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Abstract—Memory bandwidth is a major limiting factor in
the scalability of parallel iterative algorithms that rely on sparse
matrix-vector multiplication (SpMV). This paper introduces
Hierarchical Diagonal Blocking (HDB), an approach which we
believe captures many of the existing optimization techniques for
SpMV in a common representation. Using this representation
in conjuction with precision-reduction techniques, we develop
and evaluate high-performance SpMV kernels. We also study the
implications of using our SpMV kernels in a complete iterative
solver. Our method of choice is a Combinatorial Multigrid
solver that can fully utilize our fastest reduced-precision SpMV
kernel without sacrificing the quality of the solution. We provide
extensive empirical evaluation of the effectiveness of the approach
on a variety of benchmark matrices, demonstrating substantial
speedups on all matrices considered.

I. INTRODUCTION

Iterative algorithms are often the method of choice for
large sparse problems. For example, specialized multigrid
linear solvers have been developed to solve large classes of
symmetric positive definite matrices [14, 44]. Many of these
solvers run in near linear time and are being applied to very
large systems. These algorithms heavily rely on the sparse
matrix-vector multiplication (SpMV) kernel, which dominates
the running time. As noted by many, the performance of
SpMV on large matrices, however, is almost always limited by
memory bandwidth. This is even more pronounced on modern
multicore hardware where the aggregate memory bandwidth
can be particularly limiting [46] when all the cores are busy.

Many approaches have been suggested to reduce the mem-
ory bandwidth requirements in SpMV: row/column reorder-
ing [38, 37], register blocking [41], compressing row or column
indices [45] , cache blocking [25, 46], symmetry [39], using
single or mixed precision [16], and reorganizing the SpMV
ordering across multiple iterations in a solver [35], among
others. Some of these approaches are hard to parallelize. For
example, the standard sparse skyline format for symmetric
matrices does not parallelize well.

In this paper, we suggest an approach we refer to as
hierarchical diagonal blocking (HDB) which we believe
captures many of the existing optimization techniques in a
common representation. It can take advantage of symmetry
while still being easy to parallelize. It takes advantage of
reordering. It also allows for simple compression of column
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indices. In conjunction with precision reduction (storing single-
precision numbers in place of doubles), it can reduce the overall
bandwidth requirements by more than a factor of three. It is
particularly well-suited for the type of problems that CMG is
designed for, symmetric matrices for which the corresponding
graphs have reasonably small graph separators, and for which
the effects of reduced precision arithmetic are well-understood.
Our approach does not use register blocking although this could
be added.

We prove various theoretical bounds for matrices for which
the adjacency structure has edge separators of size O(nα)
for α < 1. Prior work has shown a wide variety of sparse
matrices have a graph structure with good separators [8]. We
study the algorithm in the cache-oblivious framework [19],
where algorithms are analyzed assuming a two-level memory
hierarchy with an unbounded main memory and a cache of size
M and line size B. As long as the algorithm does not make
use of any cache parameters, the bounds are simultaneously
valid across all cache levels in a hierarchical cache. For an
n× n matrix with m nonzeros, we show that the number of
misses is at most m/B +O(1 + n/(Bw) + n/M1−α), where
w is the number of bits in a word.

We complement the theoretical results with a number of
experiments, evaluating the performance of various SpMV
schemes on recent multicore architectures. Our results show that
a simple double-precision parallel SpMV algorithm saturates
the multicore bandwidth, but by reducing the bandwidth
requirements—using a combination of hierarchical diagonal
blocking and precision reduction—we are able to obtain, on
average, a factor of 2.5x speedup on an 8-core Nehalem
machine. We also examine the implications of using the
improved SpMV routine in CMG and preconditioned conjugate
gradient (PCG) solvers. In addition, we explore heuristics
for finding good separator-orderings and study the effects of
separator quality on SpMV performance.

Reducing SpMV Bandwidth Requirements. Prior work
has proposed several approaches for reducing the memory
bandwidth requirements of SpMV. Reordering of rows and
columns of the matrix can reduce the cache misses on the
input and output vectors x and y by bringing references
to these vectors closer to each other in time [37]. Many
heuristic reordering approaches have been used, including graph
separators such as Chaco [24] or METIS [26], Cuthill-McKee
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reordering [20] or the Dulmage-Mendelsohn permutation [38].
These techniques tend to work well in practice since real-world
matrices tend to have high locality. This is especially true
with meshes derived from 2- and 3-d embeddings. Recent
results have shown various bounds for meshes with good
separators [6, 10, 11]. The graph structure of a wide variety
of sparse matrices has been to shown to have good separators,
including graphs such as the Google link graph. Reordering can
be used with cache blocking [25], which blocks the matrix into
sparse rectangular blocks and processes each block separately
so that the same rows and columns are reused.

Index compression reduces the size of the column and
row indices used to represent the matrix. The indices are
normally represented as integers, but there are various ways
to reduce their size. Willcok and Lumsdaine [45] apply graph
compression techniques to reduce the size, showing speedups of
up to 33% (although much more modest numbers on average).
Williams et al. point out that by using cache blocking, it is
possible to reduce the number of bits for the column indices
since the number of columns in the block is typically small [46].
Register blocking [41] represents the matrix as a set of dense
blocks. This can reduce the index information needed, but for
very sparse or unstructured matrices, it can cause significant
fill due to the insertion of zero entries to fill the dense blocks.

Data compression is a natural extension of index compression
that attempts to reduce the size of the actual data contained in
the matrix. For symmetric matrices, one can store the lower-
triangular entries and use them twice. When stored in the sparse
skyline format [39], (the compressed sparse row format with
only elements strictly below the diagonal stored) a simple loop
of the following form can be used:

// loop over rows.
for (i = 0;i < n;i++) {
float sum = diagonal[i]*x[i];
// loop over nonzeros below diagonal in row
for (j = start[i];j < start[i+1];j++) {
sum += x[cols[j]] * vals[j]; // as row
y[cols[j]] += x[i] * vals[j]; // as column

}
y[i] += sum;

}

Fig. 1: Simple sequential code for sparse matrix vector multiply
(SpMV).

Unfortunately, this loop does not parallelize well because of
the unstructured addition to an element in the result vector in the
statement y[cols[j]] += x[i] * vals[j];. Buluç et
al. study how to parallelize this by recursively blocking the
matrix [15], but this does not take advantage of any locality
in the matrix.

Another approach to data compression is to reduce the
number of bits used by the nonzero entries. Buttari et al. [16]
suggest the implementation of mixed-precision inner-outer iter-
ative algorithms, i.e. a nesting of iterative algorithms where the
outer iterative method is implemented in double precision, and

the inner one—formally viewed as a preconditioner to the outer
one—is implemented in single precision. While often positive,
the effects of reduced precision are in general unpredictable.
One main advantage of the CMG solver comparing to other
iterative methods is that it can be used as a preconditioner to
Conjugate Gradient, and the effects of using single precision
are well-understood.

Finally, recent work by Mohiyuddin et al. [35] suggests
reorganizing a sequence of SpMV operations on the same
matrix structure across iterations so that the same part of the
vector can be reused. Although this works well when using the
same matrix over multiple iterations, it does not directly help
in algorithms such as multigrid, where only a single iteration
on a matrix is applied before moving to another matrix of quite
different form.

II. PRELIMINARIES

Separators. Informally, a graph has nα,α < 1 edge separators
if there is a cut that partitions the graph into two almost equal
sized parts such that the number of edges between the two
parts is no more than nα, within a constant. To properly deal
with asymptotics and what it means to be “within a constant,”
separators are typically defined with respect to a infinite class
of graphs. Formally, let S be a class of graphs that is closed
under the subgraph relation (i.e., for G ∈ S , every subgraph of
G is also in S). We say that S satisfies an f(n)-edge separator
theorem if there are constants α < 1 and β > 0 such that every
graph G = (V,E) in S with n vertices can be partitioned into
two sets of vertices Va, Vb such that

cutSize(Va, Vb) :
def
= |E ∩ (Va × Vb)| ≤ βf(n)

where |Va|, |Vb| ≤ αn [32]. It is well-known that bounded-
degree planar graphs and graphs with bounded genus satisfy
an n1/2 edge separator theorem. It is also known that certain
well-shaped meshes in d dimensions satisfy a n(d−1)/d edge
separator theorem [34]. We note that such meshes allow
for features that vary in size by large factors (e.g. small
near a singularity and large where nothing is happening),
but require a smooth transition from small features to large
features. In addition, many other types of real-world graphs
have good separators, including, for example, a link graph
from Google [8].

Edge separators are often applied recursively to generate a
separator tree with the vertices at the leaves and the cuts at
internal nodes. Such a separator tree can be used to reorder the
vertices based on an in- or post- order traversal of the tree. It
is not hard to show that for graphs satisfying an nα separator
theorem, the tree can be fully balanced while maintaining the
O(nα) separator sizes at each node.

Separators have been used for many applications. The
seminal work of Lipton and Tarjan showed how separators
can be used in nested dissection to generate efficient direct
solvers [32]. Another common application is to partition data
structures across parallel machines to minimize communication.
It has also been used to compress graphs [7] down to a linear
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number of bits. The idea is that if the graph is reordered using
separators, then most of the edges are ‘short’ and can thus be
encoded using fewer bits than other edges. In this paper, we
extend this to show that HDB also compresses graphs down
to a linear number of bits.

Cache Oblivious Algorithms. The goal of the cache oblivious
approach for analyzing algorithms is to analyze the cache cost
on a simple single-level cache and then use the results to
imply good performance bounds on a variety of hierarchical
caches [19]. The ideal-cache model is used for analyzing
cache costs. It is a two-level model of computation consisting
of an unbounded memory and a cache of size M . Data are
transferred between the two levels using cache lines of size B;
all computation occurs on data in the cache. The model can
run any standard computation designed for a random access
machine on words of memory, and the cost is measured in
terms of the number of misses incurred by the computation.
This cost, often denoted by Q(C;B,M), is referred to as the
cache complexity for a computation C.

An algorithm is cache oblivious in the ideal-cache model
if it does not take into account the size of M or B (or any
other features of the cache). If a cache oblivious algorithm A
has cache complexity Q(A;B,M) on a machine with block
size B and cache size M , then on a hierarchical cache with
cache parameters (Mi, Bi) at level i, the algorithm will suffer
at most Q(A;Mi, Bi) misses at each level i. Therefore, if
Q(A;Mi, Bi) is asymptotically optimal for B and M , it is
optimal for all levels of the cache.

Parallel Cache Oblivious Algorithms. The cache oblivious
model was designed for analyzing sequential algorithms, but it
has recently been extended to analyze parallel algorithms [11].
For nested parallel computations (ones with nested parallel
loops and fork joins), one can analyze the algorithm using
a sequential ordering and then use general results to bound
cache misses on parallel machines with either shared or
private hierarchical caches. In particular, for a shared-memory
parallel machine with private caches (each processor has its
own cache) using a work-stealing scheduler, Qp(A;M,B) <
Q(A;M,B) + O(pMD/B) with probability 1− δ [3],1 and
for a shared cache using a parallel-depth-first (PDF) scheduler,
Qp(A;M+pBD,B) ≤ Q(A;M,B) [9], where D is the depth
of the computation and p the number of processors. In a nested
parallel computation, the depth (also known as critical path, or
span) is defined inductively by taking the maximum over the
depth of parallel calls and summing across sequential calls.

Therefore, the overall paradigm is to design nested parallel
algorithms with reasonably low depth and for which the cache
complexity is low in the ideal cache model. Controlling the
depth is important as it appears in the bounds. In the context
of sparse-matrix vector matrix multiply, the following has
been shown for the Compressed Sparse Row (CSR) SpMV
algorithm.

1In this paper, δ is an arbitrarily small positive constant.

Level 1

Level 2

Level 3

Fig. 2: Hierarchical diagonal blocking: decomposing a matrix
into a tree of submatrices.

Theorem 1 (Blelloch et al. [10]). Let M be a class of matrices
for which the adjacency graphs satisfy an nα-edge separator
theorem with α < 1. Any n× n matrix A ∈ M with m ≥ n
nonzeros can be reordered so the CSR SpMV algorithm has
O(log n) depth and O(1+m/B+n/M1−α) sequential cache
complexity.

For B ≤ M1−α (likely in practice), the m/B term dominates
so the number of cache misses is asymptotically optimal (no
more than needed to scan the array entries in order).

III. HIERARCHICAL DIAGONAL BLOCKING SPMV
In this section, we describe the hierarchical diagonal

blocking (HDB) representation for sparse square matrices and
an SpMV routine for the representation. We assume that we
have already computed a fully balanced tree of edge-separators
for the graph of the matrix, with the vertices as leaves. In the
following discussion, we assume the rows of the square matrix
are ordered by left-to-right pass over the leaves (the separator
ordering), and since the matrix is square, we will use row to
refer to both the row and corresponding column.

The HDB representation is a partitioning of the matrix into a
tree of submatrices (see Figure 2). Each leaf represents a range
of rows (possibly a single row), and each internal node of the
tree represents a continuous range of rows it covers. Nonzero
entries of the matrix are stored at the least common ancestor of
the leaves containing its two indices (row and column). If both
indices are in the same leaf, then the element will be stored at
that leaf (all diagonal entries are at a leaf). The representation
stores with each internal node the range of rows it covers, and
we refer to the number of rows in the range as the node’s size.

The separator tree can be used directly as the structure
of the HDB tree. This, however, creates many levels which
help neither in theory nor in practice. Instead, we coalesce
the nodes of the separator tree so that sizes square at each
level: 2, 4, 16, 256, 65536, . . . , 22

i

. We maintain the separator
ordering among the children of a node. This is important for the
cache analysis. We note that for matrices with good separators
most of the entries will be near the leaves.

The SpMV routine on the HDB representation works as
shown in Algorithm 1. The recursive algorithm takes as
arguments the input vector x, the output vector y, and a
subtree/internal node T . The algorithm requires that the
ordering of the x and y vectors coincide with the separator
(matrix) ordering. We denote by [$, u] the range of rows the
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Algorithm 1 Sparse Matrix Vector Multiply for HDB
HDB SpMV(x, y, T ):

1: A = T.M // the nonzero entries in this node of T
2: [$, u] = T.range
3: if isLeaf(T ) then
4: y[$, u] = A · x[$, u]
5: else
6: for all t ∈ T .children, in parallel, do
7: HDB SpMV(x, y, t)
8: end for
9: y[$, u] = y[$, u] +A · x[$, u]

10: end if

subtree covers. The algorithm computes the contribution to y
for-all nonzero entries in the subtree. In the base case, it directly
calculates the contribution. In the inductive case, each recursive
call in the for all loop computes the contribution for the entries
in its subtree. Since each of these is on a distinct range of
rows, all the calls can be made in parallel without interference.
After returning from the recursive calls, the algorithm adds
in the contribution for the entries in the current node, hence
accounting for the contribution of all entries in the subtree.

An important feature of HDB is that it gives freedom in
the selection of the matrix representation A and corresponding
SpMV algorithm used for each node of the tree. In particular,
depending on the level, different representations can be used.
If A in some node has many empty rows in its range, we need
store only the non-empty rows. This can easily be done using
an additional index vector of non-empty rows as is often done
in cache-blocked algorithms [46]. If the matrix is symmetric,
then we can keep just the lower triangular part and store it
in Compressed Sparse Row (CSR) format. For a submatrix
stored in this form, we can use the skyline algorithm given in
Figure 1 and for internal nodes, we need not even worry about
diagonals. Since the skyline algorithm is difficult to parallelize,
it can be used sequentially at lower levels of the tree where
there is plenty of parallelism from the recursive calls, and the
CSR representation with redundant entries can be used at the
higher levels. This works both in theory (proof of Theorem 2)
and in practice (Section V). Another important feature of HDB
is that space can be saved in storing the indices by only storing
an offset relative to the beginning of the range. Again, this is
used both in theory (Theorem 2) and practice (Section V).

We now bound space, cache complexity, and depth for
HDB SpMV for matrices with good separators. We assume
that each nonzero value takes one word of memory. Therefore,
B nonzeros fit in a cache line (this is just the values and not
any indices). We assume a word has w bits in it.

Theorem 2. Let M be a class of matrices for which the
adjacency graphs satisfy an nα-edge separator theorem, α < 1,
and A ∈ M be an n × n matrix with m ≥ n nonzeros, or
m ≥ n lower triangular nonzeros for a symmetric matrix. If
A is stored in the HDB representation T then:

1) T can be implemented to use m+O(n/w) words.

2) Algorithm HDB SpMV(x, y, T ) is cache oblivious and
runs with m/B +O(1 + n/(Bw) + n/M1−α) misses in
the ideal cache model.

3) Algorithm HDB SpMV(x, y, T ) runs in O(logc n) depth
(span) for some constant c.

Proof: We will use a modified CSR representation for all
matrices stored in the tree. For symmetric matrices, we only
store the lower triangular entries and diagonals for nodes of
size r < log1/(1−α) n, and all entries for larger nodes. The
idea is that the number of entries in the larger matrices is
small enough that we can store them twice or use a pointer to
the second copy without significantly affecting space or cache
complexity. As mentioned above, we modify CSR so it does
not store any information for empty rows.

Consider a matrix at a node of T with size r and with
e entries assigned to it. Because the range of columns is
bounded by r, all column and row indices can be stored relative
to the lower bound of the range using O(log r) bits. This
means the matrix can be stored in ew bits for the values
and O(e log r) bits for the indices. We also need to store the
pointers to the children of the node. For this, we assume that
the memory for nodes are allocated one after another in a
postorder traversal of the tree. This means to point to a child
the structure only has to point within the memory used by
this subtree. This is certainly bounded by O(wr2) bits and
therefore we can use a O(log r) bit pointer for each child.
We can also use O(log r) bits to specify the range limits
of each child, which we charge to the parent even though
stored with the child. Therefore, the total space required by
the node with c children is ew + O((e + c) log r). Now if
we organize the tree so the nodes grow doubly exponentially
ri = 22

i

, (2, 4, 16, 256, 65536, . . .), a node at level i captures
all edges that were cut in the binary separator tree above
size 22

i−1

and up to 22
i

. Using the separator bounds, and
counting per pairwise split, we have for a node at level i,
ei =

∑2i

j=2i−1+1 η(j) × O(2αj), where η(j) = 22
i−j is the

number of splits at the binary tree level j. This sum is bounded
by O(22

α(i−1)

22
i−1

) = O(22
α(i−1)+2i−1

) since the terms of the
sum geometrically decrease with increasing j. We also have
ci = 22

i−1

for the number of children at level i. There are
n/ri nodes at level i and therefore the total space in bits for
pointers is bounded by:

S(n) =
log logn∑

i=0

O

(
n

ri
(ei + ci) log ri

)

=
log logn∑

i=0

O
( n

22i
(2(2

α(i−1)+2i−1) + 22
i−1

)2i
)

For α < 1, this sum geometrically decreases, so for asymp-
totic analysis, we need only consider i = 0 and therefore
S(n) = O(n). When we include the space for the matrix
values and convert from bits to words, the total space is
m + O(n/w). We note that we can store matrices with size
r ≥ log1/(1−α) n using two nonzeros per symmetric entry
without affecting the asymptotic bounds. This is because there
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are at most O(n/ log n) nonzeros in matrices of that size so
we can use a pointer of size O(log n) bits to point to the other
copy, or if w = O(log n), we can store the duplicates directly.

We now consider bounds on the sequential cache complexity.
The argument is similar to the argument for the CSR for-
mat [10]. We separate the misses into the accesses to the matrix
entries and to the input and output vectors x and y. Recall that
all tree nodes are stored in post-order with respect to the tree
traversal, and at the nodes, the elements within each matrix
are stored in CSR format. Since the CSR algorithm visits the
matrix in the order it is stored, the algorithm visits all elements
in the order they are laid out. When including the O(n/w)
words for indices in the structure, which are also visited in
order, visiting the matrix causes a total of m/B+O(n/(Bw))
misses. For larger nodes in the tree where r ≥ log1/(1−α) n,
we store duplicate entries, but for the same reason, this is a
lower order term in the space and also a lower order term in
cache misses. This leaves us to consider the number of misses
from accessing x and y. For the sake of analysis, we can
partition the leaves into blocks that fit into the cache, where
each such block is executed in order by the algorithm. We
therefore only have to consider edges that go between blocks.
By the same argument as in [10], the number of such edges
(entries) is bounded by O(n/M1−α) each potentially causing
a miss. The total number of misses is therefore bounded by
m/B +O(1 + n/(Bw) + n/M1−α).

Finally, we consider the depth of the algorithm. We assume
that the SpMV for all nodes of size r ≥ log1/(1−α) n run in
parallel since they are stored with both symmetric entries. Such
a SpMV runs in O(log n) depth. For r < log1/(1−α) n, we
run the SpMV on the skyline format sequentially. The total
time is bounded asymptotically by the size, and all these small
multiplies can run in parallel. This is the dominating term
giving a total depth of O(log1/(1−α) n). !

IV. COMBINATORIAL MULTIGRID

To study how the improvements in SpMV performance
benefit an actual iterative method, we consider Combinatorial
Multigrid (CMG), a recently introduced variant of Algebraic
Multigrid (AMG) [28, 29, 30] providing strong convergence
guarantees for symmetric diagonally dominate linear sys-
tems [27, 40, 28, 30, 31]. Our choice is motivated by the
potential for immediate impact on the design of industrial
strength code for important applications. In contrast to AMG,
CMG offers strong convergence guarantees for the class of
symmetric diagonally dominant (SDD) matrices [23, 13, 4],
and under certain conditions for the even more general class
of symmetric M -matrices [17]. The convergence guarantees
are based on recent progress in spectral graph theory and
combinatorial preconditioning (see for example [12], [27]).
At the same time, linear systems from these classes play an
increasingly important role in a wave of new applications
in computer vision [21, 42, 30], and medical imaging in
particular [43]. Multigrid algorithms are commonly used
as preconditioners to other iterative methods. The idea of
implementing the preconditioner in single precision has been

explored before, but the effects on convergence are in general
unpredictable [16]. However, in the case of CMG, switching to
single precision has provably no adverse effects. In summary,
CMG can benefit from our fastest SpMV primitive, which
exploits both symmetry and precision reduction, in applications
that are well suited for the diagonal hierarchical blocking
approach.

A thorough discussion of multigrid algorithms is out of the
scope of this paper. There are many excellent survey papers
and monographs on various aspects of the topic and among
them [14, 44]. The purpose of this section is to discuss aspects
of the parallel implementation that are specific to CMG, but
at the same time, convince the reader that the performance
improvements we see for CMG are expected to carry over to
other flavors of multigrid.

A. CMG Description and Parallel Implementation Details
Similarly to AMG, the CMG algorithm consists of the setup

phase which computes a multigrid hierarchy, and the solve
phase. The CMG setup phase constructs a hierarchy of SDD
matrices A = A0, . . . , Ai. As with most variants of AMG,
CMG uses the Galerkin condition to construct the matrix Ai+1

from Ai. This amounts to the computation of a restriction
operator Ri ∈ Rdim(Ai)×dim(Ai+1), and the construction of
Ai+1 via the relation Ai+1 = RT

i AiRi. CMG constructs the
restriction operator Ri by grouping the variables/nodes of Ai

into dim(Ai+1) disjoint clusters and letting R(i, j) = 1 if
node i is in cluster j, and R(i, j) = 0 otherwise. This simple
approach is known as aggregate-based coarsening, and it has
recently attracted significant interest due to its simplicity and
advantages for parallel implementations [22, 36]. Classic AMG
constructs more complicated restriction operators that can be
viewed as (partially) overlapping clusters. The main difference
between CMG and other AMG variants is the algorithm for
clustering, which in the CMG case is combinatorially rather
than algebraically driven. The running time of the CMG setup
phase is negligible comparing to the actual MG iteration, so
we do not further discuss it in this paper. The reader can find
more details in [30].

Algorithm 2 The CMG Solve Phase
function xi = CMG(Ai, bi)

1: D = diag(Ai)
2: ri = bi −Ai(D−1bi)
3: bi+1 = Riri
4: z = CMG(Ai+1, bi+1)
5: for i = 1 to ti − 1 do
6: ri+1 = bi+1 −Ai+1z
7: z = z + CMG(Ai+1, ri+1)
8: end for
9: x = RT

i z
10: x = ri −D−1(Aix− bi)

The solve phase of CMG, which is dominated by SpMV
operations, is quite similar to the AMG solve phase; the pseudo-
code is given in Figure 2. When ti = 1, the algorithm is known
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in the MG literature as the V-cycle, while when ti = 2, it is
known as the W-cycle. It has been known that the aggregate-
based AMG does not exhibit good convergence for the V-cycle.
The theory in [27] essentially proves that more complicated
cycles are expected to converge fast, without blowing up the
total work performed by the algorithm. This is validated by
our experiments with CMG where we pick

ti = max
{⌈ nnz(Ai)

nnz(Ai+1)
− 1

⌉
, 1
}
.

Here nnz(A) denotes the number of nonzero entries of A. This
choice for the number of recursive calls, combined with the
fast geometric decrease of the matrix sizes, targets a geometric
decrease in the total work per level.

In our parallel implementation, we optimized the CMG solve
phase by using different SpMV implementations for different
matrix sizes. When the matrix size is larger than 1K, we use
the blocked version of SpMV, and when it is smaller than
that, we resort to the plain parallel implementation, where the
matrix is stored in full and we compute each row in parallel.
The reason is that the blocked version of SpMV has higher
overhead than the simple implementation for smaller matrices.

In our experiments, we found that a choice of t′i = ti +
1 improves (in some examples) the sequential running time
required for convergence by as much as 5%. However, it
redistributes work to lower levels of the hierarchy where, as
noted above, the SpMV speedups are smaller. As a result, the
overall performance gains for CMG are less significant with
this choice.

B. Single vs. Double Precision CMG

The CMG solve phase is the implicit inverse of a symmetric
positive operator B. The condition number κ(A,B) can there-
fore be defined, and it is well-understood that it characterizes
the rate of convergence of the preconditioned CG iteration [5].

Recall that the CMG core works with the assumption that the
system matrix A is SDD. We form a single precision matrix Â
from the double precision matrix A as follows; we decompose
A into A = D + L, where L has zero (in double precision)
row sums and D is a diagonal matrix with non-negative entries.
We form D̃ by casting the positive entries of D into single
precision. We form L̃ by casting the off-diagonal entries of
L into single precision, adding them in the order they appear
using single precision, and then negating the sum and setting
it to the corresponding diagonal entry of L̃. Finally, we let
Ã = D̃+ L̃. This construction guarantees that Ã is numerically
diagonally dominant and thus positive definite.

Substituting a double-precision hierarchy A0, . . . , Ad by
its single-precision counterpart Ã0, . . . , Ãd in effect changes
the symmetric operator B to a new operator B̂, which is also
symmetric. By an inductive (on the number of levels) argument,
it can be shown that

κ(B, B̃) ≤ max
i

κ(Ai, Ãi).

Using the Splitting Lemma for condition numbers [12], it is
easy to show that

κ(A, Ã) ≤
(
max

i

{
Di,i

D̃i,i

,
D̃i,i

Di,i
,max

j $=i

{
|Li,j |
|L̃i,j |

,
|L̃i,j |
|Li,j |

}})2

.

Under reasonable assumptions for the range of numbers used
in A, we get κ(B, B̃) < 1 + 10−7. Using the transitivity of
condition numbers, we get

κ(A, B̃) ≤ κ(A,B)κ(B, B̃) ≤ κ(A,B)(1 + 10−7).

It is known that the condition number of a pair (A,B) is the
ratio of the largest to the smallest generalized eigenvalue of
(A,B). The above inequality can in fact be extended to show
that each generalized eigenvalue of the pair (A,B) is within a
(1 + 10−7) factor of the corresponding generalized eigenvalue
of (A, B̃). Thus, the preconditioned CG is expected to have
an almost identical convergence, independent of whether B or
B̃ is the preconditioner.

V. IMPLEMENTATION AND EVALUATION

This section describes an implementation of an SpMV based
on hierarchical diagonal blocking and a study of its performance
compared to other related variants.

A. Implementation of SpMV

We implemented SpMV routines for symmetric matrices
using the descriptions from Section III. The implementation
stores a matrix as groups of on-diagonal entries, diagonal-block
entries, and off-block entries (similar to Figure 2 with only
2 inner-node levels and a level of leaf nodes). The diagonal
blocks in the first level are ∼ 32K in size (to take advantage
of caching) and the leaves correspond the singletons along
the matrix’s diagonal. This representation allows for a simple
implementation which delivers good performance in practice.

The two main ideas from previous sections are precision
reduction and diagonal blocking. To understand the benefits
of these ideas individually, we study the following variants:
the sequential program using double-precision numbers “seq.
(double)” is our baseline implementation (more details below).
The simple parallel program for double-precision numbers
“simple par. (double)” computes the rows in parallel. The
corresponding version for single-precision numbers is known as
“simple par. (single).” We have two variants of the hierarchical
diagonal blocking routines, one for double-precision numbers
“blocked par. (double)” and one for single-precision numbers
“blocked par. (single)”. The names inside quotation marks are
abbreviated names used in all the figures.

The baseline implementation is a simple sequential program
similar to what is shown in Figure 1. We optimized the code
slightly by applying one level of loop-unrolling to the inner
loop. Note that although the code is simple, its performance
matches, within 1%, that of highly optimized kernels for SpMV,
such as Intel Math Kernel Library [2]. We decided to work with
our own implementation because of the flexibility in changing
and instrumenting the code (e.g., for collecting statistics).
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All versions of our parallel programs were written in Cilk++,
a language similar to C++ with keywords that allow users to
specify what should be run in parallel [1]. Cilk++’s runtime
system relies on a work-stealing scheduler, a dynamic scheduler
that allows tasks to be rescheduled dynamically at low overhead
cost. Our benchmark programs were compiled with Intel Cilk++
build 8503 using the optimization flag -O2. To avoid overhead
in the Cilk++’s runtime system, we compiled the baseline
sequential programs with GNU g++ version 4.4.1 using the
optimization flag -O2.2

B. Experimental Setup

Testbed. We are interested in understanding the performance
characteristics of SpMV and CMG solvers on three recent
machine architectures: the Nehalem-based Xeon, the Intel
Harpertown, and the AMD Opteron Shanghai. A brief summary
of our test machines is presented in Table I. Our measurements
were taken with hyperthreading turned off. Even though
hyperthreading gives a slight boost in performance (though
less than 5%), the timing numbers were much more reliable
with it turned off.

Machine Model Speed Layout Agg. Bandwidth

(Ghz) (#chips×#cores) 1 core 8 cores

Intel Nehalem X5550 2.66 2× 4 10.5 27.9
Intel Harpertown E5440 2.83 2× 4 2.8 6.4
AMD Shanghai 2384 2.70 2× 4 4.9 10.7

TABLE I: Characteristics of the architectures used in our study,
where clock speeds are reported in Ghz and 1- and 8-core
aggregate bandwidth numbers in GBytes/sec. For the aggregate
bandwidth, we report the performance of the triad test in the
University of Virginia’s STREAM benchmark [33], compiled
with gcc -O2 and using gcc’s OpenMP.

Among these architectures, the Intel Nehalem is the current
flagship, which shows significant improvements in bandwidth
over prior architectures. For this reason, this work focuses on
our performance on the Nehalem machine; we include results
for other architectures for comparisons as our techniques benefit
other architectures as well.
Datasets. Our study involves a diverse collection of large
sparse matrices, gathered from the University of Florida Matrix
Collection [18] and a collection of mesh matrices generated
by applications in vision and medical imaging. We present
a summary of these matrices in Table II. These matrices are
chosen so that for the majority of them, neither the vectors nor
the whole matrix can fit entirely in cache; smaller matrices are
also included for comparison.

For the CMG experiments, since the CMG solver requires
the input matrix to be SDD, we replace each off-diagonal entry
with a negative number of the same magnitude, and we adjust
the diagonals to get zero row-sums. The perturbation does not
affect the SpMV performance, as the matrix structure remains

2We have also experimented with the Intel compiler and found similar
results.

Matrix #rows/cols #nonzero

2d-A 999,999 4,995,995
3d-A 999,999 6,939,993
af shell10 1,508,065 52,672,325
audikw 1 943,695 77,651,847
bone010 986,703 71,666,325
ecology2 999,999 4,995,991
nd24k 72,000 28,715,634
nlpkkt120 3,542,400 96,845,792
pwtk 217,918 11,634,424

TABLE II: Summary of matrices used in the experiments.

unchanged, but it allows us to study the performance of CMG
on various sparse patterns.

All matrices in the study are ordered in the best possible
ordering we are able to find. Each matrix is reordered using
a number of heuristics and we keep the ordering that yields
the best baseline performance. For each matrix, we use the
same ordering when comparing SpMV schemes. We discuss
the effects of separator quality in Section V-E.

C. Performance of SpMV

The first set of experiments concerns the performance of
SpMV. In these experiments, we are especially interested in
understanding how the ideas outlined in previous sections
perform on a variety of sparse matrices.
Throughput. Figure 3 and Table III show the performance (in
GFlops) and the speedup achieved by various SpMV routines
on the matrices in our collection. Several things are clear. First,
on all these matrices, a simple parallel algorithm speeds up
SpMV by 3.4x–4.5x. In fact, without any data reduction, we
cannot hope to improve the performance much further, because
as will be apparent in the next discussion, the simple parallel
algorithm operates near the peak bandwidth.

Matrix Speedup Speedup
simple par. (double) blocked par. (single)

2d-A 3.9x 7.1x
3d-A 3.7x 7.6x
af shell10 4.3x 11.3x
audikw 1 4.0x 11.0x
bone010 3.7x 9.7x
ecology2 3.4x 6.2x
nd24k 3.9x 9.6x
nlpkkt120 3.8x 8.4x
pwtk 3.7x 10.1x
thermal2 4.5x 7.3x

TABLE III: Speedup numbers of parallel SpMV on an 8-core
Nehalem machine as compared to the sequential baseline code.

Second, but more importantly, both hierarchical diagonal
blocking and precision reduction can help enhance the speed
of SpMV, but neither idea alone yields as much performance
improvement as their combination. By replacing double-
precision numbers with single-precision numbers, we use 4
bytes per matrix entry instead of 8. Furthermore, by using
the hierarchical diagonal blocking with the top-level block
size ∼ 32K, we can represent the indices of the entries in
the diagonal blocks using 16-bit words, a saving from 32-bit
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Fig. 3: Performance of different SpMV routines (in GFlops) on a variety of matrices.

words used to represent matrix indices in a normal CSR format.
Diagonal blocking can also take advantage of symmetry: each
digonal blocks can be stored in the skyline format, which halves
the number of entries (both indicies and values) we have to
store. Combining these ideas, we not only further reduce the
bandwidth but also improve the cache locality due to blocking.
Shown in Table IV is the memory footprint of the different
representations. By applying the blocking on these matrices,
the footprint can be reduced by more than 1.5x and can be
further reduced by precision reduction. This is reflected in
the additional speedup of more than 2x in the speedup of the
single-precision blocked parallel version over the speedup of
the simple double-precision parallel code.

Matrix Memory Access (MBytes)

CSR/double blocked/double blocked/single

2d-A 80 56 36
3d-A 103 67 43
af shell10 657 313 193
audikw 1 951 426 261
bone010 880 404 251
ecology2 80 56 36
nd24k 346 164 106
nlpkkt120 1212 589 367
pwtk 143 65 40
thermal2 128 85 55

TABLE IV: Total memory accesses (in MBytes) to perform
one SpMV operation using different representations.

Scalability. Presented in Figures 4 and 5 are speedup and
bandwidth numbers for different SpMV routines. The speedup
on i cores is how much faster a program is on i cores than on
1 core running the same program. First and most importantly,
blocked parallel single precision scales the best on all three
machines. On the Nehalem, it achieves a factor of almost
7x compared to approximately 4x for the simple double-
precision parallel SpMV. Furthermore, the trend is similar
between Nehalem and Shanghai, which both have more memory
channels and higher bandwidth than the Harpertown. On the
Harpertown, all the benchmarks saturate at 4 cores, potentially
due to the limited bandwidth.

Second, reducing the memory footprint (hence the bandwidth
requirement) is key to improving the scalability. As Figure 5
shows, the simple parallel SpMV seems to be compute bound
on 1 core but runs near peak bandwidth on 8 cores, suggesting
that further performance improvement is unlikely without
reducing the bandwidth requirements. But, as noted earlier, the
blocked schemes have substantially smaller memory footprint
than the simple scheme. For this reason, the blocked schemes
are able to achieve better FLOPS counts and scalability even
though they do not operate near the peak bandwidth.

D. Performance and Convergence of CMG
Figure 6 shows the performance of one call to three CMG

programs, differing in the SpMV kernel used. The precision
of scalars and vectors used by CMG match that of its SpMV
kernel. In the parallel implementations, vector-vector operations
in the CMG programs are also parallelized, when possible, in
a straightforward manner.

From the figure, two things are clear. First, the speedup—
the ratio between the performance of the baseline sequential
program and the parallel one—varies with the linear system
being solved; however, on all datasets we consider here, the
speedup is more than 3x, with the best case reaching beyond
6x. Second, the speedup of the CMG solver seems to be
proportional to the speedup of SpMV, but not as good. This
finding is consistent with the fact that the largest fraction of
the work is spent in SpMV, while part of the work is spent
on operations with more modest speedups (e.g., vector-vector
operators and SpMV operations on smaller matrices).

The CMG is used as a preconditioner in a Preconditioned
Conjugate Gradients (PCG) iteration. In Table V, we report the
number of PCG iterations required to compute a solution x such
that the relative residual error satisfies ‖Ax− b‖/‖b‖ < 10−8,
for various matrices and three different b-sides. The first column
corresponds to a random vector b, the second to Ab and the
third to an approximate solution of Ax = b, for the same
random b. We note that the reported convergence rates are
preliminary. Improvements may be possible as long as the
hierarchy construction abides by the sufficient and necessary
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Fig. 4: Speedup factors of SpMV on Intel Nehalem X5550, AMD Shanghai 2384, and Intel Harpertown E5440 as the number
of cores used is varied.
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Fig. 6: Performance of a CMG solve iteration (in GFlops) on different linear systems.

conditions reported in [29]. One call to CMG is on average
5–6 times slower than one call to SpMV. Most of the matrices
have a particularly bad condition number and standard CG
without preconditioning would require thousands of iterations
to achieve the same residual error.

As predicted by the theory in Section IV-B, CG precondi-
tioned with double-precision CMG is virtually indistinguishable
from CG preconditioned with single-precision CMG; the
number of iterations for convergence differs by at most 1 in all
our experiments. We have also found that further improvements
can be found by using a single-precision implementation of
CG to drive the error down to 10−6 and then switching to
the double-precision mode. In Table V, we report the running

Matrix #iterations PCG run time per call

random b Ab A+b P-single-CG P-double-CG

2d-A 42 34 48 24.15 31.1
3d-A 37 32 37 24.3 31.5
af shell10 26 23 30 195.3 231.3
audikw 1 19 15 17 205.0 245.8
ecology2 49 37 55 25.5 32.2
nlpkkt120 26 20 28 203.2 256.8

TABLE V: PCG: number of iterations required for convergence
of error to 10−8 and running time per call in milliseconds.

times of one call to PCG, with CG implemented in single
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Fig. 7: Performance of SpMV routines (in GFlops) with different ordering heuristics.

precision and double precision—the preconditioner CMG is
implemented consistently in single precision.

E. Effects of Separator Quality
Our results thus far rely on the assumption that the input

matrices are given in a good separator-ordering. Often, however,
the matrices have good separators but are not prearranged in
such an ordering. In this section, we explore various heuristics
for computing a good separator-ordering and compare their
relative performance with respect to SpMV.

We begin by defining two abstract measures of the quality
of an ordering. The first measure, called the $-distance, is
inspired by previous work on graph compression using separator
trees [7]. The $-distance is an information-theoretic lower bound
on the average number of bits needed to represent the index
of an entry. This measure therefore indicates how well the
ordering compresses. Formally, for a matrix M ,

$(M) :=
1

#nnz

∑

(i,j)∈M

log2 |i− j + 1|.

Simpler than the first, the second measure—denoted by “off”—
is simply the percentage of the nonzero entries that fall off the
first-level blocks. This measure tells us what fraction of the
nonzero elements has to resort to the simple parallel scheme
and cannot benefit from the blocks.

As we already discussed in Section III, at the heart of a
separator ordering is a separator tree—a fully balanced tree
of edge-separators for the graph of the matrix. For the study,
we consider the following graph-partitioning and reordering
heuristics: (1) “local,” a bottom-up contraction heuristic (known
in the original paper as bu) [7]; (2) METIS, an algorithm which
recursively applies the METIS partitioning algorithm [26]; and
(3) a random ordering of the vertices.

Table VI shows statistics for these heuristics on three of the
matrices used in previous sections. On both the $-distance and
off-block measures, it is clear that METIS produces superior
orderings than the local heuristic does on all of the matrices
considered; however, the local heuristic is significantly faster
than METIS, both running sequentially—and as we will see

next, both schemes yield comparable SpMV performance.
In terms of parallelization potential, we were unable to run
parMETIS on our Nehalem machine. Yet, the local heuristic
shows good speedup running on 8 cores, finishing in under 3
seconds on the largest matrix with almost 100 million entries
and exhibiting more than 5x speedup over 1 core.

Matrix nnz/row Random Local METIS
(avg.) " off " off T1 T8 " off T1

audikw 1 82.3 17.5 92.6% 7.6 9.0% 11.1 1.9 6.8 3.6% 76.1
nd24k 399.0 13.9 93.5% 9.5 36.1% 5.0 0.8 8.5 21.4% 12.0
nlpkkt120 26.9 19.2 96.6% 7.5 11.9% 15.3 2.6 6.3 5.3% 230.5

TABLE VI: Statistics about different ordering heuristics: $ is
the $-distance defined in Section V-E and off is the percentage
of the entries that fall off the diagonal blocks. The timing
numbers (in seconds, T1 for the sequential code and T8 for
the parallel code on 8 cores) on the Nehalem are reported.

We show in Figure 7 how the different ordering heuristics
compare in terms of SpMV performance. First but unsurpris-
ingly, the random ordering, which we expect to have almost
no locality, performs the worst on all three SpMV algorithms.
Second, as can be seen from the stark difference between
the random ordering and the other two schemes, a good
separator-ordering benefits all algorithms, not just the HBD
scheme. Third but most importantly, the SpMV algorithms are
“robust” against small differences in the separator’s quality:
on all algorithms, there is no significant performance loss
when switching from METIS to a slightly worse, but faster to
compute, ordering produced by the local heuristic.

VI. CONCLUSIONS

This paper described a sparse matrix representation which in
conjunction with precision reduction, forms the basis for high-
performance SpMV kernels. We evaluated their performance
both as stand-alone kernels and on CMG, showing substantial
speedsup on a diverse collection of matrices.
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