we obtain

an (1 + ✏)-approximate solution. As our algorithm ultimately starts from an initial t = 1/O(f(x⇤))
and increases t by a multiplicative constant in every iteration, this yields an O(log

n
✏ ) iteration

algorithm.

Lemma 6. f(xt)� f(x⇤)  2n
t for all t > 0.

7



4 Nearly Linear Time Geometric Median

Here we show how to use the structural results from the previous section to obtain a nearly linear
time algorithm for computing the geometric median. Our algorithm follows a simple structure (See
Algorithm 1). First we use simply average the a(i) to compute a 2-approximate median, denoted
x(0). Then for a number of iterations we repeatedly move closer to xt for some path parameter
t, compute the minimum eigenvector of the Hessian, and line search in that direction to find an
approximation to a point further along the central path. Ultimately, this yields a point x(k) that
is precise enough approximation to a point along the central path with large enough t that we can
simply out x(k) as our (1 + ✏)-approximate geometric median.

Algorithm 1: AccurateMedian(✏)

Input: points a(1), ..., a(n) 2 Rd

Input: desired accuracy ✏ 2 (0, 1)

// Compute a 2-approximate geometric median and use it to center

Compute x(0) := 1

n

P

i2[n] a
(i) and ef⇤ := f(x(0)) // Note

˜f⇤  2f(x⇤) by Lemma 18

Let ti =
1

400

ef⇤
(1 +

1

600

)

i�1, ✏̃⇤ = 1

3

✏, and ˜t⇤ =
2n

✏̃⇤· ˜f⇤
.

Let ✏v =

1

8

(

✏̃⇤
7n)

2 and let ✏c = (

✏v
36

)

3
2 .

x(1) = LineSearch(x(0), t
1

, t
1

, 0, ✏c) .

// Iteratively improve quality of approximation

Let k = maxi2Z ti  ˜t⇤
for i 2 [1, k] do

// Compute ✏v-approximate minimum eigenvalue and eigenvector of r2fti(x
(i)
)

(�(i), u(i)) = ApproxMinEig(x(i), ti, ✏v) .

// Line search to find x(i+1)

such that kx(i+1) � xti+1k2  ✏c
ti+1

x(i+1)

= LineSearch(x(i), ti, ti+1

, u(i), ✏c) .
end
Output: ✏-approximate geometric median x(k+1).
We split the remainder of the algorithm specification and its analysis into several parts. First

in Section 4.1 we show how to compute an approximate minimum eigenvector and eigenvalue of the
Hessian of the penalized objective function. Then in Section 4.2 we show how to use this eigenvector
to line search for the next central path point. Finally, in Section 4.3 we put these results together
to obtain our nearly linear time algorithm. Throughout this section we will want an upper bound
to f(x⇤) and a slight lower bound on ✏, the geometric median accuracy we are aiming for. We use
an easily computed ˜f⇤  2f(x⇤) for the former and ✏̃⇤ =

1

3

✏ throughout the section.

4.1 Eigenvector Computation and Hessian Approximation

Here we show how to compute the minimum eigenvector of r2ft(x) and thereby obtain a concise
approximation to r2ft(x). Our main algorithmic tool is the well known power method and the fact
that it converges quickly on a matrix with a large eigenvalue gap. To improve our logarithmic terms
we need a slightly non-standard analysis of the method and therefore we provide and analyze this
method for completeness in Section B.1. Using this tool we estimate the top eigenvector as follows.
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Algorithm 2: ApproxMinEig(x, t, ✏)

Input: Point x 2 Rd, path parameter t, and target accuracy ✏.
Let A =

P

i2[n]
t4(x�a(i))(x�a(i))>

(1+g
(i)
t (x))2g

(i)
t (x)

Let u := PowerMethod(A,⇥(log

�

n
✏

�

))

Let � = u>r2ft(x)u
Output: (�, u)

Lemma 7 (Computing Hessian Approximation). Let x 2 Rd, t > 0, and ✏ 2 (0, 1
4

). The al-
gorithm ApproxMinEig(x, t, ✏) outputs (�, u) in O(nd log n

✏ ) time such that if µt(x)  1

4

t2wt(x)

then hvt(x), ui2 � 1 � ✏ with high probability in n/✏. Furthermore, if ✏ 
⇣

µt(x)
8t2·wt(x)

⌘

2

then
1

4

Q � r2ft(x) � 4Q with high probability in n/✏ where Q
def
= t2 · wt(x)�

�

t2 · wt(x)� �
�

uu>.

Furthermore, we show that the v(i) computed by this algorithm is sufficiently close to the bad
direction. Combining 7 with the structural results from the previous section and Lemma 29, a minor
technical lemma regarding the transitivity of large inner products,we provide the following lemma.

Lemma 8. Let (�, u) = ApproxMinEig(x, t, ✏v) for ✏v < 1

8

and kx � xtk2  ✏c
t for ✏c  (

✏v
36

)

3
2 . If

µt  1

4

t2 · wt then with high probability in n/✏v for all unit vectors y ? u, we have hy, vti2  8✏v.

Note that this lemma assumes µt is small. When µt is large, we instead show that the next
central path point is close to the current point and hence we do not need to compute the bad
direction to center quickly.

Lemma 9. Suppose µt � 1

4

t2 · wt and let t0 2 [t, (1 + 1

600

)t] then kxt0 � xtk2  1

100t .

4.2 Line Searching

Here we show how to line search along the bad direction to find the next point on the central path.
Unfortunately, simply performing binary search on objective function directly may not suffice. If
we search over ↵ to minimize fti+1(y

(i)
+ ↵v(i)) it is unclear if we actually obtain a point close to

xt+1

. It might be the case that even after minimizing ↵ we would be unable to move towards xt+1

efficiently.
To overcome this difficulty, we use the fact that over the region kx � yk

2

= O(

1

t ) the Hessian
changes by at most a constant and therefore we can minimize ft(x) over this region extremely
quickly. Therefore, we instead line search on the following function

gt,y,v(↵)
def
= min

kx�(y+↵v)k2 1
49t

ft(x) (4.1)

and use that we can evaluate gt,y,v(↵) approximately by using an appropriate centering procedure.
We can show (See Lemma 31) that gt,y,v(↵) is convex and therefore we can minimize it efficiently just
by doing an appropriate binary search. By finding the approximately minimizing ↵ and outputting
the corresponding approximately minimizing x, we can obtain x(i+1) that is close enough to xti+1 .
For notational convenience, we simply write g(↵) if t, y, v is clear from the context.

First, we show how we can locally center and provide error analysis for that algorithm.

9



Algorithm 3: LocalCenter(y, t, ✏)

Input: Point y 2 Rd, path parameter t > 0, target accuracy ✏ > 0.
Let (�, v) := ApproxMinEig(x, t, ✏).
Let Q = t2 · wt(y)I�

�

t2 · wt(y)� �
�

vv>

Let x(0) = y
for i = 1, ..., k = 64 log

1

✏ do
Let x(i) = minkx�yk2 1

49t
f(x(i�1)

) + hrft(x(i�1)

), x� x(i�1)i+ 4kx� x(i�1)k2Q.
end
Output: x(k)

Lemma 10. Given some y 2 Rd, t > 0 and 0  ✏ 
⇣

µt(x)
8t2·wt(x)

⌘

2

. In O(nd log(n✏ )) time

LocalCenter(y, t, ✏) computes x(k) such that with high probability in n/✏.

ft(x
(k)

)� min

kx�yk2 1
49t

ft(x)  ✏

 

ft(y)� min

kx�yk2 1
49t

ft(x)

!

.

Using this local centering algorithm as well as a general result for minimizing one dimensional
convex functions using a noisy oracle (See Section E.3) we obtain our line search algorithm.

Algorithm 4: LineSearch(y, t, t0, u, ✏)

Input: Point y 2 Rd, current path parameter t, next path parameter t0, bad direction u,
target accuracy ✏

Let ✏O =

�

✏✏̃⇤
160n2

�

2, ` = �6 ef⇤, u = 6

ef⇤.
Define the oracle q : R! R by q(↵) = ft0 (LocalCenter (y + ↵u, t0, ✏O))
Let ↵0

= OneDimMinimizer(`, u, ✏O, q, t
0n)

Output: x0 = LocalCenter (y + ↵u, t0, ✏O)

Lemma 11. Let 1

400f(x⇤)
 t  t0  (1 +

1

600

)t  2n
✏̃⇤· ˜f⇤

and let (�, u) = ApproxMinEig(y, t, ✏v) for

✏v  1

8

(

✏̃⇤
3n)

2 and y 2 Rd such that ky � xtk2  1

t (
✏v
36

)

3
2 . In O(nd log2( n

✏̃⇤·✏·✏v )) time and O(log(

n
✏̃⇤·✏))

calls to the LocalCenter, LineSearch(y, t, t0, u, ✏) outputs x0 such that kx0 � xt0k2  ✏
t0 with high

probability in n/✏.

We also provide the following lemma useful for finding the first center.

Lemma 12. Let 1

400f(x⇤)
 t  t0  (1 +

1

600

)t  2n
✏̃⇤· ˜f⇤

and let x 2 Rd satisfy kx � xtk2  1

100t .
Then, in O(nd log2( n

✏·✏̃⇤ )) time, LineSearch(x, t, t, u, ✏) outputs y such that ky � xtk2  ✏
t for any

vector u 2 Rd.

4.3 Putting It All Together

Combining the results of the previous sections, we prove our main theorem.

Theorem 1. In O(nd log3(n✏ )) time, Algorithm 1 outputs an (1+ ✏)-approximate geometric median
with constant probability.
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A Properties of the Central Path (Proofs)

Here we provide proofs of the claims in Section 3 as well as additional technical lemmas we use
throughout the paper.

A.1 Basic Facts

Here we provide basic facts regarding the central path that we will use throughout our analysis.
First we compute various derivatives of the penalized objective function.

Lemma 13 (Path Derivatives). We have

rft(x) =
X

i2[n]

t2(x� a(i))

1 + g
(i)
t (x)

, r2ft(x) =
X

i2[n]

t2

1 + g
(i)
t (x)

 

I� t2(x� a(i))(x� a(i))>

g
(i)
t (x)(1 + g

(i)
t (x))

!

, and

d

dt
xt = �

�

r2ft(xt)
��1

X

i2[n]

t(xt � a(i))

(1 + g
(i)
t (xt))g

(i)
t (xt)

Proof of Lemma 13. Direct calculation shows that

rf (i)
t (x) =

t2(x� a(i))
q

1 + t2kx� a(i)k2
2

� 1

1 +

q

1 + t2kx� a(i)k2
2

0

@

t2(x� a(i))
q

1 + t2kx� a(i)k2
2

1

A

=

t2(x� a(i))

1 +

q

1 + t2kx� a(i)k2
2

=

t2(x� a(i))

1 + g
(i)
t (x)

and

r2f
(i)
t (x) =

t2

1 +

q

1 + t2kx� a(i)k2
2

I�

0

@

1

1 +

q

1 + t2kx� a(i)k2
2

1

A

2

t4(x� a(i))(x� a(i))>
q

1 + t2kx� a(i)k2
2

=

t2

1 + g
(i)
t (x)

 

I� t2(x� a(i))(x� a(i))>

g
(i)
t (x)(1 + g

(i)
t (x))

!
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and
✓

d

dt
rf (i)

t

◆

(x) =
2t(x� a(i))

1 +

q

1 + t2kx� a(i)k2
2

� t2 · (x� a(i)) · tkx� a(i)k2
2

⇣

1 +

p

1 + t2kx� a(i)k
⌘

2

q

1 + t2kx� a(i)k2
2

=

t · (x� a(i))

1 + g
(i)
t (x)

 

2� g
(i)
t (x)2 � 1

(1 + g
(i)
t (x))g

(i)
t (x)

!

=

t · (x� a(i))

1 + g
(i)
t (x)

 

2g
(i)
t (x)� (g

(i)
t (x)� 1)

g
(i)
t (x)

!

=

t · (x� a(i))

g
(i)
t (x)

Finally, by the optimality of xt we have that rft(xt) = 0. Consequently,

r2ft(xt)
d

dt
xt +

✓

d

dt
rft

◆

(xt) = 0.

and solving for d
dtxt then yields

d

dt
xt = �

�

r2ft(xt)
��1

✓✓

d

dt
rft

◆

(xt)

◆

= �
�

r2ft(xt)
��1

✓✓

d

dt
rft

◆

(xt)�
1

t
rft(xt)

◆

= �
�

r2ft(xt)
��1

0

@

X

i2[n]

"

t

g
(i)
t

� t

1 + g
(i)
t

#

(xt � a(i))

1

A .

Next, in we provide simple facts regarding the Hessian of the penalized objective function.

Lemma 14. For all t > 0 and x 2 Rd

r2ft(x) =
X

i2[n]

t2

1 + g
(i)
t (x)

 

I�
 

1� 1

g
(i)
t (x)

!

u(i)(x)u(i)(x)>

!

and therefore
X

i2[n]

t2

(1 + g
(i)
t (x))g

(i)
t (x)

I � r2ft(x) �
X

i2[n]

t2

1 + g
(i)
t (x)

I

Proof of Lemma 14. We have that

r2ft(x) =
X

i2[n]

t2

1 + g
(i)
t (x)

 

I� t2(x� a(i))(x� a(i))>

g
(i)
t (x)(1 + g

(i)
t (x))

!

=

X

i2[n]

t2

1 + g
(i)
t (x)

 

I� t2kx� a(i)k2
2

(1 + g
(i)
t (x))g

(i)
t (x)

u(i)(x)u(i)(x)>

!

.

Since
t2kx� a(i)k2

2

(1 + g
(i)
t (x))g

(i)
t (x)

=

g
(i)
t (x)2 � 1

g
(i)
t (x)(1 + g

(i)
t (x))

= 1� 1

g
(i)
t (x)

the result follows.
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A.2 Stability of Hessian

Here we show that moving a point x 2 Rd in `
2

, does not change the Hessian, r2ft(x), too much
spectrally. First we show that such changes do not change g

(i)
t (x) by too much (Lemma 15) and

then we use this to prove the claim, i.e. we prove Lemma 1.

Lemma 15 (Stability of g). For all x, y 2 Rd and t > 0 , we have

g
(i)
t (x)� tkx� yk

2

 g
(i)
t (y)  g

(i)
t (x) + tkx� yk

2

Proof of Lemma 15. Direct calculation reveals that

g
(i)
t (y)2 = 1 + t2kx� a(i) + y � xk2

2

= 1 + t2kx� a(i)k2
2

+ 2t2(x� a(i))>(y � x) + t2ky � xk2
2

= g
(i)
t (x)2 + 2t2(x� a(i))>(y � x) + t2ky � xk2

2

.

Consequently by Cauchy Schwarz

g
(i)
t (y)2  g

(i)
t (x)2 + 2t2kx� a(i)k

2

· ky � xk
2

+ t2ky � xk2
2


⇣

g
(i)
t (x) + tky � xk

2

⌘

2

and

g
(i)
t (y)2 � g

(i)
t (x)2 � 2t2kx� a(i)k

2

· ky � xk
2

+ t2ky � xk2
2

�
⇣

g
(i)
t (x)� tky � xk

2

⌘

2

.

Lemma 1. Suppose that kx� yk
2

 ✏
t with ✏  1

20

. Then, we have

(1� 6✏2/3)r2ft(x) � r2ft(y) � (1 + 6✏2/3)r2ft(x).

Proof of Lemma 1. Here we prove the following stronger statement, for all i 2 [n]

(1� 6✏2/3)r2f
(i)
t (x) � r2f

(i)
t (y) � (1 + 6✏2/3)r2f

(i)
t (x) .

Without loss of generality let y � x = ↵v + �u(i)(x) for some v ? u(i)(x) with kvk
2

= 1.
Since kx � yk2

2

 ✏2

t2
, we know that ↵2,�2  ✏2

t2
. Also, let x̄ = x + �u(i)(x), so that clearly,

u(i)(x) = u(i)(x̄). Now some manipulation reveals that for all unit vectors z 2 Rd the following
holds (so long as u(i)(x) 6= 0 and u(i)(y) 6= 0)

15



�

�

�

�

h

u(i)(x)>z
i

2

�
h

u(i)(y)>z
i

2

�

�

�

�

=

�

�

�

�

h

u(i)(x̄)>z
i

2

�
h

u(i)(y)>z
i

2

�

�

�

�

=

�

�

�

�

�

�

"

(x̄� a(i))>z

kx̄� a(i)k
2

#

2

�
"

(y � a(i))>z

ky � a(i)k
2

#

2

�

�

�

�

�

�



�

�

�

�

�

�

"

(x̄� a(i))>z

kx̄� a(i)k
2

#

2

�
"

(x̄� a(i))>z

ky � a(i)k
2

#

2

�

�

�

�

�

�

+

�

�

�

�

�

�

"

(x̄� a(i))>z

ky � a(i)k
2

#

2

�
"

(y � a(i))>z

ky � a(i)k
2

#

2

�

�

�

�

�

�



�

�

�

�

�

1� kx̄� a(i)k2
2

ky � a(i)k2
2

�

�

�

�

�

+

�

�

�

⇥

(x̄� a(i) + ↵v)>z
⇤

2 �
⇥

(x̄� a(i))>z
⇤

2

�

�

�

ky � a(i)k2
2

=

↵2

+

�

�

�

2

⇥

(x̄� a(i))>z
⇤

·
⇥

↵v>z
⇤

+

⇥

↵v>z
⇤

2

�

�

�

kx̄� a(i)k2
2

+ ↵2

i

where we used that y = x̄ + ↵v and ky � a(i)k2
2

= ↵2

+ kx̄ � a(i)k2
2

(since v ? (x̄ � a(i))). Now we
know that ↵2  ✏2

t2
and therefore, by Young’s inequality and Cauchy Schwarz we have that for all

� > 0

�

�

�

�

h

u(i)(x)>z
i

2

�
h

u(i)(y)z
i

2

�

�

�

�


2↵2

+ 2

�

�

⇥

(x̄� a(i))>z
⇤

·
⇥

↵v>z
⇤

�

�

kx̄� a(i)k2
2

+ ↵2


2↵2

+ �
⇥

(x̄� a(i))>z
⇤

2

+ ��1↵2

⇥

v>z
⇤

2

kx̄� a(i)k2
2

+ ↵2


↵2

⇣

2 + ��1

�

v>z
�

2

⌘

kx̄� a(i)k2
2

+ ↵2

+ �
h

(u(i)(x))>z
i

2

 ✏2

t2kx̄� a(i)k2
2

+ ✏2

✓

2 +

1

�

⇣

v>z
⌘

2

◆

+ �
h

(u(i)(x))>z
i

2

. (A.1)

Note that

t2kx̄� a(i)k2
2

= t2
⇣

kx� a(i)k2
2

+ 2�(x� a(i))>u(i)(x) + �2

⌘

=

⇣

tkx� a(i)k
2

+ t�
⌘

2

�
⇣

max

n

tkx� a(i)k
2

� ✏, 0
o⌘

2

.

Now, we separate the proof into two cases depending if tkx� a(i)k
2

� 2✏1/2
q

g
(i)
t (x).

If tkx� a(i)k
2

� 2✏1/3
q

g
(i)
t (x) then since ✏  1
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we have that

tkx� a(i)k
2

�

0

@

tkx� a(i)k
2

q

g
(i)
t (x)

1

A

2

� 4✏2/3.
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and tky � a(i)k � ✏, justifying our assumption that u(i)(x) 6= 0 and u(i)(y) 6= 0. Furthermore, this
implies that

t2kx̄� a(i)k2
2

�
✓

3

4

◆

2

t2kx� a(i)k2
2

� 2✏2/3g
(i)
t (x).

and therefore letting � =

✏2/3

g
(i)
t (x)

yields

�

�

�

�

h

u
(i)
t (x)>z

i

2

�
h

u
(i)
t (y)z

i

2

�

�

�

�

 ✏4/3

2g
(i)
t (x)

 

2 +

g
(i)
t (x)

✏2/3

h

v>z
i

2

!

+

✏2/3

g
(i)
t (x)

h

(u(i)(x))>z
i

2

 ✏2/3

2

h

v>z
i

2

+

✏4/3

g
(i)
t (x)

+

✏2/3

g
(i)
t (x)

h

(u(i)(x))>z
i

2

 ✏2/3

2

h

v>z
i

2

+

3

2

✏2/3

g
(i)
t (x)

.

Since v ? u(i)(x) and v, z are unit vectors, both
⇥

v>z
⇤

2 and 1

g
(i)
t (x)

are less than

z>

"

I�
 

1� 1

g
(i)
t (x)

!

u(i)(y)(u(i)(y))>

#

z.

Therefore, we have
�

�

�

�

h

u
(i)
t (x)>z

i

2

�
h

u
(i)
t (y)z

i

2

�

�

�

�

 2✏2/3z>

"

I�
 

1� 1

g
(i)
t (x)

!

u(i)(y)(u(i)(y))>

#

z

= 2✏2/3

 

1 + g
(i)
t (x)

t2

!

kzk2
r2f

(i)
t (x)

and therefore if we let

H
def
=

t2

1 + g
(i)
t (x)

 

I�
 

1� 1

g
(i)
t (x)

!

u(i)(y)(u(i)(y))>

!

,

we see that for unit vectors z,
�

�

�

z>
⇣

H�r2f
(i)
t (x)

⌘

z
�

�

�

 2✏2/3kzk2
r2f

(i)
t (x)

Otherwise, tkx� a(i)k
2

< 2✏1/3
q

g
(i)
t (x) and therefore

g
(i)
t (x)2 = 1 + t2kx� a(i)k2

2

 1 + 4✏2/3g
(i)
t (x)

Therefore, we have

g
(i)
t (x)  4✏2/3 +

p

(4✏2/3)2 + 4

2

 1 + 4✏2/3 .

Therefore independent of (A.1) and the assumption that u(i)(x) 6= 0 and u(i)(y) 6= 0 we have

1

1 + 4✏2/3
H � t2

(1 + g
(i)
t (x))g

(i)
t (x)

I � r2f
(i)
t (x) � t2

(1 + g
(i)
t (x))

I �
⇣

1 + 4✏2/3
⌘

H .
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In either case, we have that
�

�

�

z>
⇣

H�r2f
(i)
t (x)

⌘

z
�

�

�

 4✏2/3kzk2
r2f

(i)
t (x)

.

Now, we note that kx� yk
2

 ✏
t  ✏ · g

(i)
t (x)
t . Therefore, by Lemma 15 we have that

(1� ✏)g
(i)
t (x)  g

(i)
t (y)  (1 + ✏)g

(i)
t (x)

Therefore, we have

1� 4✏2/3

(1 + ✏)2
r2f

(i)
t (x) � 1

(1 + ✏)2
H � r2f

(i)
t (y) � 1

(1� ✏)2
H � 1 + 4✏2/3

(1� ✏)2
r2f

(i)
t (x)

Since ✏ < 1

20

, the result follows.

Consequently, so long as we have a point within a O(

1

t ) sized Euclidean ball of some xt, Newton’s
method (or an appropriately transformed first order method) within the ball will converge quickly.

A.3 How Much Does the Hessian Change Along the Path?

Lemma 2. For all t � 0 and i 2 [n] the following hold
�

�

�

�

d

dt
xt

�

�

�

�

2

 1

t2
ḡt(xt) ,

�

�

�

�

d

dt
g
(i)
t (xt)

�

�

�

�

 1

t

⇣

g
(i)
t (xt) + ḡt

⌘

, and
�

�

�

�

d

dt
wt

�

�

�

�

 2

t
wt

Consequently, for all t0 � t we have that
�

t
t0
�

2

wt  wt0 
⇣

t0

t

⌘

2

wt.

Proof of Lemma 2. From Lemma 13 we know that

d

dt
xt = �

�

r2ft(xt)
��1

X

i2[n]

t(xt � a(i))

(1 + g
(i)
t (xt))g

(i)
t (xt)

and by Lemma 14 we know that

r2ft(xt) ⌫
X

i2[n]

t2

(1 + g
(i)
t (xt))g

(i)
t (xt)

I =
t2

ḡt(xt)

X

i2[n]

1

1 + g
(i)
t (xt)

I .

Using this fact and the fact that tkxt � a(i)k
2

 g
(i)
t we have

�

�

�

�

d

dt
xt

�

�

�

�

2

=

�

�

�

�

�
�

r2ft(xt)
��1

d

dt
rft(xt)

�

�

�

�

2



0

@

t2

ḡt(xt)

X

i2[n]

1

1 + g
(i)
t (xt)

1

A

�1

X

i2[n]

�

�

�

�

�

t(xt � a(i))

g
(i)
t (xt)(1 + g

(i)
t (xt))

�

�

�

�

�

2

 ḡt(xt)

t2
.

Next, we have

d

dt
g
(i)
t (xt) =

d

dt

⇣

1 + t2kxt � a(i)k2
2

⌘

1
2

=

1

2

· g(i)t (xt)
�1

✓

2tkxt � a(i)k2
2

+ 2t2(xt � a(i))>
d

dt
xt

◆
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which by Cauchy Schwarz and that tkxt�a(i)k
2

 g
(i)
t (xt) yields the second equation. Furthermore,

�

�

�

�

d

dt
wt

�

�

�

�

=

�

�

�

�

�

�

d

dt

X

i2[n]

1

1 + g
(i)
t (xt)

�

�

�

�

�

�


X

i2[n]

�

�

�

�

�

d

dt

1

1 + g
(i)
t (xt)

�

�

�

�

�

=

X

i2[n]

�

�

�

�

�

1

(1 + g
(i)
t (xt))2

d

dt
g
(i)
t (xt)

�

�

�

�

�

 1

t

X

i2[n]

g
(i)
t (xt) + ḡt

(1 + g
(i)
t (xt))2

 2

wt

t

which yields the third equation. Therefore, we have that

|lnwt0 � lnwt| =

�

�

�

�

�

ˆ t0

t

d
d↵w↵

w↵
d↵

�

�

�

�

�


ˆ t0

t

�

2

w↵
↵

�

w↵
d↵ = 2

ˆ t0

t

1

↵
d↵ = ln

✓

t0

t

◆

2

.

Exponentiating the above inequality yields the final inequality.

Lemma 3. For all t � 0 we have

� 12 · t · wtI �
d

dt

⇥

r2ft(xt)
⇤

� 12 · t · wtI (3.1)

and therefore for all � 2 [0, 1
8

]

r2f(xt)� 15�t2wtI � r2f(xt(1+�)) � r2f(xt) + 15�t2wtI . (3.2)

Proof of Lemma 3. Let

A
(i)
t

def
=

t2(xt � a(i))(xt � a(i))>

(1 + g
(i)
t )g

(i)
t

and recall that r2ft(xt) =
P

i2[n]
t2

1+g
(i)
t

⇣

I�A
(i)
t

⌘

. Consequently

d

dt
r2ft(xt) =

d

dt

0

@

X

i2[n]

t2

1 + g
(i)
t

⇣

I�A
(i)
t

⌘

1

A

= 2t

✓

1

t2

◆

r2ft(xt) + t2
X

i2[n]

� d
dtg

(i)
t

(1 + g
(i)
t )

2

⇣

I�A
(i)
t

⌘

�
X

i2[n]

t2

1 + g
(i)
t

d

dt
A

(i)
t

Now, since 0 � A
(i)
t � I we have 0 � r2ft(xt) � t2wtI. For all unit vectors v, using Lemma 2

yields
�

�

�

�

v>
✓

d

dt
r2ft(xt)

◆

v

�

�

�

�

 2t · wt · kvk2
2

+ t2
X

i2[n]

�

�

�

d
dtg

(i)
t

�

�

�

(1 + g
(i)
t )

2

kvk2
2

+

X

i2[n]

t2

1 + g
(i)
t

�

�

�

�

v>
✓

d

dt
A

(i)
t

◆

v

�

�

�

�

 4t · wt +

X

i2[n]

t2

1 + g
(i)
t

�

�

�

�

v>
✓

d

dt
A

(i)
t

◆

v

�

�

�

�

.

Next

d

dt
A

(i)
t = 2t

✓

1

t2

◆

A
(i)
t �

 

t

(1 + g
(i)
t )g

(i)
t

!

2



(1 + g
(i)
t )

d

dt
g
(i)
t + g

(i)
t

d

dt
g
(i)
t

�

(xt � a(i))(xt � a(i))>

+

t2

(1 + g
(i)
t )g

(i)
t

"

(xt � a(i))

✓

d

dt
xt

◆>
+

✓

d

dt
xt

◆

(xt � a(i))>

#

,
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and therefore by Lemma 2 and the fact that tkxt � a(i)k
2

 g
(i)
t we have

�

�

�

�

v>
✓

d

dt
A

(i)
t

◆

v

�

�

�

�



0

@

2

t
+

2t2
�

�

�

d
dtg

(i)
t

�

�

�

(1 + g
(i)
t )(g

(i)
t )

2

kxt � a(i)k2
2

+

2t2kxt � a(i)k
2

k d
dtxtk2

(1 + g
(i)
t )g

(i)
t

1

A kvk2
2

 2

t
+

2

t
· g

(i)
t + ḡt

1 + g
(i)
t

+

2

t
· ḡt

1 + g
(i)
t

 4

t
+

4

t

ḡt

1 + g
(i)
t

.

Consequently, we have
�

�

�

�

v>
✓

d

dt
r2ft(xt)

◆

v

�

�

�

�

 8t · wt + 4t
X

i2[n]

ḡt

(1 + g
(i)
t )

2

 12t · wt

which completes the proof of (3.1). To prove (3.2), let v be any unit vector and note that

�

�

�

v>
�

r2ft(1+�)(x)�r2ft(x)
�

v
�

�

�

=

�

�

�

�

�

ˆ t(1+�)

t
v>

d

d↵

⇥

r2f↵(x↵)
⇤

v · d↵

�

�

�

�

�

 12

ˆ t(1+�)

t
↵ · w↵d↵

 12

ˆ t(1+�)

t
↵
⇣↵

t

⌘

2

wtd↵ 
12

t2

✓

1

4

[t(1 + �)]4 � 1

4

t4
◆

wt

= 3t2
⇥

(1 + �)4 � 1

⇤

wt  15t2�wt

where we used Lemma 3 and 0  �  1

8

at the last line.

A.4 Where is the next Optimal Point?

Lemma 16. For all t, we have

1

2

h

t2 · wtI� (t2 · wt � µt)vtv
>
t

i

� r2ft(xt) � t2 · wtI� (t2 · wt � µt)vtv
>
t .

Proof of Lemma 16. This follows immediately from Lemma 14, regarding the hessian of the penal-
ized objective function, and Lemma 26, regarding the sum of PSD matrices expressed as the identity
matrix minus a rank 1 matrix.

Lemma 5 (The Central Path is Almost Straight). For all t � 0, � 2 [0, 1

600

], and any unit vector
y with |hy, vti|  1

t2· where  = max�2[t,(1+�)t]
w�
µ�

, we have y>(x
(1+�)t � xt)  6�

t .

Proof of Lemma 5. Clearly

y>(x
(1+�)t � xt) =

ˆ
(1+�)t

t
y>

d

d↵
x↵d↵ 

ˆ
(1+�)t

�

�

�

�

�

y>
d

d↵
x↵

�

�

�

�

d↵


ˆ

(1+�)t

t

�

�

�

�

�

�

y>
�

r2f↵(x↵)
��1

X

i2[n]

↵

(1 + g
(i)
↵ )g

(i)
↵

(x↵ � a(i))

�

�

�

�

�

�

d↵


ˆ

(1+�)t

t
k
�

r2f↵(x↵)
��1

yk
2

·

�

�

�

�

�

�

X

i2[n]

↵

(1 + g
(i)
↵ )g

(i)
↵

(x↵ � a(i))

�

�

�

�

�

�

2

d↵
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Now since clearly ↵kx↵ � a(i)k
2

 g
(i)
↵ , invoking Lemma 2 yields that

�

�

�

�

�

�

X

i2[n]

↵(x↵ � a(i))

(1 + g
(i)
↵ )g

(i)
↵

�

�

�

�

�

�

2


X

i2[n]

1

1 + g
(i)
↵

= w↵ 
⇣↵

t

⌘

2

wt .

Now by invoking Lemma 3 and the Lemma 16, we have that

r2f↵(x↵) ⌫ r2ft(xt)� 15�t2wtI ⌫
1

2

h

t2 · wtI� (t2 · wt � µt)vtv
>
t

i

� 15�t2wtI.

For notational convenience let Ht
def
= r2ft(xt) for all t > 0. Then Lemma 3 shows that H↵ = Ht+�↵

where k�↵k2  15�t2wt. Now, we note that

H2

↵ = H2

t +�↵Ht +Ht�↵ +�

2

↵ .

Therefore, we have

kH2

↵ �H2

t k2  k�↵Htk2 + kHt�↵k2 + k�2

↵k2
 2k�k

2

kHtk2 + k�k2
2

 40�t4w2

t .

Let S be the subspace orthogonal to vt. Then, Lemma 16 shows that Ht ⌫ 1

2

t2wtI on S and hence
H2

t ⌫ 1

4

t4w2

t I on S.4 Since kH2

↵ �H2

t k2  40�t4w2

t , we have that

H2

↵ ⌫
✓

1

4

t4w2

t � 40�t4w2

t

◆

I on S

and hence

H�2

↵ �
✓

1

4

t4w2

t � 40�t4w2

t

◆�1

I on S.

Therefore, for any z 2 S, we have
�

�

�

�

r2f↵(x↵)
��1

z
�

�

�

2

=

�

�H�1

↵ z
�

�

2

 kzk
2

q

1

4

t4w2

t � 40�t4w2

t

.

Now, we split y = z + hy, vtivt where z 2 S. Then, we have that
�

�

�

�

r2f↵(x↵)
��1

y
�

�

�

2


�

�

�

�

r2f↵(x↵)
��1

z
�

�

�

2

+ |hy, vti|
�

�

�

�

r2f↵(x↵)
��1

vt

�

�

�

2

 1

q

1

4

t4w2

t � 40�t4w2

t

+

1

t2 · 

�

�

�

�

r2f↵(x↵)
��1

vt

�

�

�

2

.

Note that, we also know that �
min

(r2f↵(x↵)) � µ↵ and hence �
max

(r2f↵(x↵)
�2

)  µ�2

↵ . Therefore,
we have

�

�

�

�

r2f↵(x↵)
��1

y
�

�

�

2

 1

t2wt

q

1

4

� 40�
+

1

t2
µ↵

w↵

1

µ↵
 1

t2wt

0

@

2 +

1

q

1

4

� 40�

1

A  5

t2wt
.

Combining these and using that � 2 [0, 1/600] yields that

y>(x
(1+�)t � xt) 

ˆ
(1+�)t

t

5

t2wt

⇣↵

t

⌘

2

wtd↵ 
5

t4

✓

1

3

(1 + �)3t3 � 1

3

t3
◆

 5

3t

⇥

(1 + �)3 � 1

⇤

 6�

t
.

4By A � B on S we mean that for all x 2 S we have x>Ax  x>Bx. The meaning of A ⌫ B on S is analagous.
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A.5 Where is the End?

Lemma 6. f(xt)� f(x⇤)  2n
t for all t > 0.

Proof of Lemma 6. Clearly, rft(xt) = 0 by definition of xt. Consequently 1

trft(xt)
>
(xt � x⇤) = 0

and using Lemma 13 to give the formula for rft(xt) yields

0 =

X

i2[n]

t(xt � a(i))>(xt � x⇤)

1 + g
(i)
t (x)

=

X

i2[n]

tkxt � a(i)k2
2

+ t(xt � a(i))>(a(i) � x⇤)

1 + g
(i)
t (xt)

.

Therefore, by Cauchy Schwarz and the fact that tkxt � a(i)k
2

 g
(i)
t (xt)  1 + g

(i)
t

X

i2[n]

t(xt � a(i))>(a(i) � x⇤)

1 + g
(i)
t (xt)

� �
X

i2[n]

tkxt � a(i)k
2

ka(i) � x⇤k2
1 + g

(i)
t (xt)

� �f(x⇤) .

Furthermore, since 1 + g
(i)
t (xt)  2 + tkxt � a(i)k

2

we have

X

i2[n]

tkxt � a(i)k2
2

1 + g
(i)
t (xt)

�
X

i2[n]

kxt � a(i)k
2

�
X

i2[n]

2kxt � a(i)k
2

1 + g
(i)
t (xt)

� f(xt)�
2n

t
.

Combining yields the result.

A.6 Simple Lemmas

Here we provide various small technical Lemmas that we will use to bound the accuracy with which
we need to carry out various operations in our algorithm. Here we use some notation from Section 4
to simplify our bounds and make them more readily applied.

Lemma 17. For any x, we have that kx� xtk2  f(x).

Proof of Lemma 17. Since
P

i2[n] kx� a(i)k
2

= f(x), we have that kx� a(i)k
2

 f(x) for all i 2 [n].
Since rf(xt) = 0 by Lemma 13 we see that xt is a convex combination of the a(i) and therefore
kx� xtk2  f(x) by convexity.

Lemma 18. x(0) = 1

n

P

i2[n] a
(i) is a 2-approximate geometric median, i.e. ˜f⇤  2 · f(x⇤).

Proof. For all x 2 Rd we have

kx(0) � xk
2

=

�

�

�

�

�

�

1

n

X

i2[n]

a(i) � 1

n

X

i2[n]

x

�

�

�

�

�

�

2

 1

n

X

i2[n]

ka(i) � xk
2

 f(x)

n
.

Consequently,

f(x(0)) 
X

i2[n]

kx(0) � a(i)k
2


X

i2[n]

⇣

kx(0) � x⇤k2 + kx⇤ � a(i)k
2

⌘

 2 · f(x⇤)
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Lemma 19. For all t � 0, we have

1  t2 · wt(x)

µt(x)
 ḡt(x)  max

i2[n]
g
(i)
t (x)  1 + t · f(x) .

In particular, if t  2n
✏̃⇤·f(x⇤)

, we have that

g
(i)
t 

3n

✏̃⇤
+ tnkx� xtk2.

Proof of Lemma 19. The first claim 1  t2·wt(x)
µt(x)

 ḡt(x), follows from µt(x) �
P

i2[n]
t2

g
(i)
t (x)(1+g

(i)
t (x))

and the fact that the largest eigenvalue of r2ft(x) is at most t2 · wt(x). The second follows from
the fact that ḡt(x) is a weighted harmonic mean of g(i)t (x) and therefore

ḡt(x)  max

i2[n]
g
(i)
t (x)  1 + t ·max

i2[n]
kx� a(i)k

2

 1 + t · f(x) .

For the final inequality, we use the fact that f(x)  f(xt) + nkx � xtk2 and the fact that
f(xt)  f(x⇤) +

2n
t by Lemma 6 and get

g
(i)
t  1 + t

✓

f(x⇤) +
2n

t
+ nkx� xtk2

◆

 3n

✏̃⇤
+ tnkx� xtk2 .

Lemma 20. For all x 2 Rd and t > 0, we have

n

2

 

kx� xtk2
3n
t·✏̃⇤ + nkx� xtk2

!

2

 ft(x)� ft(xt) 
nt2

2

kx� xtk2
2

Proof of Lemma 20. For the first inequality, note that r2ft(x) �
P

i2[n]
t2

1+g
(i)
t (x)

I � n · t2I. Conse-

quently, if we let n · t2I = H in Lemma 30, we have that

ft(x)� ft(xt) 
1

2

kx� xtk2H 
nt2

2

kx� xtk2
2

.

For the second inequality, note that Lemma 14 and Lemma 19 yields that

r2ft(x) ⌫
X

i2[n]

t2

(1 + g
(i)
t (x))g

(i)
t (x)

I ⌫ n

 

t
3n
✏̃⇤

+ tnkx� xtk2

!

2

I .

Consequently, applying 30 again yields the lower bound.

B Nearly Linear Time Geometric Median (Proofs)

Here we provide proofs, algorithms, and technical lemmas from Section 4.
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B.1 Eigenvector Computation and Hessian Approximation

Below we prove that the power method can be used to compute an ✏-approximate top eigenvector
of a symmetric PSD matrix A 2 Rd⇥d with a non-zero eigenvalue gap g =

�1(A)��2(A)

�1(A)

. While it
is well know that this can be by applying A to a random initial vector O(

↵
g log(

d
✏ )) times in the

following theorem we provide a slightly less known refinement that the dimension d can be replaced
with the stable rank of A, s =

P

i2[d]
�i(A)

�1(A)

. We use this fact to avoid a dependence on d in our
logarithmic factors.

Algorithm 5: PowerMethod(A, k)

Input: symmetric PSD matrix A 2 Rd⇥d and a number of iterations k � 1.
Let x ⇠ N (0, I) be drawn from a d dimensional normal distribution.
Let y = Akx
Output: u = y/kyk

2

Lemma 21 (Power Method). Let A 2 Rd⇥d be a symmetric PSD matrix , let g
def
=

�1(A)��2(A)

�1(A)

,

s =

P

i2d
�i(A)

�1(A)

, and let ✏ > 0 and k � ↵
g log(

ns
✏ ) for large enough constant ↵. In time O(nnz(A) ·

log(

ns
✏ )), the algorithm PowerMethod(A, k) outputs a vector u such that hv

1

(A), ui2 � 1 � ✏ and
u>Au � (1� ✏)�

1

(A)with high probability in n/✏.

Proof. We write x =

P

i2[d] ↵ivi(A). Then, we have

hv
1

(A), ui2 =
*

v
1

(A),

P

i2[d] ↵i�i(A)

kvi(A)

q

P

i2[d] ↵
2

i�i(A)

2k

+

2

=

↵2

1

↵2

1

+

P

j 6=1

↵2

j

⇣

�j(A)

�1(A)

⌘

2k
� 1�

X

j 6=1

↵2

j

↵2

1

✓

�j(A)

�
1

(A)

◆

2k

Re arranging terms we have

1� hv
1

(A), ui2 
X

j 6=1

↵2

j

↵2

1

✓

�j(A)

�
1

(A)

◆✓

�j(A)

�
1

(A)

◆

2k�1


X

j 6=1

↵2

j

↵2

1

✓

�j(A)

�
1

(A)

◆✓

�
2

(A)

�
1

(A)

◆

2k�1

=

X

j 6=1,

↵2

j

↵2

1

·
✓

�j(A)

�
1

(A)

◆

· (1� g)2k�1 
X

j 6=1

↵2

j

↵2

1

·
✓

�j(A)

�
1

(A)

◆

· exp(�(2k � 1)g)

where we used that �2
�1

= 1� g  e�g.

Now with high probability in n/✏ we have that ↵2

1

� 1

O(poly(n/✏)) by known properties of the

chi-squared distribution. All that remains is to upper bound
P

j 6=1

↵2

j ·
⇣

�j(A)

�1(A)

⌘

. To bound this

consider h(↵)
def
=

q

P

j 6=1

↵2

j (�j(A)/�
1

(A)). Note that

krh(↵)k
2

=

�

�

�

�

�

�

�

�

P

j 6=1

~
1j · ↵j

⇣

�j(A)

�1(A

⌘

r

P

j 6=1

↵2

j

⇣

�j(A)

�1(A)

⌘

�

�

�

�

�

�

�

�

2

=

v

u

u

u

u

t

P

j 6=1

↵2

j

⇣

�j(A)

�1(A)

⌘

2

P

j 6=1

↵2

j

⇣

�j(A)

�1(A)

⌘  1 .

where ~
1j is the indicator vector for coordinate j. Consequently h is 1-Lipschitz and by Gaussian

concentration for Lipschitz functions we know there are absolute constants C and c such that

Pr [h(↵) � Eh(↵) + �]  C exp(�c�2

) .
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By the concavity of square root and the expected value of the chi-squared distribution we have

Eh(↵) 

v

u

u

tE
X

j 6=i

↵2

j ·
✓

�j(A)

�
1

(A)

◆

=

v

u

u

t

X

j 6=i

✓

�j(A)

�
1

(A)

◆


p
s .

Consequently, since s � 1 we have that Pr[h(↵) � (1 + �) ·
p
s]  C exp(�c · �2

) for � � 1 and
that

P

j 6=1

↵j ·
⇣

�j(A)

�1(A)

⌘

= O(ns/✏) with high probability in n/✏. Since k = ⌦(

1

g log(
ns
✏ )), we have

hv
1

(A), ui2 � 1� ✏ with high probability in n/✏. Furthermore, this implies that

u>Au = u>

0

@

X

i2[d]

�i(A)vi(A)vi(A)

>

1

Au � �
1

(A)hv
1

(A), ui2 � (1� ✏)�
1

(A) .

Lemma 7 (Computing Hessian Approximation). Let x 2 Rd, t > 0, and ✏ 2 (0, 1
4

). The al-
gorithm ApproxMinEig(x, t, ✏) outputs (�, u) in O(nd log n

✏ ) time such that if µt(x)  1

4

t2wt(x)

then hvt(x), ui2 � 1 � ✏ with high probability in n/✏. Furthermore, if ✏ 
⇣

µt(x)
8t2·wt(x)

⌘

2

then
1

4

Q � r2ft(x) � 4Q with high probability in n/✏ where Q
def
= t2 · wt(x)�

�

t2 · wt(x)� �
�

uu>.

Proof of Lemma 7. By Lemma 16 we know that 1

2

Z � r2ft(x) � Z where

Z = t2 · wt(x)I�
�

t2 · wt(x)� µt(x)
�

vt(x)vt(x)
>.

Consequently, if µt(x)  1

4

t2wt(x), then for all unit vectors z ? vt(x), we have that

z>r2ft(x)z �
1

2

z>Zz � 1

2

t2wt(x).

Since r2ft(x) = t2 ·wt(x)�A, for A in the definition of ApproxMinEig (Algorithm 2) this implies
that vt(x)

>Avt(x) � 3

4

t2 · wt(x) and z>Az  1

2

t2wt(x). Furthermore, we see that

X

i2[d]

�i(A) = tr(A) =

X

i2[n]

t4kx� a(i)k2
2

(1 + g
(i)
t (x))2g

(i)
t (x)

 t2 · wt(x)

Therefore, in this case, A has a constant multiplicative gap between its top two eigenvectors and
stable rank at most a constant (i.e. g = ⌦(1) and s = O(1) in Theorem 21). Consequently, by
Theorem 21 we have hvt(x), ui2 � 1� ✏.

For the second claim, we note that

t2 · wt(x)� µt(x) � u>Au � (1� ✏)�
1

(A) = (1� ✏)(t2 · wt(x)� µt(x))

Therefore, since � = u>r2ft(x)u = t2 · wt(x)� u>Au, we have

(1� ✏)µt(x)� ✏ · t2wt(x)  �  µt(x). (B.1)

On the other hand, by Lemma 27, we have that
p
✏I � vt(x)vt(x)

> � uu> �
p
✏I. (B.2)

Combining (B.1) and (B.2), we have 1

2

Z � Q � 2Z if ✏ 
⇣

µt(x)
8t2·wt(x)

⌘

2

and 1

4

Q � r2ft(x) � 4Q

follows.
On the other hand, when µt(x) >

1

4

t2wt(x). It is the case that 1

4

t2 ·wt(x)I � r2ft(x) � t2 ·wt(x)I
and 1

4

t2 · wt(x)I � Q � t2 · wt(x)I again yielding 1

4

Q � r2ft(x) � 4Q.

25



Lemma 8. Let (�, u) = ApproxMinEig(x, t, ✏v) for ✏v < 1

8

and kx � xtk2  ✏c
t for ✏c  (

✏v
36

)

3
2 . If

µt  1

4

t2 · wt then with high probability in n/✏v for all unit vectors y ? u, we have hy, vti2  8✏v.

Proof of Lemma 8. By Lemma 7 we know that hvt(x), ui2 � 1� ✏v. Since clearly kx� xtk2  1

20t ,
by assumption, Lemma 1 shows

(1� 6✏2/3c )r2ft(xt) � r2ft(x) � (1 + 6✏2/3c )r2ft(xt).

Furthermore, since µt  1

4

t2 · wt, as in Lemma 7 we know that the largest eigenvalue of A defined
in ApproxMinEig(x, t, ✏) is at least 3

4

t2 · wt while the second largest eigenvalue is at most 1

2

t2 · wt.
Consequently, the eigenvalue gap, g, defined in Lemma 28 is at least 1

3

and this lemma shows that
hvt, ui2 � 1� 36✏

2/3
c � 1� ✏v. Consequently, by Lemma 29, we have that hu, vti2 � 1� 4✏v.

To prove the final claim, we write u = ↵vt+�w for an unit vector w ? vt. Since y ? u, we have
that 0 = ↵hvt, yi+ �hw, yi. Then, either hvt, yi = 0 and the result follows or ↵2hvt, yi2 = �2hw, yi2
and since ↵2

+ �2

= 1, we have

hvt, yi2 
�2hw, yi2

↵2

 1� ↵2

↵2

 2(1� ↵2

)  8✏v

where in the last line we used that ↵2 � 1� 4✏v > 1

2

since ✏v  1

8

.

Lemma 9. Suppose µt � 1

4

t2 · wt and let t0 2 [t, (1 + 1

600

)t] then kxt0 � xtk2  1

100t .

Proof of Lemma 9. Note that t0 = (1 + �)t where � 2 [0, 1

600

]. Since 1

4

t2 · wtI � µtI � r2f(xt)
applying Lemma 3 then yields that for all s 2 [t, t0]

r2f(xs) ⌫ r2f(xt)� 15�t2wtI ⌫
✓

1

4

� 15�

◆

t2 · wtI ⌫
t2 · wt

5

I .

Consequently, by Lemma 13, the fact that tkxt � a(i)k
2

 g
(i)
t , and Lemma 2 we have

kxt0 � xtk2 
ˆ t0

t

�

�

�

�

d

ds
xs

�

�

�

�

2

ds =

ˆ t0

t

�

�

�

�

�

�

�

r2fs(xs)
��1

X

i2[n]

s

(1 + g
(i)
s )g

(i)
s

(xs � a(i))

�

�

�

�

�

�

2

ds


ˆ t0

t

5

t2 · wt

X

i2[n]

skxs � a(i)k
2

(1 + g
(i)
s )g

(i)
s

ds 
ˆ t0

t

5ws

t2 · wt
ds 

ˆ t0

t

5

t2
·
⇣s

t

⌘

2

ds

=

5

3t4
[(t0)2 � (t)3] =

5

3t

⇥

(1 + �)3 � 1

⇤

 6�

t
 1

100t
.

B.2 Line Searching

Here we prove the main results we use on centering, Lemma 10, and line searching Lemma 11. These
results are our main tools for computing approximations to the central path. To prove Lemma 11
we also include here two preliminary lemmas, Lemma 22 and Lemma 23, on the structure of gt,y,v
defined in (4.1).

Lemma 10. Given some y 2 Rd, t > 0 and 0  ✏ 
⇣

µt(x)
8t2·wt(x)

⌘

2

. In O(nd log(n✏ )) time

LocalCenter(y, t, ✏) computes x(k) such that with high probability in n/✏.

ft(x
(k)

)� min

kx�yk2 1
49t

ft(x)  ✏

 

ft(y)� min

kx�yk2 1
49t

ft(x)

!

.
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Proof of Lemma 10. By Lemma 7 we know that 1

4

Q � r2ft(y) � 4Q with high probability in n/✏.
Furthermore for x such that kx� yk

2

 1

50t Lemma 1 shows that 1

2

r2ft(x) � r2ft(y) � 2r2ft(x).
Combining these we have that 1

8

Q � r2ft(x) � 8Q for all x with kx � yk
2

 1

50t . Therefore,
Lemma 30 shows that

ft(x
(k)

)� min

kx�yk2 1
49t

ft(x) 
✓

1� 1

64

◆k
 

ft(x
(0)

)� min

kx�yk2 1
49t

ft(x)

!

.

The guarantee on x(k) then follows from our choice of k.
For the running time, Lemma 7 showed the cost of ApproxMinEig is O(nd log(n✏ )). Using

Lemma 32 we see that the cost per iteration is O(nd) and therefore, the total cost of the k iterations
is O(nd log(1✏ )). Combining yields the running time.

Lemma 22. For t > 0, y 2 Rd, and unit vector v 2 Rd, the function gt,y,v : R ! R defined by
(4.1) is convex and nt-Lipschitz.

Proof. Changing variables yields gt,y,v(↵) = minz2S ft(z + ↵v) for S
def
= {z 2 Rd

: kz � yk
2

 1

49t}.
Since ft is convex and S is a convex set, by Lemma 31 we have that gt,y,v is convex.

Next, by Lemma 13, triangle inequality, and the fact that tkx� a(i)k
2

 g
(i)
t (x) we have

krft(x)k2 =

�

�

�

�

�

�

X

i2[n]

t2(x� a(i))

1 + g
(i)
t (x)

�

�

�

�

�

�

2


X

i2[n]

t2kx� a(i)k
2

1 + g
(i)
t (x)

 tn . (B.3)

Consequently, ft(x) is nt-Lipschitz, i.e., for all x, y 2 Rn we have |ft(x)� ft(y)|  ntkx� yk
2

. Now
if we consider the set S↵

def
= {x 2 Rd

: kx� (y+↵v)k
2

 1

49t} then we see that for all ↵,� 2 R there
is a bijection from S↵ to S� were every point in the set moves by at most k(↵ � �)vk

2

 |↵ � �|.
Consequently, since gt,y,v(↵) simply minimizes ft over S↵ we have that gt,y,v is nt-Lipschitz as
desired.

Lemma 23. Let 1

400f(x⇤)
 t  t0  (1 +

1

600

)t  2n
✏̃⇤· ˜f⇤

and let (u,�) = ApproxMinEig(y, t, ✏v) for

✏v  1

8

(

✏̃⇤
3n)

2 and y 2 Rd such that ky � xtk2  1

t (
✏v
36

)

3
2 . The function gt,0y,v : R ! R defined in

(4.1) satisfies gt0,y,v(↵⇤) = min↵ gt,y,v(↵) = ft(xt) for some ↵⇤ 2 [�6f(x⇤), 6f(x⇤)].

Proof. Let z 2 Rd be an arbitrary unit vector and � =

1

600

.
If µt  1

4

t2 · wt then by Lemma 8 and our choice of ✏v we have that if z ? u then

|hz, vti|2  8✏v 
✓

✏̃⇤
3n

◆

2

.

Now by Lemma 19 and our bound on t0 we know that max�2[t,t0]
t2·w�
µ�
 3n

✏̃⇤
and hence |hz, vti| 

min�2[t,t0]
µ�

t2·w�
. By Lemma 5, we know that z>(xt0 � xt)  6�

t 
1

100t .
Otherwise, we have µt � 1

4

t2 · wt and by Lemma 9 we have kxt0 � xtk2  1

100t .
In either case, since ky � xtk2  1

100t , we can reach xt0 from y by first moving an Euclidean
distance of 1

100t to go from y to xt, then adding some multiple of v, then moving an Euclidean
distance of 1

100t in a direction perpendicular to v. Since the total movement perpendicular to v is
1

100t +
1

100t 
1

49t0 we have that min↵ gt0,y,v(↵) = ft0(xt0) as desired.
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All that remains is to show that there is a minimizer of gt0,y,v in the range [�6f(x⇤), 6f(x⇤)].
However, by Lemma 6 and Lemma 17 we know that

ky � xt0k2  ky � xtk2 + kxt � x⇤k2 + kx⇤ � xt0k2 
1

100t
+ f(x⇤) + f(x⇤)  6f(x⇤) .

Consequently, ↵⇤ 2 [�6f(x⇤), 6f(x⇤)] as desired.

Lemma 11. Let 1

400f(x⇤)
 t  t0  (1 +

1

600

)t  2n
✏̃⇤· ˜f⇤

and let (�, u) = ApproxMinEig(y, t, ✏v) for

✏v  1

8

(

✏̃⇤
3n)

2 and y 2 Rd such that ky � xtk2  1

t (
✏v
36

)

3
2 . In O(nd log2( n

✏̃⇤·✏·✏v )) time and O(log(

n
✏̃⇤·✏))

calls to the LocalCenter, LineSearch(y, t, t0, u, ✏) outputs x0 such that kx0 � xt0k2  ✏
t0 with high

probability in n/✏.

Proof of Lemma 11. By (B.3) we know that ft0 is nt0 Lipschitz and therefore

ft0(y)� min

kx�yk2 1
49t0

ft0(x) 
nt0

49t0
=

n

49

.

Furthermore, for ↵ 2 [�6f(x⇤), 6f(x⇤)] we know that by Lemma 17

ky + ↵u� xt0k2  ky � xtk2 + |↵|+ kxt � x⇤k2 + kxt0 � x⇤k2 
1

t
+ 8f(x⇤)

consequently by Lemma 19 we have

(t0)2 · wt0(y + ↵u)

µt0(y + ↵u)
 3n

✏̃⇤
+ t0nky + ↵u� xt0k2 

3n

✏̃⇤
+ 2n+ 8t0nf(x⇤)  20n2✏̃�1

⇤ .

Since ✏O 
�

✏̃⇤
160n2

�

2, invoking Lemma 10 yields that |q(↵)� gt0,y,u(↵)|  n✏O
49

with high probability
in n/✏̃⇤ by and each call to LocalCenter takes O(nd log n

✏O
) time. Furthermore, by Lemma 22 we

have that gt0,y,u is a nt’-Lipschitz convex function and by Lemma 23 we have that the minimizer
has value ft0(xt0) and is achieved in the range [�6 ˜f⇤, 6 ˜f⇤]. Consequently, combining all these facts
and invoking Lemma E.3, i.e. our result on on one dimensional function minimization, we have
ft0(x

0
)� ft0(xt0)  ✏O

2

using only O(log(

nt0f(x⇤)
✏O

)) calls to LocalCenter.
Finally, by Lemma 20 and Lemma 6 we have

n

2

 

kx0 � xt0k2
3n/t0

✏̃⇤
+ nkx0 � xt0k2

!

2

 ft0(x
0
)� ft0(xt0) 

✏O
2

.

Hence, we have that

kx0 � xt0k2 
r

✏O
n

✓

3n/t0

✏̃⇤

◆

+

p
n✏Okx0 � xt0k2.

Since ✏O =

�

✏✏̃⇤
160n2

�

2, we have

kx0 � xt0k2 
r

✏O
n

6n

✏̃⇤t0
 ✏

t0
.

Lemma 12. Let 1

400f(x⇤)
 t  t0  (1 +

1

600

)t  2n
✏̃⇤· ˜f⇤

and let x 2 Rd satisfy kx � xtk2  1

100t .
Then, in O(nd log2( n

✏·✏̃⇤ )) time, LineSearch(x, t, t, u, ✏) outputs y such that ky � xtk2  ✏
t for any

vector u 2 Rd.

Proof of Lemma 12. The proof is strictly easier than the proof of Lemma 11 as kx�↵⇤u�xtk2  1

100t
is satisfied automatically for ↵⇤

= 0. Note that this lemma assume less for the initial point.
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B.3 Putting It All Together

Theorem 1. In O(nd log3(n✏ )) time, Algorithm 1 outputs an (1+ ✏)-approximate geometric median
with constant probability.

Proof of Theorem 1. By Lemma 18 we know that x(0) is a 2-approximate geometric median and
therefore f(x(0)) =

˜f⇤  2 · f(x⇤). Furthermore, since kx(0) � xt1k2  f(x(0)) by Lemma 17 and
t
1

=

1

400

˜f⇤
we have kx(0)�xt1k2  1

400t1
. Hence, by Lemma 12, we have kx(1)�xt1k2  ✏c

t1
with high

probability in n/✏. Consequently, by Lemma 11 we have thatkx(k) � xtik2  ✏c
ti

for all i with high
probability in n/✏.

Now, Lemma 6 shows that

f(xtk)� f(x⇤)  2n

tk
 2n

˜t⇤

✓

1 +

1

600

◆

 ✏̃⇤ · ˜f⇤
✓

1 +

1

600

◆

 2

3

✓

1 +

1

600

◆

✏ · f(x⇤) .

Since kx(k)�xtkk2  ✏c
tk
 400· ˜f⇤ ·✏c we have that f(xk)  f(xtk)+400n· ˜f⇤ ·✏c by triangle inequality.

Combining these facts and using that ✏c is sufficiently small yields that f(x(k))  (1 + ✏)f(x⇤) as
desired.

To bound the running time, Lemma 7 shows ApproxMinEvec takes O(nd log(n✏ )) per iteration
and Lemma 11 shows LineSearch takes O

�

nd log2
�

n
✏

��

time per iteration, using that ✏v and ✏c are
O(⌦(✏/n)). Since for l = ⌦(log

n
✏ ) we have that tl > ˜t⇤ we have that k = O(log

n
✏ ). ti+1

 1

400

.
Since there are O(log(

n
✏ )) iterations taking time O

�

nd log2
�

n
✏

��

the running time follows.

C Pseudo Polynomial Time Algorithm

Here we provide a self-contained result on computing a 1 + ✏ approximate geometric median in
O(d✏�2

) time. Note that it is impossible to achieve such approximation for the mean, minx2Rd

P

i2[n] kx�
a(i)k2

2

, because the mean can be changed arbitrarily by changing only 1 point. However, [19] showed
that the geometric median is far more stable. In Section C.1, we show how this stability prop-
erty allows us to get an constant approximate in O(d) time. In Section C.2, we show how to use
stochastic subgradient descent to then improve the accuracy.

C.1 A Constant Approximation of Geometric Median

We first prove that the geometric median is stable even if we are allowed to modify up to half of
the points. The following lemma is a strengthening of the robustness result in [19].

Lemma 24. Let x⇤ be a geometric median of {a(i)}i2[n] and let S ✓ [n] with |S| < n
2

. For all x

kx⇤ � xk
2


✓

2n� 2|S|
n� 2|S|

◆

max

i/2S
ka(i) � xk

2

.

Proof. For notational convenience let r = kx⇤ � xk
2

and let M = maxi/2S ka(i) � xk
2

.
For all i /2 S, we have that kx� a(i)k

2

M , hence, we have

kx⇤ � a(i)k
2

� r � kx� a(i)k
2

� r � 2M + kx� a(i)k
2

.
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Furthermore, by triangle inequality for all i 2 S, we have

kx⇤ � a(i)k
2

� kx� a(i)k
2

� r .

Hence, we have that
X

i2[n]

kx⇤ � a(i)k
2

�
X

i2[n]

kx� a(i)k
2

+ (n� |S|)(r � 2M)� |S|r .

Since x⇤ is a minimizer of
P

i2[n] kx⇤ � a(i)k
2

, we have that

(n� |S|)(r � 2M)� |S|r  0.

Hence, we have

kx⇤ � xk
2

= r  2n� 2|S|
n� 2|S| M.

Now, we use Lemma 24 to show that the algorithm CrudeApproximate outputs a constant
approximation of the geometric median with high probability.

Algorithm 6: CrudeApproximateK
Input: a(1), a(2), · · · , a(n) 2 Rd.
Sample two independent random subset of [n] of size K. Call them S

1

and S
2

.
Let i⇤ 2 argmini2S2

↵i where ↵i is the 65 percentile of the numbers {ka(i) � a(j)k
2

}j2S1 .
Output: Output a(i

⇤
) and ↵i⇤ .

Lemma 25. Let x⇤ be a geometric median of {a(i)}i2[n] and (ex,�) be the output of CrudeApproximateK .
We define dkT (x) be the k-percentile of

�

kx� a(i)k
 

i2T . Then, we have that kx⇤ � exk2  6d60
[n](ex).

Furthermore, with probability 1� e�⇥(K), we have

d60
[n](ex)  � = d65S1

(ex)  2d70
[n](x⇤).

Proof. Lemma 24 shows that for all x and T ✓ [n] with |T |  n
2

kx⇤ � xk
2


✓

2n� 2|T |
n� 2|T |

◆

max

i/2T
ka(i) � xk

2

.

Picking T to be the indices of largest 40% of ka(i) � exk
2

, we have

kx⇤ � exk2 
✓

2n� 0.8n

n� 0.8n

◆

d60
[n](ex) = 6d60

[n](ex). (C.1)

For any point x, we have that d60
[n](x)  d65S1

(x) with probability 1 � e�⇥(K) because S
1

is a
random subset of [n] with size K. Taking union bound over elements on S

2

, with probability
1�Ke�⇥(K)

= 1� e�⇥(K), for all points x 2 S
2

d60
[n](x)  d65S1

(x). (C.2)
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yielding that d60
[n](ex)  �.

Next, for any i 2 S
2

, we have

ka(i) � a(j)k
2

 ka(i) � x⇤k2 + kx⇤ � a(j)k
2

.

and hence
d70
[n](a

(i)
)  ka(i) � x⇤k2 + d70

[n](x⇤).

Again, since S
1

is a random subset of [n] with size K, we have that d65S1
(a(i))  d70

[n](a
(i)
) with

probability 1�Ke�⇥(K)

= 1� e�⇥(K). Therefore,

d65S1
(a(i))  ka(i) � x⇤k2 + d70

[n](x⇤).

Since S
2

is an independent random subset, with probability 1 � e�⇥(K), there is i 2 S
2

such that
ka(i) � x⇤k2  d70

[n](x⇤). In this case, we have

d65S1
(a(i))  2d70

[n](x⇤).

Since i⇤ minimize d65S1
(a(i)) over all i 2 S

2

, we have that

�
def
= d65S1

(ex)
def
= d65S1

(a(i
⇤
)

)  d65S1
(a(i))  2d70

[n](x⇤) .

C.2 A 1 + ✏ Approximation of Geometric Median

Here we show how to improve the constant approximation in the previous section to a 1+ ✏ approx-
imation. Our algorithm is essentially stochastic subgradient where we use the information from the
previous section to bound the domain in which we need to search for a geometric median.

Algorithm 7: ApproximateMedian(a(1), a(2), · · · , a(n), ✏)
Input: a(1), a(2), · · · , a(n) 2 Rd.
Let T = (60/✏)2 and let ⌘ =

6�
n

q

2

T .
Let (x(1),�) = CrudeApproximatepT (a

(1), a(2), · · · , a(n)) .
for k  1, 2, · · · , T do

Sample ik from [n] and let

g(k) =

(

n(x(k) � a(ik))/kx(k) � a(ik)k
2

if x(i) 6= a(ik)

0 otherwise
Let x(k+1)

= argminkx�x(1)k26� ⌘
⌦

g(k), x� x(k)
↵

+

1

2

kx� x(k)k2
2

.
end
Output: Output 1

T

PT
i=1

x(k).

Theorem 2. Let x be the output of ApproximateMedian. With probability 1� e�⇥(1/✏), we have

Ef(x)  (1 + ✏) min

x2Rd
f(x).

Furthermore, the algorithm takes O(d/✏2) time.
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Proof. After computing x(1) and � the remainder of our algorithm is the stocastic subgradient
descent method applied to f(x). It is routine to check that Ei(k)g

(k) is a subgradient of f at x(k) .
Furthermore, since the diameter of the domain,

�

x : kx� x(1)k
2

 6�
 

, is clearly � and the norm
of sampled gradient, g(k), is at most n, we have that

Ef
 

1

T

T
X

i=1

x(k)

!

� min

kx�x(1)k26�
f(x)  6n�

r

2

T

(see [5, Thm 6.1]). Lemma 25 shows that kx⇤ � x(1)k
2

 6� and �  2d70
[n](x

⇤
) with probability

1�
p
Te�⇥(

p
T ). In this case, we have

Ef
 

1

T

T
X

i=1

x(k)

!

� f(x⇤) 
12

p
2nd70

[n](x⇤)p
T

.

Since d70
[n](x

⇤
)  1

0.3nf(x
⇤
), we have

Ef
 

1

T

T
X

i=1

x(k)

!


✓

1 +

60p
T

◆

f(x⇤)  (1 + ✏) f(x⇤) .

D Derivation of Penalty Function

Here we derive our penalized objective function. Consider the following optimization problem:

min

x2Rd,↵�02Rn
ft(x,↵) where t · 1T↵+

X

i2[n]

� ln

⇣

↵2

i � kx� a(i)k2
2

⌘

.

Since pi(↵, x)
def
= � ln

�

↵2

i � kx� a(i)k2
2

�

is a barrier function for the set ↵2

i � kx � a(i)k2
2

, i.e. as
↵i ! kx � a(i)k

2

we have pi(↵, x) ! 1, we see that as we minimize ft(x,↵) for increasing values
of t the x values converge to a solution to the geometric median problem. Our penalized objective
function, ft(x), is obtain simply by minimizing the ↵i in the above formula and dropping terms
that do not affect the minimizing x. In the remainder of this section we show this formally.

Fix some x 2 Rd and t > 0. Note that for all j 2 [n] we have

@

@↵j
ft(x,↵) = t�

 

1

↵2

j � kx� a(i)k2
2

!

2↵j .

Since f(x,↵) is convex in ↵, the minimum ↵⇤
j must satisfy

t
⇣

�

↵⇤
j

�

2 � kx� a(i)k2
2

⌘

� 2↵⇤
j = 0 . (D.1)

Solving for such ↵⇤
j under the restriction ↵⇤

j � 0 we obtain

↵⇤
j =

2 +

q

4 + 4t2kx� a(i)k2
2

2t
=

1

t



1 +

q

1 + t2kx� a(i)k2
2

�

. (D.2)
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Using (D.1) and (D.2) we have that

min

↵�02Rn
ft(x,↵) =

X

i2[n]



1 +

q

1 + t2kx� a(i)k2
2

� ln



2

t2

✓

1 +

q

1 + t2kx� a(i)k2
2

◆��

.

If we drop the terms that do not affect the minimizing x we obtain our penalty function ft :

ft(x) =
X

i2[n]



q

1 + t2kx� a(i)k2
2

� ln

✓

1 +

q

1 + t2kx� a(i)k2
2

◆�

.

E Technical Facts

Here we provide various technical lemmas we use through the paper.

E.1 Linear Algebra

First we provide the following lemma that shows that any matrix obtained as a non-negative linear
combination of the identity minus a rank 1 matrix less than the identity results in a matrix that
is well approximated spectrally by the identity minus a rank 1 matrix. We use this lemma to
characterize the Hessian of our penalized objective function and thereby imply that it is possible to
apply the inverse of the Hessian to a vector with high precision.

Lemma 26. Let A =

P

i

�

↵iI� �iaia
>
i

�

2 Rd⇥d where the ai are unit vectors and 0  �i  ↵i for
all i. Let v denote a unit vector that is the maximum eigenvector of

P

i �iaia
>
i and let � denote the

corresponding eigenvalue. Then,

1

2

 

X

i

↵iI� �vv>

!

� A �
X

i

↵iI� �vv> .

Proof. Let ↵
def
=

P

i ↵i. Since clearly v>Av = v>
�

P

i ↵iI� �vv>
�

v it suffices to show that for
w ? v it is the case that 1

2

↵kwk2
2

� w>Aw � ↵kwk2
2

or equivalently, that �i(A) 2 [

1

2

↵,↵] for i 6= d.
However we know that

P

i2[d] �i(A) = tr(A) = d↵�
P

i �i � (d� 1)↵ and �i(A)  ↵ for all i 2 [d].
Consequently, since �d(A) 2 [0,�d�1

(A)] we have

2 · �d�1

(A) � (d� 1)↵�
d�2

X

i=1

�i(A) � (d� 1)↵� (d� 2)↵ = ↵ .

Consequently, �d�1

(A) 2 [

↵
2

,↵] and the result holds by the monotonicity of �i.

Next we bound the spectral difference between the outer product of two unit vectors by their
inner product. We use this lemma to bound the amount of precision required in our eigenvector
computations.

Lemma 27. For unit vectors u
1

and u
2

we have

ku
1

u>
1

� u
2

u>
2

k2
2

= 1� (u>
1

u
2

)

2 (E.1)

Consequently if
�

u>
1

u
2

�

2 � 1� ✏ for ✏  1 we have that

�
p
✏I � u

1

u>
1

� u
2

u>
2

�
p
✏I
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Proof. Note that u
1

u>
1

� u
2

u>
2

is a symmetric matrix and all eigenvectors are either orthogonal to
both u

1

and u
2

(with eigenvalue 0) or are of the form v = ↵u
1

+�u
2

where ↵ and � are real numbers
that are not both 0. Thus, if v is an eigenvector of non-zero eigenvalue � it must be that

� (↵u
1

+ �u
2

) =

⇣

u
1

u>
1

� u
2

u>
2

⌘

(↵u
1

+ �u
2

)

= (↵+ �(u>
1

u
2

))u
1

� (↵(u>
1

u
2

) + �)u
2

or equivalently
✓

(1� �) u>
1

u
2

�(u>
1

u
2

) �(1 + �)

◆✓

↵
�

◆

=

✓

0

0

◆

.

By computing the determinant we see this has a solution only when

�(1� �2

) + (u>
1

u
2

)

2

= 0

Solving for � then yields (E.1) and completes the proof.

Next we show how the top eigenvectors of two spectrally similar matrices are related. We
use this to bound the amount of spectral approximation we need to obtain accurate eigenvector
approximations.

Lemma 28. Let A and B be symmetric PSD matrices such that (1� ✏)A � B � (1 + ✏)A. Then
if g def

=

�1(A)��2(A)

�1(A)

satisfies g > 0 we have [v
1

(A)

>v
1

(B)]

2 � 1� 2(✏/g).

Proof. Without loss of generality v
1

(B) = ↵v
1

(A)+�v for some unit vector v ? v
1

(A) and ↵,� 2 R
such that ↵2

+ �2

= 1. Now we know that

v
1

(B)

>Bv
1

(B)  (1 + ✏)v
1

(B)

>Av
1

(B)  (1 + ✏)
⇥

↵2�
1

(A) + �2�
2

(A)

⇤

Furthermore, by the optimality of v
1

(B) we have that

v
1

(B)

>Bv
1

(B) � (1� ✏)v
1

(A)

>Av
1

(A) � (1� ✏)�
1

(A) .

Now since �2

= 1� ↵2 combining these inequalities yields

(1� ✏)�
1

(A)  (1 + ✏)↵2

(�
1

(A)� �
2

(A)) + (1 + ✏)�
2

(A) .

Rearranging terms, using the definition of g, and that g 2 (0, 1] and ✏ � 0 yields

↵2 � �
1

(A)� �
2

(A)� ✏(�
1

(A) + �
2

(A))

(1 + ✏)(�
1

(A)� �
2

(A))

= 1� 2✏�
1

(A)

(1 + ✏)(�
1

(A)� �
2

(A))

� 1� 2(✏/g) .

Here we prove a an approximate transitivity lemma for inner products of vectors. We use this
to bound the accuracy need for certain eigenvector computations.

Lemma 29. Suppose that we have vectors v
1

, v
2

, v
3

2 Rn such that hv
1

, v
2

i2 � 1� ✏ and hv
2

, v
3

i2 �
1� ✏ for 0 < ✏  1

2

then hv
1

, v
3

i2 � 1� 4✏.

Proof. Without loss of generality, we can write v
1

= ↵
1

v
2

+ �
1

w
1

for ↵2

1

+ �2

1

= 1 and unit vector
w
1

? v
2

. Similarly we can write v
3

= ↵
3

v
2

+�
3

w
3

for ↵2

3

+�2

3

= 1 and unit vector w
3

? v
2

. Now, by
the inner products we know that ↵2

1

� 1� ✏ and ↵2

3

� 1� ✏ and therefore |�
1

| 
p
✏ and |�

3

| 
p
✏.

Consequently, since ✏  1

2

, |�
1

�
3

|  ✏  1� ✏  |↵
1

↵
3

|, and we have

hv
1

, v
3

i2 � h↵
1

v
2

+ �
1

w
1

,↵
3

v
2

+ �
3

w
3

i2 � (|↵
1

↵
3

|� |�
1

�
3

|)2

� (1� ✏� ✏)2 = (1� 2✏)2 � 1� 4✏.
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E.2 Convex Optimization

First we provide a single general lemma about about first order methods for convex optimization. We
use this lemma for multiple purposes including bounding errors and quickly compute approximations
to the central path.

Lemma 30 ([21]). Let f : Rn ! R be a twice differentiable function, let B ✓ R be a convex
set, and let x⇤ be a point that achieves the minimum value of f restricted to B. Further suppose
that for a symmetric positive definite matrix H 2 Rn⇥n we have that µH � r2f(y) � LH for all
y 2 B.Then for all x 2 B we have

µ

2

kx� x⇤k2H  f(x)� f(x⇤) 
L

2

kx� x⇤k2H

and
1

2L
krf(x)k2H�1  f(x)� f(x⇤) 

1

2µ
krf(x)k2H�1 .

Furthermore, if

x(1) = argmin

x2B



f(x(0)) + hrf(x(0)), x� x(0)i+ L

2

kx(0) � xk2H
�

then
f(x(1))� f(x⇤) 

⇣

1� µ

L

⌘⇣

f(x(0))� f(x⇤)
⌘

. (E.2)

Next we provide a short technical lemma about the convexity of functions that arises naturally
in our line searching procedure.

Lemma 31. Let f : Rn ! R[ {1} be a convex function and and let g(↵) def
= minx2S f(x+ ↵d) for

any convex set S and d 2 Rn. Then g is convex.

Proof. Let ↵,� 2 R and define x↵ = argminx2S f(x+↵d) and x� = argminx2S f(x+�d). For any
t 2 [0, 1] we have

g (t↵+ (1� t)�) = min

x2S
f (x+ (t↵+ (1� t)�)

 f(tx↵ + (1� t)x� + (t↵+ (1� t)�)d) (Convexity of S)
 t · f(x↵ + ↵d) + (1� t) · f(x� + � · d) (Convexity of f)
= t · g(↵) + (1� t) · g(�)

Lemma 32. For any vectors y, z, v 2 Rd and scalar ↵, we can compute argminkx�yk22↵ kx�zk2I�vv>

exactly in time O(d).

Proof. Let x⇤ be the solution of this problem. If kx⇤ � yk2
2

< ↵, then x⇤ = z. Otherwise, there is
� > 0 such that x⇤ is the minimizer of

min

x2Rd
kx� zk2I�vv> + �kx� yk2

2

.

Let Q = I� vv>. Then, the optimality condition of the above equation shows that

Q(x⇤ � z) + �(x⇤ � y) = 0 .
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Therefore,
x⇤ = (Q+ �I)�1

(Qz + �y) . (E.3)

Hence,
↵ = kx⇤ � yk2

2

= (z � y)>Q(Q+ �I)�2Q(z � y).

Let ⌘ = 1+ �, then we have (Q+ �I) = ⌘I� vv>and hence Sherman–Morrison formula shows that

(Q+ �I)�1

= ⌘�1I+
⌘�2vv>

1� kvk2⌘�1

= ⌘�1

✓

I+
vv>

⌘ � kvk2

◆

.

Hence, we have

(Q+ �I)�2

= ⌘�2

✓

I+
2vv>

⌘ � kvk2 +

vv>kvk2

(⌘ � kvk2)2

◆

= ⌘�2

✓

I+
2⌘ � kvk2

(⌘ � kvk2)2
vv>

◆

.

Let c
1

= kQ(z � y)k2
2

and c
2

=

�

v>Q(z � y)
�

2, then we have

↵ = ⌘�2

✓

c
1

+

2⌘ � kvk2

(⌘ � kvk2)2
c
2

◆

.

Hence, we have
↵⌘2

�

⌘ � kvk2
�

2

= c
1

�

⌘ � kvk2
�

2

+ c
2

�

2⌘ � kvk2
�

.

Note that this is a polynomial of degree 4 in ⌘ and all coefficients can be computed in O(d) time.
Solving this by explicit formula, one can test all 4 possible ⌘’s into the formula (E.3) of x. Together
with trivial case x⇤ = z, we simply need to check among 5 cases to check which is the solution.

E.3 Noisy One Dimensional Convex Optimization

Here we show how to minimize a one dimensional convex function giving a noisy oracle for evalu-
ating the function. While this could possibly be done using general results on convex optimization
with a membership oracle, the proof in one dimension is much simpler and we provide it here for
completeness.

Lemma 33. Let f : R ! R be an L-Lipschitz convex function defined on the [`, u] interval and
let g : R ! R be an oracle such that |g(y)� f(y)|  ✏ for all y. In O(log(

L(u�`)
✏ )) time and with

O(log(

L(u�`)
✏ )) calls to g, the algorithm OneDimMinimizer(`, u, ✏, g, L) outputs a point x such that

f(x)� min

y2[`,u]
f(y)  4✏.

Proof. First, note that for any y, y0 2 R if f(y) < f(y0)� 2✏ then g(y) < g(y0). This directly follows
from our assumption on g. Second, note that the output of the algorithm, x, is simply the point
queried by the algorithm (i.e. ` and the zi` and ziu) with the smallest value of g. Combining these
facts implies that f(x) is within 2✏ of the minimum value of f among the points queried. It thus
suffices to show that the algorithm queries some point within 2✏ of optimal.

To do this, we break into two cases. First, consider the case where the intervals [y
(i)
` , y

(i)
u ] all

contain a minimizer of f . In this case, the final interval contains an optimum, and is of size at most
✏
L . Thus, by the Lipschitz property, all points in the interval are within ✏  2✏ of optimal, and at
least one endpoint of the interval must have been queried by the algorithm.
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Algorithm 8: OneDimMinimizer(`, u, ✏, g, L)
Input: Interval [`, u] ✓ R and target additive error ✏ 2 R
Input: noisy additive evaluation oracle g : R! R and Lipschitz bound L > 0

Let x(0) = `, y
(0)

` = `, y
(0)

u = u

for i = 1, ...,
l

log

3/2(
L(u�`)

✏ )

m

do

Let z
(i)
` =

2y
(i�1)
` +y

(i�1)
u

3

and z
(i)
u =

y
(i�1)
` +2y

(i�1)
u

3

if g(z
(i)
` )  g(z

(i)
u ) then

Let (y
(i)
` , y

(i)
u ) = (y

(i�1)

` , z
(i)
u ).

If g(z(i)` )  g(x(i�1)

) update x(i) = z
(i)
` ..

else if g(z
(i)
` ) > g(z

(i)
u ) then

Let (y
(i)
` , y

(i)
u ) = (z

(i)
` , y

(i�1)

u ).
If g(z(i)u )  g(x(i�1)

) update x(i) = z
(i)
u .

end
end
Output: x(last)

For the other case, consider the last i for which this interval does contain an optimum of f .
This means that g(z

(i)
` )  g(z

(i)
u ) while a minimizer x⇤ is to the right of z

(i)
u , or the symmetric

case with a minimizer is to the left of z(i)` . Without loss of generality, we assume the former. We
then have z

(i)
`  z

(i)
u  x⇤ and x⇤ � z

(i)
u  z

(i)
u � z

(i)
` . Consequently z

(i)
u = ↵z

(i)
l + (1 � ↵)x⇤ where

↵ 2 [0, 1
2

] and the convexity of f implies f(z(i)u )  1

2

f(z
(i)
l )+

1

2

f(x⇤) or equivalently f(z
(i)
u )�f(x⇤) 

f(z
(i)
` ) � f(z

(i)
u ). But f(z

(i)
` ) � f(z

(i)
u )  2✏ since g(z

(i)
` )  g(z

(i)
u ). Thus, f(z(i)u ) � f(x⇤)  2✏, and

z
(i)
u is queried by the algorithm, as desired.

F Weighted Geometric Median

In this section, we show how to extend our results to the weighted geometric median problem, also
known as the Weber problem: given a set of n points in d dimensions, a(1), . . . , a(n) 2 Rd, with
corresponding weights w(1), . . . , w(n) 2 R>0

, find a point x⇤ 2 Rd that minimizes the weighted sum
of Euclidean distances to them:

x⇤ 2 argmin

x2Rd

f(x) where f(x)
def
=

X

i2[n]

w(i)kx� a(i)k
2

.

As in the unweighted problem, our goal is to compute (1 + ✏)-approximate solution, i.e. x 2 Rd

with f(x)  (1 + ✏)f(x⇤).
First, we show that it suffices to consider the case where the weights are integers with bounded

sum (Lemma 34). Then, we show that such an instance of the weighted geometric median problem
can be solved using the algorithms developed for the unweighted problem.

Lemma 34. Given points a(1), a(2), . . . , a(n) 2 Rd, non-negative weights w(1), w(2), . . . , w(n) 2 R>0

,
and ✏ 2 (0, 1), we can compute in linear time weights w

(1)

1

, w
(2)

1

, . . . , w
(n)
1

such that:
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• Any (1+✏/5)-approximate weighted geometric median of a(1), . . . , a(n) with the weights w(1)

1

, . . . , w
(n)
1

is also a (1 + ✏)-approximate weighted geometric median of a(1), . . . , a(n) with the weights
w(1), . . . , w(n), and

• w
(1)

1

, . . . , w
(n)
1

are nonnegative integers and
P

i2[n]w
(i)
1

 5n✏�1.

Proof. Let
f(x) =

X

i2[n]

w(i)ka(i) � xk

and W =

P

i2[n]w
(i). Furthermore, let ✏0 = ✏/5 and for each i 2 [n], define w

(i)
0

=

n
✏0W w(i),

w
(i)
1

=

j

w
(i)
0

k

and w
(i)
2

= w
(i)
0

�w
(i)
1

. We also define f
0

, f
1

, f
2

,W
0

,W
1

,W
2

analogously to f and W .
Now, assume f

1

(x)  (1 + ✏0)f
1

(x⇤), where x⇤ is the minimizer of f and f
0

. Then:

f
0

(x) = f
1

(x) + f
2

(x)  f
1

(x) + f
2

(x⇤) +W
2

kx� x⇤k2

and

W
2

kx� x⇤k2 =
W

2

W
1

X

i2[n]

w
(i)
1

kx� x⇤k2 
W

2

W
1

X

i2[n]

w
(i)
1

⇣

kx� a(i)k
2

+ ka(i) � x⇤k
⌘

 W
2

W
1

(f
1

(x) + f
1

(x⇤)) .

Now, since W
0

=

n
✏0 and W

1

�W
0

� n we have

W
2

W
1

=

W
0

�W
1

W
1

=

W
0

W
1

� 1  W
0

W
0

� n
� W

0

� n

W
0

� n
=

n
n
✏0 � n

=

✏0

1� ✏0
.

Combining these yields that

f
0

(x)  f
1

(x) + f
2

(x⇤) +
✏0

1� ✏0
(f

1

(x) + f
1

(x⇤))


✓

1 +

✏0

1� ✏0

◆

(1 + ✏0)f
1

(x⇤) +
✏0

1� ✏0
f
1

(x⇤) + f
2

(x⇤)

 (1 + 5✏0)f
0

(x⇤) = (1 + ✏)f
0

(x⇤) .

We now proceed to show the main result of this section.

Lemma 35. A (1 + ✏)-approximate weighted geometric median of n points in Rd can be computed
in O(nd log3 ✏�1

) time.

Proof. By applying Lemma 34, we can assume that the weights are integer and their sum does not
exceed n✏�1. Note that computing the weighted geometric median with such weights is equivalent
to computing an unweighted geometric median of O(n✏�1

) points (where each point of the original
input is repeated with the appropriate multiplicity). We now show how to simulate the behavior of
our unweighted geometric median algorithms on such a set of points without computing it explicitly.

If ✏ > n�1/2, we will apply the algorithm ApproximateMedian, achieving a runtime of O(d✏�2

) =

O(nd). It is only necessary to check that we can implement weighted sampling from our points with
O(n) preprocessing and O(1) time per sample. This is achieved by the alias method [15].
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Now assume ✏ < n�1/2. We will employ the algorithm AccurateMedian. Note that we can
implement the subroutines LineSearch and ApproxMinEig on the implicitly represented multiset
of O(n✏�1

) points. It is enough to observe only n of the points are distinct, and all computations
performed by these subroutines are identical for identical points. The total runtime will thus be
O(nd log3(n/✏2)) = O(nd log3 ✏�1

).
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