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Theorem 9.6 Let P be a set of n points in R

d

, where the coordinates of P are rational and the

total bit complexity of P is �. Algorithms 1 and 4 return a 2

(d

O(1)

�)

u-weak �-center of P with high

probability.

Proof: Suppose q is an output point of Algorithms 1 or 4, and q

�

is the closest �-center to q. It is a

standard result of optimization theory that the vector c = q � q

�

is a positive linear combination of

outward unit normal vectors to d or fewer hyperplanes that determine the center polytope. These

hyperplanes each separate q from the center polytope. By the lemma just above we know that q

is close to each such hyperplane. (Here we assume nondegeneracy of the input, easily insured by

adding d + 1 a�nely independent points.) That is, c = Bz, where z is a column vector, and the

matrix B has columns that are unit vectors each normal to some hyperplane determining the center

polytope. As remarked, by the lemma just above we have kc

T

Bk

1

= O(�

d

d

2

p

du). (We need not

have failure probability O(1=n

d

2

), and each Algorithm 4 requires O(d) iterations; this lowers the

error bound by a factor of d.) We have

c

T

c = c

T

(BB

�1

)((B

T

)

�1

B

T

)c

= c

T

B(B

T

B)

�1

B

T

c

� kc

T

Bk

2

k(B

T

B)

�1

B

T

ck

2

� kc

T

Bk

1

k(B

T

B)

�1

B

T

ck

1

� kc

T

Bk

1

k(B

T

B)

�1

k

1

kB

T

ck

1

= O(�

2

d

d

5

u

2

)k(B

T

B)

�1

k

1

:

We can assume that the columns of B are linearly independent, and so B

T

B has an inverse. The

columns of B are solutions of linear systems with coe�cients from coordinates of P ; hence by

standard bounds applied twice, [Sch86, x3.2]

k(B

T

B)

�1

k

1

= 2

d

O(1)

�

:

2
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vq � va + O(�

d

d

2

p

du). Let w = (q � q

0

)

T

=kq� q

0

k

2

, a row vector. Since H separates the �-center

polytope from q, we have w(a� q

0

) � 0. Using the Euclidean norm,

kq � q

0

k = w(q � q

0

)

= v(q � q

0

) + (w � v)(q � q

0

)

= v(q � a) + v(a � q

0

) + (w � v)(q � q

0

)

� O(�

d

d

2

p

du) + v(a � q

0

) + (w � v)(q � q

0

)

= O(�

d

d

2

p

du) +w(a � q

0

) + (v �w)(a� q

0

) + (w � v)(q � q

0

)

� O(�

d

d

2

p

du) + ka� q

0

kkv �wk+ kq � q

0

kkv � wk:

Both a and q

0

are �-centers, and so have coordinates all less than 1 in absolute value. So ka� q

0

k �

p

d, and since kv �wk < �, we have

kq � q

0

k �

O(�

d

d

2

p

du) + ka� q

0

kkv � wk

1� kv �wk

� O(�

d

d

2

p

du� +

p

d�):

2

This theorem suggests that we need to increase the running time of the algorithms by a factor of

log(1=�). If this factor is greater than d, the following theorem is of interest; in combination with the

previous theorem, it suggests that we must multiply the number of operations by minfd; log(1=�)g.

Theorem 9.5 If their failure probabilities for a given projection line are no more than 1=n

d

2

, Al-

gorithms 1 and 4 yield O(�

d

d

4

u)-weak �-centers with high probability.

Proof: The analyses of this paper generally rely on projection lines perpendicular to hyperplanes

through d input points. The theorem follows from considering a much larger class L(P ) of projection

lines, de�ned as follows: for each hyperplaneH through d input points, include in L(P ) the projection

line normal to H. Also include projection lines found as follows: project the remaining input points

orthogonally onto H, giving a point set P

H

. Include in L(P ) the lines of L(P

H

), constructed

recursively within H. (Here k points in a k-at yield the line that is contained in that k-at and

perpendicular to the (k � 1)-at containing the points.) The number of projection lines in L(P ) is

no more than

�

n

d

��

n

d�1

�

� � �

�

n

3

�

< n

d

2

.

Suppose now that Algorithms 1 or 4 are run so that an output point q is a O(�

d

d

3

p

du)-weak

center with respect to every projection line of L(P ). Suppose q is separated from the appropriate

center polytope by a hyperplane H through d points of P . The distance d(q;H) of q to H satis�es

d(q;H) = O(�

d

d

3

p

du). The squared distance of q to the center polytope is no more than than

d(q;H)

2

plus the squared distance of the projection of q onto H to the projection of the center

polytope onto H. The result follows by induction on dimension; this induction yields a distance

bound within

p

d times the distance bound of the previous lemma. 2

Finally, here is a bound that does not require a decrease in failure probability, with a correspond-

ing increase in the number of operations. The bound does, however, depend on the bit complexity

of the input.
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and from (2), 1�

1

1x

�

= O(�

d

du). Hence









Ax

+

�

Ax

�

1x

�









1

= O(�

d

du):

It follows that vAx

+

is within O(�

d

d

p

du) of the projection of a point in the convex hull of P

�

. 2

Next we bound the error from computing Radon points iteratively, considering only projections.

We refer to �-centers produced by an algorithm with � equal to the value proven for the correspond-

ing exact algorithm.

Lemma 9.3 With P a set of n points in R

d

and v a unit row d-vector, Algorithms 1 and 4 give a

point q such that vq is a O(�

d

d

2

p

du)-weak �-center for the values vP = fvp j p 2 Pg.

Proof: Let P

�

be a set of d + 2 points. Suppose inductively that each value of vP

�

is within �

of a value in vP

0

, where P

0

is the set of exact value corresponding to P

�

. Let q be the computed

Radon point of P

�

. Then the previous lemma says that vq is within Ou) of the convex hull of vP

�

+

,

and within O(�

d

d

p

du) of the convex hull of vP

�

�

. Since the lower endpoint of the convex hull of

vP

�

+

is within � of the corresponding values of vP

0

, and similarly for vP

�

�

, the value vq is within

� + O(�

d

d

p

du) of the second largest value of vP

0

. It follows that the output of Algorithm 4 has

projected value within O(d)O(�

d

d

p

du) of of a �-center of vP . 2

We now have a � = O(�

d

d

2

p

du) result for the projections of P ; does this imply the result in d

dimensions, as for the exact case? Unfortunately, no; we need more conditions. The output point

of the algorithm in within � of every hyperplane supporting a facet of the center polytope. (Recall

that such hyperplanes are de�ned by points of P .) The problem is that not all such output points

are necessarily within � of the center polytope; in two dimensions, this could occur when the center

polygon has a vertex with a sharp angle. We next give three ways of handling this problem. One

approach uses a collection of evenly distributed projection lines to force the computed point into an

approximation of the �-center polytope. A di�erent approach uses a collection of projection lines

derived from the input points. Another approach relies on the input representation: when the points

of P are given with bounded-precision rational coordinates, the angles or corners of the �-center

polytope can't be to sharp.

Theorem 9.4 If their failure probabilities for a given projection line are no more than �

d

for � > 0,

Algorithms 1 and 4 yield O(�

d

d

2

p

du�+

p

d�)-weak �-centers.

Proof: It is not hard to show that there is a collection L of O(1=�)

d�1

lines through the origin

that are evenly distributed, in the following sense: take any line ` through the origin; there is a line

`

0

2 L such that the angle between ` and `

0

is no more than �.

Suppose for a given � we have such a collection L, and our algorithms have found a point q

satisfying the bounds of the previous lemma, for all lines in L. (Here v is a unit vector in line `.) We

show that q is close to a �-center. Let q

0

be the closest �-center to q, and let H be the hyperplane

through q

0

normal to q � q

0

. We know that there is a line ` 2 L whose angle with q � q

0

is no more

than �. Let v be a row unit vector in L; by the previous lemma, there is a �-center a such that
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To analyze the error properties of the algorithm that �nds Radon points, we will be a bit more

speci�c about it. To restate some of the proof of Theorem 2.4, let P be a set of d+2 points, and let

A be a d+1� d+ 2 matrix whose columns are the points of P . Let 1 denote the row (d+2)-vector

of 1's. To �nd a Radon point of P , solve

�

A

1

�

x = 0:

For a vector v, let �(v) denote a vector with coordinate �(v)

i

= v

i

if v

i

> 0, and 0 otherwise. Let

x

+

= �(x), where x solves the above equation, and let x

�

= �(�x). Scale x so that 1x

+

= 1.

In exact arithmetic Ax

+

= Ax

�

is a Radon point, and is a convex combination of the points P

+

corresponding to nonzero entries of x

+

, as well as a convex combination of the analogous points P

�

.

In approximate arithmetic, we have only that Ax

+

is close to the convex hull of P

+

(within machine

precision), and may be close to the convex hull of P

�

if x is good solution to the above linear system.

Let the precision of the arithmetic operations be u.

We will assume that x is found using Gaussian elimination, and use the following error bounds.[GMW91]

Lemma 9.1 If the m � m linear system By = c is solved using Gaussian elimination, then for

computed vector ŷ there is a matrix F such that (B + F )y = c, and kFk

1

< �

m

kBk

1

u + O(u

2

),

where �

m

= O(m

3

2

m�1

).

With this lemma, we can begin to consider the error of one Radon point calculation.

Lemma 9.2 Let P , A, x, and x

+

and x

�

be as above. Let v be a unit row d-vector. (Here kvk

2

= 1.)

Then vAx

+

� vp� O(u)vp for all p 2 P

+

, and vAx

+

� vp �O(�

d

d

p

du) for all p 2 P

�

.

Proof: Using the previous lemma, the vectors x

+

and x

�

satisfy

��

A

1

�

+

�

E

e

��

(x

+

� x

�

) = 0;

where e is a row (d + 2)-vector. Since kBk

1

for a matrix B bounds the L

1

norms of its rows, the

previous lemma implies that kEk

1

and kek

1

are both less than �

d

du + O(u)

2

. We have kx

+

k

1

=

1 +O(u), and from (1 + e)x

+

= (1+ e)x

�

, it is not hard to obtain

kx

�

k

1

= 1 + O(d�

d

u): (2)

From

(A+ E)x

+

= (A+ E)x

�

;

we obtain

Ax

+

�

Ax

�

1x

�

= Ax

�

(1�

1

1x

�

) + E(x

�

� x

+

):

We have kAx

�

k

1

� 1 + O(�

d

du), and

kE(x

�

� x

+

)k

1

� kEk

1

kx

�

� x

+

k

1

= O(�

d

du);
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8 High Quality Centerpoints

Our algorithms are very e�cient, but only produce O(1=d

2

)-centers. The linear programming algo-

rithm can produce better centers, but much more slowly; in particular not only is there a constant

factor that depends exponentially on d, but there is also a nonconstant term of the form O(log1=�)

d

.

We now show how to combine our algorithm with linear programming to eliminate this term.

Suppose we wish to compute a (

1

d+1

� �)-center, for some � < 1=(d+ 1). We take a collection of

k random samples, each of size O(d=�

2

logd=�). The linear programming algorithm gives us a center

in each, which is a center of our original set with probability at least 1� exp(O(�d

3

logd)). If we

choose k = �(log 1=�), we can show using Lemma 7.1 that with probability 1� �=2, all but O(k=d

2

)

of the linear programming solutions are centers of the original set. We now �nd an O(1=d

2

)-center

of these k LP solutions with probability 1 � �=2; this must then also be an approximate center of

our original set.

Theorem 8.1 In time O((d=�

2

log d=�)

d+O(1)

log 1=�) we can �nd a (

1

d+1

��)-center, with probability

1� �.

9 Computation with oating point arithmetic

Up to now we have assumed that computation is done in exact arithmetic. This section has a few

remarks on the precision needed for approximate arithmetic to succeed in computing �-centers with

results nearly comparable to those for exact arithmetic.

We consider approximate arithmetic because it is much more commonly used than say, exact

rational arithmetic, and because it is faster. Also, exact arithmetic seems to be very expensive for

our algorithms: each iteration of Radon point calculation implies at least a constant factor increase

in bit complexity; this yields a bit complexity at least exponential in d for our algorithms, either

from the number of operations or the bit complexity of those operations.

Note that with approximate arithmetic, we cannot hope to obtain centers in the exact sense:

suppose P is a set of points in the plane that lie on a line. If q is a point near the (1=2)-center of

P , but o� the line containing P , then q is only a 0-center: there is always a line between q and P ,

no matter how close q is to the (1=2)-center. Hence the idea of a center must be changed to allow

such a point q to be considered useful output. With this is mind, rather than �nd a �-center, we

will seek only a point that is within some small distance � of a �-center; call such a point a �-weak

�-center.

We will assume hereafter that all coordinates of all points in P have absolute value less than one.

This condition (and our bounds) then hold by appropriate scaling.

We relate the modi�ed de�nition of a center to our analysis techniques by noting that q is �-weak

�-center of P if and only if, for every line, its projection onto that line has that property also for the

projection of P onto that line. Our proofs consider lines normal to hyperplanes de�ned by points of

P . Our exact results above rely on the fact that if a point is a �-center for those O(n

d

) lines, then

it is a �-center for P . The analogous relation does not seem to hold for �-weak �-centers without

some conditions on P or stronger conditions on the computed centers; these variations are discussed

below.
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Proof: As in Theorem 5.4, it's enough to analyze a similar algorithm, where P is the set of values

f1=n; 2=n; : : : ; 1g, and a subset of size d + 2 yields its second-smallest element for the new version

of T . (In fact, for the algorithm here, T is a multiset: two subsets may yield the same value, which

will then have multiplicity greater than one.) We will �nd an upper bound for the probability that

the �nal T has any members less than k=n, for k = �

d

n=3e.

Let T

i

denote T after iteration i, let U

i

� T

i

\ f1=n : : :k=ng, and let t

i

� jU

i

j, Here T

0

= S and

t

0

= k. We want to bound the probability that t

z

> 0.

The key observation is that for a given value of t

i�1

, the events that two random subsets yield

numbers in 1=n : : :k=n are independent; thus t

i

given t

i�1

is bounded by a binomial random variable

with n independent trials, each with success probability bounded above by p

i�1

� (t

i�1

=n)

2

�

d+2

2

�

.

We can use Lemma 7.1 to bound the probability that t

i

> t

i�1

, for su�ciently large : let

� �

�

d+2

2

�

=n, and put u = =�t

i�1

, so that if  � 2�t

i�1

, then u � 2. With u � 2, we have

u=(u� 1) � 2, and with n > 2, we have n=m(n �m) < 2 for 1 � m < n. With these bounds, and

using 1 + x � e

x

,

Probft

i

� t

i�1

g = Probft

i

� up

i�1

ng

< u

�upn

1

p

2�

u

u� 1

�

n

m(n�m)

�

1=2

�

1� p

i�1

1� up

i�1

�

(1�up

i�1

)n

< (u=e)

�up

i�1

n

2=

p

�

= (e�t

i�1

=)

t

i�1

2=

p

�: (1)

Now put  = 2e�t

i�1

. If t

i�1

>

^

d, where

^

d � 1 + (d + 3) lgn + log 1=�, then the probability

that t

i

� t

i�1

= 2e�t

2

i�1

is no more than �=n

d+3

. Hence in z

0

= O(log logn) steps, we have

t

z

0

� (2e�k)

2

z

0

�1

k �

^

d, with probability at least (1 � �=n

d+3

)

z

0

� 1 � 2z

0

�=n

d+3

. Moreover, with

 =

^

d=t

i�1

and applying (1), it follows inductively that t

i

�

^

d for i � z

0

, also with high probability

at each step. The probability that any of these bounds fail for t

i

, for 1 � i � z, is at most 2z�=n

d+3

.

The probability that t

i

= 0 is (1� p

i�1

)

n

, and so the probability that t

i

> 0 is 1� (1� p

i�1

)

n

<

2np

i�1

; hence

Probft

z

0

+q

> 0g � (2�

^

d

2

)

q

;

which is less than �=n

d+3

for n= log

2

n = 
(d

4+�

+ d

2+�

log 1=�) and q = �(d + log

n

1=�). Hence

after z = O(d + log

n

1=�) iterations, every point in T is a �

d

=3e-median point for a given line

with probability at least 1 � 2d�=n

d+3

. By Corollary 5.2, every such point is a �

d

=3e-center with

probability at least 1� �.

The time bound for Algorithm 4 follows from the bound on the number of iterations, and the

O(d

3

) work needed to �nd a Radon point. 2

Corollary 7.3 Algorithm 4 together with random sampling can be used to compute an 1=3e

�

d+2

2

�

-

center with probability at least 1� �, in time O(d

9

logd+ d

8

log 1=� + d

5+�

log

2

1=�).
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Proof: This fact can be proved in a very similar manner to the original sampling theorem. With

probability �, any randomly chosen set of m = O(d=�

2

log d=� + log1=�) points will be an �-

approximation, having the following property: any halfspace containing cm points of the input

set will also contain between (c � �)m and (c + �)m points of the sample. Suppose halfspace H

contains fewer than (�� �)n points of our input. Then if our sample is an �-sample, H must contain

fewer than �m points of the sample, and hence cannot contain any �-center of the sample. So with

probability 1� � any �-center of the sample is also a (� � �)-center of the input set. 2

We can now modify Algorithm 1 somewhat to avoid any dependence on n in the time bound. If

we wish a failure probability at most �, we simply choose a random sample of the input consisting

of O(d

5

log d+ log 1=�) points, so that with probability at least 1 � �=2 any O(1=d

2

)-center of the

sample is also an O(1=d

2

)-center of the input, and then apply Algorithm 1 with a tree size chosen

so that the failure probability is at most �=2.

Theorem 6.3 For any �, the above modi�cation to Algorithm 1 �nds an O(1=d

2

)-center in random

O((d logd+ log1=�)

log

2

d

) time, with probability of error at most �.

7 A Polynomial Algorithm

Algorithm 1 is subexponentially dependent on d, but not polynomial. Moreover, the dependence on

� involves an exponent of log d, showing that increasing the reliability of the algorithm is costly in

time. The problem is in the tree-like structure of the algorithm and in the branching factor of d+ 2

in that tree. If n is small (e.g. after the sampling modi�cation of the previous section is applied)

the number of leaves in the tree may end up being much larger than n itself. We now give the

polynomial-time Algorithm 4 without this excess. The structure of Algorithm 4 is a layered DAG

rather than a tree, with greater height, but with much smaller width.

Algorithm 4 applies the following scheme z = �(d + log logn) times to a set T , which is P

initially: independently choose n random subsets of T each of size d + 2; replace T by the Radon

points of these subsets. After this loop, choose any point of the �nal T as a center.

With su�ciently large n (n = 
(d

4

log

2

d)), this algorithm returns a �

d

=3e-center with probability

1� 1=n; it takes O(n(d

4

+ log logn)) time. (Recall that �

d

� 1=

�

d+2

2

�

.)

Our analysis begins with a tail estimate for binomial distributions.

Lemma 7.1 ([2],I.1) Let x be a binomial random variate with n trials and success probability p;

for u > 1, let m = dupne, with 1 � m < n. Then Probfx � upng is less than

u

�upn

1

p

2�

u

u� 1

�

n

m(n �m)

�

1=2

�

1� p

1� up

�

(1�up)n

:

Proof: The proof, omitted here, uses the inequality form of Stirling's approximation. 2

Theorem 7.2 After z = �(d + log logn + log

n

1=�) iterations, Algorithm 4 returns an O(1=d

2

)-

center with probability at least 1 � �, for any n = 
(d

4+�

+ d

2+�

log 1=�). Algorithm 4 requires

O(nd

3

(d+ log logn+ log

n

1=�)) time.
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= �

d

(x=�

d

)

2

h+1

:

2

Therefore, for any � < �

d

, with very high probability (the error probability is doubly exponen-

tially small with respect to the height of the tree), the projection of the output of Algorithm onto

a line is a �-median of the projections of the input point set P onto the line. By Corollary 5.2, the

probability that the output of Algorithm 1 is not a �-center of P is at most n

d

(�=�

d

)

2

h

.

Theorem 5.4 For n > 1=�

d

, Algorithm 1 �nds a �

d

=2-center in

O(d

2

)(1 + (d+ 1) lgn+ lg(1=�

d

))

lg(d+2)

)

time, with probability of error at most 1=n.

Proof: Suppose Algorithm 1 uses a tree of L leaves. From the analysis above, Algorithm 1 �nds

a �

d

=2-center in O(d

2

)L time with probability of error at most n

d

2

�2

h+1

. So, L as in the theorem

statement is su�ciently large to ensure that this probability of error is at most 1=n. 2

6 Random Sampling

Both the linear programming algorithm and Algorithm 1 have running times dependent on n, the

number of input points. It is possible to eliminate this dependence by computing the center of a

random subset of P ; applied to the LP algorithm, the resulting sampling algorithm is only Monte

Carlo, yielding an approximate center only with high probability. However, the reduction in running

time is quite substantial. The basis of the sampling approach is the following theorem, a corollary

of results on �-approximations [24].

Theorem 6.1 ([24]) If S � P of size s is chosen uniformly at random, with all subsets of size s

equally likely, then a center of S is a (

1

d+1

� �)-center of P with probability at least 1� �, if

s = O(

d

�

2

log

d

�

+ log

1

�

)

but su�ciently large.

To reduce the probability of error below 1=n, the sampling algorithm requires s = 
(

d

�

2

log

d

�

+

logn) and takes O(d

2

s

d

) time.

To apply sampling to our algorithm, we need to generalize this theorem somewhat to show that

with high probability any approximate center of the random sample is an approximate center of the

original point set.

Lemma 6.2 Let m = O(d=�

2

logd=�+log 1=�) points be chosen randomly from our input set. Then

with probability �, any �-center of the random sample will be a (� � �)-center for the original point

set.

11



point between the second-smallest and second-largest projections could be chosen in a worst-case

pattern of such choices. Therefore, with respect to a given line, Algorithm 1 can be emulated by the

following process in one dimension.

Algorithm 3: (Projection of Algorithm 1)

Input: a set of real numbers Q = fq

1

; : : : ; q

n

g

1. Construct a complete balanced (d+ 2)-way tree T of L leaves (for an integer L).

2. For each leaf of T , choose an element from P uniformly at random, independent of

other leaves.

3. Evaluate tree T in a bottom-up fashion: at each internal node, choose a number

arbitrarily between the second smallest and the second largest numbers of its d + 2

children.

4. Output the number associated with the root of T .

The following lemma is parallel with Theorem 4.1.

Lemma 5.3 Let �

d

= 1=

�

d+2

2

�

. For any � < �

d

, Algorithm 3 above on a tree of height h, (i.e.,

L = (d+ 2)

h

), outputs a �-median with probability of error at most (�=�

d

)

2

h

.

Proof: Because we only concern the relative ranks of the input set Q, without loss of generality, we

assume that Q is a permutation of the set f1=n; 2=n; :::;1g.

Let f

h

(x) be the probability that the output of Algorithm 3, when using a tree T of height h, is

no larger than x. Because the number of a leaf of the tree is chosen uniformly at random from the

set Q, f

0

(x) � x. We now express f

h

(x) in terms of f

h�1

(x).

The inputs to the root r of a tree of height h are from the outputs of d+ 2 trees of height h� 1.

Let I(r) be the number chosen by the root. We have I(r) � x only if at least two of its d+2 inputs

are less than x. Therefore,

f

h

(x) = 1� (1� f

h�1

(x))

d+2

� (d+ 2)f

h�1

(x)(1� f

h�1

(x))

d+1

:

We can write the precise inclusion and exclusion form of the left hand side of the equation above.

But the following upper bound (also known as Bonferroni inequalities [21]). is good enough for our

analysis. There are in total

�

d+2

2

�

di�erent pairs from the (d+2) distinct inputs. We call a pair (a; b)

good if both a � x and b � x. The probability that a pair is good is equal to (f

h�1

(x))

2

. Therefore,

f

h

(x), the probability that there exists at least such a pair is bounded above by

�

d+2

2

�

(f

h�1

(x))

2

.

We have

f

h

(x) �

�

d+ 2

2

�

(f

h�1

(x))

2

�

�

d+ 2

2

�

�

�

d+ 2

2

�

2

� � �

�

d+ 2

2

�

2

h

f

0

(x)

2

h+1

10



x = 1=2 � �. We have f

0

(x) = x = 1=2 � � and f

1

(1=2 � �) = 1=2 � 3�=2 + 2�

3

. If � < 1=4 then

2�

3

� �=8. So, f

1

(1=2� �) � 1=2 � 11�=8. So, if h

1

� log

11=8

(1=4�), then f

h

1

(1=2� �) � 1=4. The

analysis above then shows that a total height of h

1

+ log

2

log 1=� + O(1) su�ces to ensure a failure

probability of at most �.

Theorem 4.3 (Approximating Median) Algorithm 2 �nds a (1=2��)-median in random O(log

11=8

(1=4�)+

(log 1=�)

log

2

3

) time with probability of error at most �.

5 Analysis: Higher Dimensions

Theorem 4.1 can be extended to higher dimensions. We start with some structural properties of

�-centers.

Let l be a line in IR

d

. The projection of a point p 2 IR

d

onto l is a point q 2 l such that the

line passing through p and q is perpendicular to l. By assigning a direction to l, we can introduce

a linear ordering among points on l. For a point set P = fp

1

; : : : ; p

n

g, let rank

l

(p

i

) be the rank of

the projection of p

i

among all projections of P . If two lines l and l

0

are parallel to each other and

have the same direction (in vector sense), then for all i : 1 � i � n, rank

l

(p

i

) = rank

l

0

(p

i

).

Lemma 5.1 Let P = fp

1

; : : : ; p

n

g be a point set in IR

d

. Then a point c is a �-center of P if and

only if for all lines l, the projection of c onto l is a �-median of the projections of P onto l.

Proof: Suppose c is a �-center of P . Let H be the hyperplane passing through c normal to l.

Clearly, the projection c

0

of c onto l is the intersection of H and l. Notice that the projections of two

points is on the same side of c

0

(on line l) if and only if they belongs to the same halfspace de�ned

by H. Therefore c

0

is a �-median of the projections of P . The other direction of the lemma can be

proved similarly. 2

In order to check whether a point c is a �-center of P , we need only check the splitting ratio of the

O(n

d�1

) combinatorially distinct hyperplanes through c. Equivalently by Lemma 5.1, it is su�cient

to check O(n

d�1

) lines (normal to the set of hyperplanes above) to see whether the projection of c

is a �-median of the projections of P .

If c is unknown, then Theorem 2.3 implies that O(n

d

) possible hyperplanes or normal lines need

to be checked.

Corollary 5.2 For each point set P in IR

d

, there is a set of O(n

d

) lines such that a point c is a

�-center of P if and only if for each line l from this line set, the projection of c is a �-median of the

projections of P onto l.

We now study the projection of Algorithm 1 onto a given line. Suppose we have d + 2 points

p

1

; : : : ; p

d+2

. Let r be the Radon point of p

1

; : : : ; p

d+2

and (P

1

; P

2

) be a corresponding Radon

partition. For each hyperplane H passing through r, each (open) halfspace of H contains at most

d points from fp

1

; : : : ; p

d+2

g, because r belongs to the convex hull of both P

1

and P

2

. Let l be the

line passing through the origin that is normal to H. From the discussion above, the projection of

r is between (inclusively) the second smallest and the second largest projections of P onto l. In

our analysis we will forget the higher-dimensional constraints on the problem and assume that any

9



The rank of a number p

i

is the position that p

i

would take in the sorted list of values in P . By

induction, it can be shown that number associated with each node of the tree T belongs to P . The

operation of internal nodes is comparison based, only the relative ranks (not the values) matter.

Without loss of generality we assume that P is a permutation of the set f1=n; 2=n; :::; 1g.

We �rst note that the expected rank of the output of Algorithm 2 is n=2. This is because the

output of Algorithm 2 is always from P , and because the operation in each internal node of the

tree is symmetric with respect to the ranks. We now show that Algorithm 2 �nds an approximate

median with high probability.

Let f

h

(x) be the probability that the output of Algorithm 2, when using a tree T of height h, is

no larger than x. Because the number of a leaf of the tree is chosen uniformly at random from the

set P , f

0

(x) � x. We now express f

h

(x) in terms of f

h�1

(x).

Let r be the root of T and c

1

, c

2

, and c

3

be its three children. Let I(v) be the number chosen

by the node v in T . We have that I(r) is the median of I(c

1

), I(c

2

), and I(c

3

). Thus, I(r) � x

if and only if at least two of I(c

1

), I(c

2

), and I(c

3

) are less than x. Notice that each value I(c

i

)

(i 2 f1; 2; 3g) is chosen as the output of Algorithm 2 on a tree of height h� 1, and that each value

I(c

i

) is independent of the other two such values. Hence,

f

h

(x) =

�

3

2

�

(f

h�1

(x))

2

(1� f

h�1

(x)) + (f

h�1

(x))

3

= 3(f

h�1

(x))

2

� 2(f

h�1

(x))

3

� 3(f

h�1

(x))

2

:

By induction, we have

f

h

(x) � 3(f

h�1

(x))

2

� 3 � 3

2

� � �3

2

h

(f

0

(x))

2

h+1

=

1

3

(3x)

2

h+1

;

and we're done.

A number is a �-median of a set P = fp

1

; : : : ; p

n

g � IR if both jfp

i

< qgj � (1 � �)n and

jfp

i

> qgj � (1� �)n.

Theorem 4.1 For any � < 1=3, Algorithm 2 on a tree of height h, i.e., of sample size L = 3

h

,

outputs a �-median with probability of error at most (3�)

2

h+1

.

For example, when � = 1=4, we have the following corollary.

Corollary 4.2 Algorithm 2 �nds a 1=4-median in random O((log 1=�)

log

2

3

) time with probability of

error at most �.

A better analysis can be used to show that Algorithm 2 �nds a (1=2� �)-median with very high

probability for all constant 0 < � < 1=2. We use equality f

h

(x) = 3(f

h�1

(x))

2

� 2(f

h�1

)

3

. Suppose

8



Algorithm 1 (Iterated Radon Points):

Input: a set of points P � IR

d

1. Construct a complete balanced (d + 2)-way tree T of L leaves (for an integer L that

is a power of (d+ 2)).

2. For each leaf of T , choose a point from P uniformly at random, independent of other

leaves.

3. Evaluate tree T in a bottom-up fashion to assign a point in IR

d

to each internal node

of T such that the point of each internal node is a Radon point of the points with its

(d+ 2) children.

4. Output the point associated with the root of T .

A complete (d+2)-way tree of L leaves has at most L(1=(d+2)+1=(d+2)

2

+ :::1=L) � L=(d+1)

internal nodes. The above algorithm take O(d

2

L) time, with a small constant factor. Clearly,

our algorithm can be implemented in O(log

2

d logL) time using O(d

2

L=(log

2

d logL)) processors in

parallel. Our experimental results suggest that, independent of the size of original point set, L = 800

is su�cient for three dimensions and L = 1000 for four dimensions.

4 Analysis: One Dimension

We wish to show that Algorithm 1 above �nds a (1=d

2

)-center with small probability of error. We

�rst give a proof for one dimension and then extend it to higher dimensions.

In one dimension, the center of a point set is essentially the median. If the point set has an odd

number of points, then its median is the only center. Otherwise, every point in the closed interval

between the two medians is a center. Algorithm 1, when restricted to one dimension, gives the

following algorithm for approximating the median of a linearly ordered set.

Algorithm 2: (Fast Approximate Median)

Input: a set of real numbers P = fp

1

; : : : ; p

n

g

1. Construct a complete balanced 3-way tree T of L leaves (for an integer L that is a

power of three).

2. For each leaf of T , choose an element from P uniformly at random, independent of

other leaves.

3. Evaluate tree T in a bottom-up fashion: at each internal node, keep the median of the

numbers of its three children.

4. Output the number associated with the root of T .

7



Figure 2: The Radon point of �ve points in IR

2

. Two cases are similar to these of two dimensions.

6



Figure 1: The Radon point q of four points in IR

2

. When no point is in the convex hull of the other

three (the left �gure), then the Radon point is the unique cross of two linear segments. Otherwise

(the right �gure), the point that is in the convex hull of the other three is a Radon point.

5



deterministic algorithm [15, 4] or a randomized one [3]; the latter algorithm gives a much smaller

constant factor.

Another consequence of this theorem, discussed in Section 5, is that a candidate center needs only

be veri�ed with respect to the orderings on the points induced by the normals to n

d

hyperplanes; if

for any given such ordering, the center properties hold for a candidate with probability 1� p, with

p < 1=n

d

, then the candidate is a center with non-zero probability.

Helly's Theorem can be proven using another result important for this paper, Radon's Theorem.

Theorem 2.4 (Radon) If P � IR

d

with jP j � d+ 2, then there is a partition (P

1

; P

2

) of P such

that the convex hull of P

1

has a point common with the convex hull of P

2

.

Proof: Suppose P = fp

1

; : : : ; p

n

g with n � d+ 2. Consider the system of d+ 1 homogeneous linear

equations

n

X

i=1

�

i

= 0 =

n

X

i=1

�

i

p

j

i

(1 � j � d);

where p

i

= (p

1

i

; :::; p

d

i

) in the usual coordinates of IR

d

. Since n � d+ 2, the system has a nontrivial

solution (�

1

; : : : ; �

n

). Let U be the set of all i for which �

i

� 0, and V the set for all j for which

�

j

< 0, and c =

P

i2U

�

i

> 0. Then

P

j2V

�

j

= �c and

P

i2U

(�

i

=c)p

i

=

P

j2V

(�

j

=c)p

j

.

Let P

1

= fp

i

j i 2 Ug, and P

2

= fp

i

j i 2 V g. Then the partition (P

1

; P

2

) of P has the desired

property: the convex hull of P

1

has a point common with the convex hull of P

2

. 2

Call the partition (P

1

; P

2

) of the theorem a Radon partition. We will call the point common to

the hulls of P

1

and P

2

a Radon point of P . These points are the basis of our algorithm.

De�nition 2.5 (Radon points) Let P be a set of points in IR

d

. A point q 2 IR

d

is a Radon point

[6] if P can be partitioned into 2 disjoint subsets P

1

and P

2

such that q is a common point of the

convex hull of P

1

and the convex hull of P

2

.

Radon's Theorem implies that any set P of more than d + 1 points has a Radon point. To

compute a Radon point, we need only to compute a Radon point for any d + 2 points of P . As in

the proof above, this requires a non-zero solution of a linear system of d + 2 variables and d + 1

equations, and so takes O(d

3

) time.

Why are Radon points useful in computing centers? A Radon point of a set of d+ 2 points is a

2=(d+ 2)-center of that set: any closed halfspace containing a Radon point r must contain a point

of P

1

and a point of P

2

. Hence the splitting ratio of a hyperplane containing r is at most d=(d+ 2).

3 The Basic Algorithm

We now describe our algorithm for approximate centers. The algorithm iteratively reduces the

point set by replacing groups of (d + 2) points by their Radon points. Such a reduction is guided

by a complete (d + 2)-way tree. We will show that the �nal point of this reduction process is an

approximate center with high probability.

4



proposed basically the same algorithm for low-storage on-line median approximation.[25]

The outline of this paper is as follows. Section 2 reviews some fundamental geometrical facts, and

introduces the Radon point of a set of points. Section 3 gives our basic algorithm, based on iterated

computation of Radon points. This algorithm is analyzed �rst in one dimension, in Section 4, then

in general in Section 5. Section 6 discusses the use of random sampling to eliminate dependence

on the number of input points. Section 7 gives our polynomial-time variant. Section 8 shows how

to combine our approach with the linear programming algorithm. Section 9 discusses the precision

needed for oating point arithmetic to succeed in computing centers using our algorithms.

2 Centers and Their Relatives

Let P be a �nite set of points in IR

d

. A hyperplane h in IR

d

divides P into three subsets: P

+

= h

+

\P ,

P

�

= h

�

\ P , and P \ h. The splitting ratio of h over P , denoted by �

h

(P ), is de�ned as

�

h

(P ) = max

�

jP

+

j

jP j

;

jP

�

j

jP j

�

For each 0 < � � 1=2, a point c 2 IR

d

is a �-center of P if every hyperplane containing c

(1� �)-splits P . A (

1

d+1

)-center is simply called a center.

Proposition 2.1 ([6]) Each point set P � IR

d

has a center.

This fact, �rst observed by Danzer et al.[6], is a corollary of Helly's Theorem (to be given below).

(See also [18, 22]; Edelsbrunner's text [9] gives proofs for the results in this section.)

Theorem 2.2 (Helly) Suppose K is a family of at least d + 1 convex sets in IR

d

, and K is �nite

or each member of K is compact. Then if each d + 1 members of K have a common point, there is

a point common to all members of K.

The proof that centers exist is roughly as follows: consider a set of d+1 halfspaces each containing

fewer than �n points of P , for � � 1=(d+1). There must be points of P not in any of these halfspaces;

hence any set of d+ 1 halfspaces containing more than n(1 � �) points of P must have a common

point. It follows from Helly's Theorem that the family of halfspaces each containing more than

n(1� �) points of P has nonempty intersection. Any point in that intersection is a �-center.

This proof sketch implies that �-centers form a convex region, the intersection of a family of

halfspaces; it is not too hard to show that this region is the intersection of a �nite family of halfspaces.

Theorem 2.3 ([6]) If P � IR

d

has n points, then its set of �-centers is the intersection of a family

of closed halfspaces whose members each contains at least n(1 � �) points of P , and has at least d

points of P in its bounding hyperplanes.

The linear programming algorithm, based on this result, seeks to �nd a point in the common

intersection of a family of no more than

�

n

d

�

< n

d

halfspaces. This problem is linear programming

in d dimensions, with less than n

d

inequality constraints; it can be solved in O(n

d

) time using a

3



The existence of a center of any point set follows from a classical theorem due to Helly [6].

However, �nding an exact center seems to be a di�cult task. It is possible to compute centers by

solving a set of �(n

d

) linear inequalities, using linear programming. The only improved results are

that a center in two dimensions can be computed in O(n log

5

n) time, and in three dimensions in

O(n

2

log

7

n) time [5]; the two-dimensional result has been very recently improved to linear time [13].

For most applications, it su�ces to have an approximate center, a point such that every hyper-

plane through it partitions P into subsets of size at least n(

1

d+1

� �).

Such a center may be found with high probability by taking a random sample of P and com-

puting an exact center of that sample. In order to achieve probability 1 � � of computing a correct

approximate center, a sample of size �(d=�

2

logd=�+ log1=�) is required [12, 17, 22, 24], and hence

the time to compute such an approximate center is O(d

2

(d=�

2

logd=�+ log1=�)

d

) [3]. This bound is

constant in that it does not depend on n, but it has a constant factor exponential in d. Alternatively,

a deterministic linear-time sampling algorithm can be used in place of random sampling [14, 22],

but one must again compute a center of the sample using linear programming in time exponential

in d.

This exponential dependence on d is a problem even when d is as small as three or four. For ex-

ample, the experimental results show that the sampling algorithmmust choose a sample of about �ve

hundred to eight hundred points in three dimensions. The sampling algorithm thus solves a system

of

�

500

3

�

� 20 million linear inequalities. Many of our applications, e.g., in mesh partitioning [18],

require an approximate center in four or more dimensions, for which the number of sample points

and inequalities required is even larger. The aforementioned application (Donoho and Gasko [8]) of

centers in multivariate statistical estimation also calls for e�cient computation of center in higher

dimensions. The seemingly e�cient sampling algorithm is too expensive for practical applications!

In this paper, we give a practical and provably good method for constructing centers, from which

we derive several center approximation algorithms. A version of this method was originally proposed

as a heuristic to replace the linear programming based sampling algorithm by Miller and Teng [16]

and has been implemented as a subroutine in their geometric mesh partitioning algorithm [11, 18].

The experimental results are encouraging. Our algorithm can also be used as part of a method for

quickly computing weak �-nets with respect to convex sets [1] and in other geometric applications

of centers.

The simplest form of our algorithm runs in O((d log 1=�)

logd

) time and uses randomization to

�nd an 
(1=d

2

)-center (see Section 2 for the de�nition) with probability 1 � �. It does not use

linear programming and has a small constant factor, making it suitable for practical applications. It

can be e�ciently parallelized in O(log

2

d log logn) time on distributed- and shared-memory parallel

machines. We next describe a slightly more complicated form of the algorithm which takes time

polynomial in both d and log1=� and again computes 
(1=d

2

)-centers. To the best of our knowledge,

it is the �rst approximate center algorithm whose complexity is fully polynomial in both d and n.

Finally, we show how to combine our algorithm with the linear programming sampling method to

compute (

1

d+1

� �)-centers with probability 1� �, in time (d=�)

O(d)

log 1=�.

It is worthwhile to point out that our algorithms when specialized to one dimension yield a simple

and fast algorithm for approximating median, see Section 4.

Michelangelo Grigni has noted that a method of Valiant [23] on constructing short monotone

formulae for the majority function is very close to our construction (Algorithm 2) of approximate

median, and Valiant's analysis can also be adapted to give a proof of Theorem 4.3. Weide also

2
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Abstract

We give a practical and provably good Monte Carlo algorithm for approximating center

points. Let P be a set of n points in IR

d

. A point c 2 IR

d

is a �-center point of P if every closed

halfspace containing c contains at least �n points of P . Every point set has a 1=(d + 1)-center

point; our algorithm �nds an 
(1=d

2

)-center point with high probability. Our algorithm has

a small constant factor and is the �rst approximate center point algorithm whose complexity

is subexponential in d. Moreover, it can be optimally parallelized to require O(log

2

d log log n)

time. Our algorithm has been used in mesh partitioning methods and can be used in constructing

high breakdown estimators for multivariate datasets in statistics. It has the potential to improve

results in practice for constructing weak �-nets. We derive a variant of our algorithm whose time

bound is fully polynomial in d and linear in n, and show how to combine our approach with

previous techniques to compute high quality center points more quickly.

1 Introduction

A center point of a set P of n points in IR

d

is a point c of IR

d

such that every hyperplane passing

through c partitions P into two subsets each of size at most nd=(d + 1) [9, 26]. This balanced

separation property makes the center point useful for e�cient divide-and-conquer algorithms in

geometric computing [1, 17, 19, 22, 26] and large-scale scienti�c computing [17, 19, 22]. Recently,

Donoho and Gasko [8] have suggested center points as estimators for multivariate datasets. They

showed such points as estimators are robust and have a high \breakdown point." Note that we are

not referring here to the center of mass, or centroid. For brevity hereafter we will call a center point

just a center.
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