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Design and Implementation of a Practical Parallel
Delaunay Algorithm1

G. E. Blelloch,2 J. C. Hardwick,3 G. L. Miller,2 and D. Talmor4

Abstract. This paper describes the design and implementation of a practical parallel algorithm for Delau-
nay triangulation that works well on general distributions. Although there have been many theoretical parallel
algorithms for the problem, and some implementations based on bucketing that work well for uniform distribu-
tions, there has been little work on implementations for general distributions. We use the well known reduction
of 2D Delaunay triangulation to find the 3D convex hull of points on a paraboloid. Based on this reduction
we developed a variant of the Edelsbrunner and Shi 3D convex hull algorithm, specialized for the case when
the point set lies on a paraboloid. This simplification reduces the work required by the algorithm (number of
operations) fromO(n log2 n) to O(n logn). The depth (parallel time) isO(log3 n) on a CREW PRAM. The
algorithm is simpler than previousO(n logn) work parallel algorithms leading to smaller constants.

Initial experiments using a variety of distributions showed that our parallel algorithm was within a factor of 2
in work from the best sequential algorithm. Based on these promising results, the algorithm was implemented
using C and an MPI-based toolkit. Compared with previous work, the resulting implementation achieves
significantly better speedups over good sequential code, does not assume a uniform distribution of points, and
is widely portable due to its use of MPI as a communication mechanism. Results are presented for the IBM
SP2, Cray T3D, SGI Power Challenge, and DEC AlphaCluster.

Key Words. Delaunay triangulation, Parallel algorithms, Algorithm experimentation, Parallel imple-
mentation.

1. Introduction. A Delaunay triangulation inR2 is the triangulation of a setSof points
such that there are no elements ofS within the circumcircle of any triangle. Delaunay
triangulation—along with its dual, the Voronoi Diagram—is an important problem in
many domains, including pattern recognition, terrain modeling, and mesh generation for
the solution of partial differential equations. In many of these domains the triangulation
is a bottleneck in the overall computation, making it important to develop fast algo-
rithms. As a consequence, there are many sequential algorithms available for Delaunay
triangulation, along with efficient implementations. Su and Drysdale [1] present an ex-
cellent experimental comparison of several such algorithms. Since these algorithms are
time and memory intensive, parallel implementations are important both for improved
performance and to allow the solution of problems that are too large for sequential ma-
chines. However, although several parallel algorithms for Delaunay triangulation have
been described [2]–[7], practical implementations have been slower to appear, and are
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mostly specialized for uniform distributions [8]–[11]. One reason is that the dynamic
nature of the problem can result in significant interprocessor communication. This is
particularly problematic for nonuniform distributions. A second problem is that the par-
allel algorithms are typically much more complex than their sequential counterparts.
This added complexity results in lowparallel efficiency; that is, the algorithms achieve
only a small fraction of the perfect speedup over efficient sequential code running on one
processor. Because of these problems no previous implementation that we know of has
achieved reasonable speedup over good sequential algorithms when used on nonuniform
distributions.

Our goal was to develop a parallel Delaunay algorithm that is efficient both in theory
and in practice, and works well for general distributions. In theory we wanted an algorithm
that for n points runs in polylogarithmic depth (parallel time) and optimalO(n logn)
work. We were not concerned with achieving optimal depth since no machines now or
in the foreseeable future will have enough processors to require such parallelism. In
practice we wanted an algorithm that performs well compared with the best sequential
algorithms over a variety of distributions, both uniform and nonuniform. We considered
two measures of efficiency. The first was to compare the total work done to that done by
the best sequential algorithm. We quantify the constants in the work required by a parallel
algorithm relative to the best sequential algorithm using the notion ofα work-efficiency.
We say that algorithm A isα work-efficientcompared with algorithm B if A performs
at most 1/α times the number of operation of B. An ideal parallel algorithm is 100%
work-efficient relative to the best sequential algorithm. We use floating-point operations
as a measure of work—this has the desirable property that it is machine independent.
The second measure of efficiency is to measure actual speedup over the best sequential
algorithm on a range of machine architectures and sizes.

Based on these criteria we considered a variety of parallel Delaunay algorithms.
The one eventually chosen uses a divide-and-conquer projection-based approach, based
loosely on the Edelsbrunner and Shi [12] algorithm for 3D convex hulls. Our algorithm
doesO(n logn) work and hasO(log3 n) depth on a CREW PRAM. From a practical
point of view it has considerably simpler subroutines for dividing and merging sub-
problems than previous techniques, and its performance has little dependence on data
distribution. Furthermore, it is well suited as a coarse-grained partitioner, which splits
up the points evenly into regions until there are as many region as processors, at which
point a sequential algorithm can be used. Our final implementation is based on this idea.

Our experiments were divided into two parts. A prototyping phase used the parallel
programming language NESL[13] to experiment with algorithm variants, and to measure
their work-efficiency. An optimized coarse-grained implementation of the final algorithm
was then written in C and a toolkit based on MPI [14], and was compared with the best
existing sequential implementation. For our measurements in both sets of experiments
we selected a set of four data distributions which are motivated by scientific domains
and include some highly nonuniform distributions. The four distributions we use are
discussed in Section 3.1 and pictured in Figure 8.

Our NESL experiments show that the algorithm is 45% work-efficient or better for
all four distributions and over a range of problem sizes when applied all the way to the
end. This is relative to Dwyer’s algorithm, which is the best of the sequential Delaunay
algorithms studied by Su and Drysdale [1]. Figure 1 shows a comparison of floating-point
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Fig. 1. A comparison of our parallel algorithm versus Dwyer’s algorithm, in terms of the number of floating-
point operation performed for four input distributions.

operations performed by our algorithm and Dwyer’s algorithm for the four distributions
(see Section 3.2 for full results). On the highly nonuniform line distribution, Dwyer’s
cuts bring less savings, and our algorithm is close to 100% work-efficient.

The MPI and C implementation uses our basic algorithm as a coarse-grained parti-
tioner to break the problem into one region per processor. Our experiments show that
this approach achieves good speedup on a range of architectures, including the IBM
SP2, Cray T3D, SGI Power Challenge, and DEC AlphaCluster. As an example, Figure 2
shows running times for up to 64 processors on the Cray T3D (see Section 3.3 for full
results). We note that the implementation not only gives speedups that are within a fac-
tor of 2 of optimal (compared with a good sequential algorithm), but allow us to solve
much larger problems because of the additional memory that is available across multiple
processors. Our algorithm never requires that all the data reside on one processor—both
the input and output are evenly distributed across the processors, as are all intermediate
results.

1.1. Background and Choices.

Theoretical Algorithms. Many of the efficient algorithms for Delaunay triangulation,
sequential and parallel, are based on the divide-and-conquer paradigm. These algorithms
can be characterized by the relative costs of the divide and merge phases. An early
sequential approach, developed for Voronoi diagrams by Shamos and Hoey [15] and
refined for Delaunay triangulation by Guibas and Stolfi [16], is to divide the point set
into two subproblems using a median, then to find the Delaunay diagram of each half,
and finally to merge the two diagrams. The merge phase does most of the work of
the algorithm and runs inO(n) time, so the whole algorithm runs inO(n logn) time.
Unfortunately, these original versions of the merge were highly sequential in nature.
Aggarwal et al. [3] first presented a parallel version of the merge phase, which lead
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Fig. 2. Scalability of the MPI and C implementation of our algorithm on the Cray T3D, showing the time to
triangulate 16k–128k points per processor for a range of machine sizes. For clarity, only the fastest (uniform)
and slowest (line) distributions are shown.

to an algorithm withO(log2 n) depth. However, this algorithm was significantly more
complicated than the sequential version, and was not work-efficient—the merge required
O(n logn) work. Cole et al. [4] improved the method and made it work-efficient on the
CREW PRAM using the same depth. The algorithm, however, remains hampered by
messy data structures, and as it stands can be ruled out as a promising candidate for
implementation. We note, however, that there certainly could be simplifications that
make it easier to implement.

Reif and Sen [6] developed a randomized parallel divide-and-conquer paradigm,
called “polling.” They solve the more general 3D convex hull problem, which can be
used for finding the Delaunay triangulation. The algorithm uses a sample of the points to
to split the problem into a set of smaller independent subproblems. The size of the sample
ensures even splitting with high probability. The work of the algorithm is concentrated
in the divide phase, and merging simply glues the solutions together. Since a point can
appear in more than one subproblem, trimming techniques are used to avoid blow-up. A
simplified version of this algorithm was considered by Su [11]. He showed that whereas
sampling does indeed evenly divide the problem, the expansion factor is close to 6 on
all the distributions he considered. This will lead to an algorithm that is at best one-sixth
work-efficient, and therefore, pending further improvements, is not a likely candidate for
implementation. Dehne et al. [17] derive a similar algorithm based on sampling. They
show that the algorithm is communication-efficient whenn > p3+ε (only O(n/p) data
is sent and received by each processor). The algorithm is quite complicated, however,
and it is unclear what the constants in the work are.

Edelsbrunner and Shi [12] present a 3D convex hull algorithm based on the 2D
algorithm of Kirkpatrick and Seidel [18]. The algorithm divides the problem by first using
linear programming to find a facet of the 3D convex hull above a splitting point, then using
projection onto vertical planes and 2D convex hulls to find two paths of convex hull edges.
These paths are then used to divide the problem into four subproblems, using planar point
location to decide for each point which of the subproblems it belongs to. The merge phase
again simply glues the solutions together. The algorithm takesO(n log2 h) time, whereh



Design and Implementation of a Practical Parallel Delaunay Algorithm 247

is the number of facets in the solution. When applied to Delaunay triangulation, however,
the algorithm takesO(n log2 n) time since the number of facets will be2(n). This
algorithm can be parallelized without much difficulty since all the substeps have known
parallel solutions, giving a depth (parallel time) ofO(log3 n) and work ofO(n log2 h).
Ghouse and Goodrich [7] showed how the algorithm could be improved toO(log2 n)
depth andO(min(n log2 h,n logn)) work using randomization and various additional
techniques. The improvement in work makes the algorithm asymptotically work-efficient
for Delaunay triangulation. However, these work bounds were based on switching to the
Reif and Sen algorithm if the output size was large. Therefore, when used for Delaunay
triangulation, the Ghouse and Goodrich algorithm simply reduces to the Reif and Sen
algorithm.

Implementations. Most of the parallel implementations of Delaunay triangulation use
decomposition techniques such as bucketing [8]–[11] or striping [19]. These techniques
have the advantage that they can reduce communication by allowing the algorithm to
partition points quickly into one bucket (or stripe) per processor and then use sequential
techniques within the bucket. However, the algorithms rely on the input dataset having a
uniform spatial distribution of points in order to avoid load imbalances between proces-
sors. Their performance on nonuniform distributions more characteristic of real-world
problems can be significantly worse than on uniform distributions. For example, the 3D
algorithm by Teng et al. [10] was up to five times slower on nonuniform distributions
than on uniform ones (on a 32-processor CM-5), while the 3D algorithm by Cignoni et
al. [9] was up to ten times slower on nonuniform distributions than on uniform ones (on
a 128-processor nCUBE).

Even given the limitation to uniform distributions, the speedups of these algorithms
over efficient sequential code has not been good. Of the algorithms that quote such
speedups the 2D algorithm by Su [11] achieved speedup factors of 3.5–5.5 on a 32-
processor KSR-1, for a parallel efficiency of 11–17%, while the 3D algorithm by Mer-
riam [8] achieved speedup factors of 6–20 on a 128-processor Intel Gamma, for a parallel
efficiency of 5–16%. Both of these results were for uniform distributions. The 2D al-
gorithm by Chew et al. [20], which can handle nonuniform distributions and solves the
more general problem of constrained Delaunay triangulation in a meshing algorithm,
achieves speedup factors of 3 on an 8-processor SP2, for a parallel efficiency of 38%.
However, this algorithm currently requires that the boundaries between processors be
created by hand.

1.2. Our Algorithm and Experiments. Previous results do not look promising for de-
veloping practical Delaunay triangulation codes. The theoretical algorithms seem im-
practical because they are complex and have large constants, and the implementations
are either specialized to uniform distributions or require partitioning by hand. We there-
fore developed a new algorithm loosely based on the Edelsbrunner and Shi approach.
The complicated subroutines in the Edelsbrunner and Shi approach, and the fact that
it requiresO(n log2 n) work when applied to Delaunay triangulation, initially seems to
rule it out as a reasonable candidate for parallel implementation. We note, however, that
by restricting ourselves to a point set on the surface of a sphere or parabola (sufficient for
Delaunay triangulation) the algorithm can be greatly simplified. Under this assumption,



248 G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor

we developed an algorithm that only needs a 2D convex hull as a subroutine, removing
the need for linear programming and planar point location. Furthermore, our algorithm
only makes cuts parallel to thex or y axis, allowing us to keep the points sorted and
use anO(n) work 2D convex hull. These improvements reduce the theoretical work to
O(n logn) and also greatly reduce the constants. This simplified version of the Edels-
brunner and Shi approach seemed a promising candidate for experimentation: it does
not suffer from unnecessary duplication, as points are duplicated only when a Delaunay
edge is found, and it does not require complicated subroutines, especially if one is will-
ing to compromise by using components that are not theoretically optimal, as discussed
below.

We initially prototyped the algorithm in the programming language NESL[13], a high
level parallel programming language designed for algorithm specification and teaching.
NESL allowed us to develop the code quickly, try several variants of the algorithm,
and run many experiments to analyze the characteristics. For such prototyping NESL

has the important properties that it is deterministic, uses simple parallel constructs, has
implicit memory management with garbage collection and full bounds checking, and
has an integrated interactive environment with visualization tools. We refined the initial
algorithm through alternating rounds of experimentation and algorithmic design. We
improve the basic algorithm from a practical point of view by using the 2D convex hull
algorithm of Chan et al. [21]. This algorithm has nonoptimal theoretical work since
it runs in worst caseO(n logh) work instead of linear (for sorted input). However, in
practice our experiments show that it runs in linear work, and has a smaller constant than
the provably linear work algorithm. Our final algorithm is not only simple enough to
be easily implemented, but is also highly parallel and performs work comparable with
efficient sequential algorithms over a wide range of distributions. We also observed that
the algorithm can be used effectively to partition the problem into regions in which the
work on each region is approximately equal.

After running the experiments in NESL and settling on the specifics of an algorithm
we implemented it in C and MPI [14] with the aid of the Machiavelli toolkit [22]. This
implementation uses our algorithm as a coarse-grained partitioner, as outlined above,
and then uses a sequential algorithm to finish the subproblems. Although in theory a
compiler could convert the NESL code into efficient C and MPI code, significantly more
research is necessary to get the compiler to that stage.

Section 2 describes the algorithm and its implementation in NESL, and its translation
into MPI and C. Section 3 describes the experiments we ran on the two implementations.

2. Projection-Based Delaunay Triangulation. In this section we first present our
algorithm, concentrating on the theoretical motivations for our design choices, then
discuss particular choices made in the NESL implementation, and finally discuss choices
made in the C and MPI implementation.

The basic algorithm uses a divide-and-conquer strategy. Figure 3 gives a pseudocode
description of the algorithm. Each subproblem is determined by a regionR which is the
union of a collection of Delaunay triangles. The regionR is represented by the following
information: (1) the polygonal borderB of the region, composed of Delaunay edges,
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Algorithm: DELAUNAY (P,B)

Input: P, a set of points inR2,
B, a set of Delaunay edges ofP which is the border of a region inR2

containingP.

Output: The set of Delaunay triangles ofP which are contained withinB.

Method:

1. If all the points inP are on the borderB, return END GAME(B).
2. Find the pointq that is the median along thex axis of all internal points (points in

P and not on the border). LetL be the linex = qx.
3. Let P′ = {(py − qy, ||p− q||2) | (px, py) ∈ P}. These points are derived from

projecting the pointsP onto a 3D paraboloid centered atq, and then projecting
them onto the vertical plane through the lineL.

4. LetH = LOWER CONVEX HULL(P′).H is a path of Delaunay edges of the setP.
Let PH be the set of points the pathH consists of, andH̄ is the pathH traversed
in the opposite direction.

5. Create two subproblems:
• BL = BORDER MERGE(B,H)

BR = BORDER MERGE(B, H̄)
• PL = {p ∈ P|p is left ofL} ∪ {p′ ∈ PH | p′ contributed toBL}

PR = {p ∈ P|p is right ofL} ∪ {p′ ∈ PH | p′ contributed toBR}
6. Return DELAUNAY (PL, BL) ∪ DELAUNAY (PR, BR)

Fig. 3. The projection-based parallel Delaunay triangulation algorithm. InitiallyB is the convex hull of
P. The algorithm as shown cuts along thex axis, but in general we can switch betweenx and y cuts,
and all our implementations switch on every level. The algorithm uses the three subroutines END GAME,
LOWER CONVEX HULL, and BORDER MERGE, which are described in the text.

and (2) the set of pointsP of the region, composed ofinternal pointsand points on
the border. Note that the region may be unconnected. At each call, we divide the region
into two regions using a median line cut of the internal points. The set of internal points
is subdivided into those to the left and to the right of the median line. The polygonal
border is subdivided using a new path of Delaunay edges that corresponds to the median
line: the new path separates Delaunay triangles whose circumcenter is to the left of the
median line, from those whose circumcenter is to the right of the median line. Once the
new path is found, the new border of Delaunay edges for each subproblem is determined
by merging the old border with the new path, in the BORDER MERGEsubroutine. Some
of the internal points may appear in the new path, and may become border points of the
new subproblems. Since we are using a median cut, our algorithm guarantees that the
number of internal points is reduced by a factor of at least 2 at each call. This simple
separation is at the heart of our algorithm’s efficiency. Unlike early divide-and-conquer
strategies for Delaunay triangulation which do most of the work when returning from
recursive calls [15], [16], [4], this algorithm does all the work before making recursive
calls, and trivially appends results when returning from the recursive calls.
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Fig. 4.Finding a dividing path for Delaunay triangulation. This shows the median line, all the points projected
onto a parabola centered at a point on that line, and the horizontal projection onto the vertical plane through
the median line. The result of the lower convex hull in the projected space,H, is shown in highlighted edges
on the plane.

The new separating path of Delaunay edges is a lower convex hull of a simple trans-
formation of the current point set. To obtain this path (which we callH), we project the
points onto a paraboloid whose center is on the median lineL, then project the points
horizontally onto a vertical plane whose intersection with thexy plane isL (see Fig-
ure 4). The 2D lower convex hull of those projected points is the required new border
pathH. In the case of degeneracies, the structure ofH may be more complicated, as is
discussed in Lemma 1 below.

This divide-and-conquer method can proceed as long as the subproblem contains
internal points. Once the subproblem has no more internal points, it is a set of (possibly
pinched) cycles of Delaunay edges. There may be some missing Delaunay edges between
border points that still have to be found. To do that, we move to a different strategy
which we refer to as the END GAME. In a theoretical view of the algorithm, to obtain
optimal work and run-time bounds, a standard Delaunay triangulation algorithm may
be substituted at this point. However, for the implementation we suggest a simple and
efficient in practice end-game strategy that takes advantage of the simple structure of the
subproblems at this point. This strategy is described in Section 2.1.

Correctness of the Median Splits. The simple partitioning strategy we use is crucial to
the efficiency of our algorithm. This strategy is successful because of the relationship
between the median lineL used to partition the points, and the Delaunay pathH used to
partition the borders. In particular the following lemma implies that we can determine
whether a point not onH is left or right ofH by comparing it against the lineL (see
Figure 4(a)).

LEMMA 1. There is no point in P which is left(right) of the lineL, but right(left) ofH.

Proof outline. Let Q be a convex body inR3 with boundaryQ̄. In our case,Q̄ is the
3D paraboloid. Without loss of generality, assume thatL is the linex = 0 in thexy
plane, and that the median pointq = (0,0). The 3D paraboloid can then be described
as the set of points(x, y, x2+ y2).
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A point q in Q̄ is said to belight if it is visible from the x direction, i.e., the ray
{q + αx̂|α > 0} does not intersect the interior ofQ, wherex̂ = (1,0,0). We say the
pointq is dark if the ray{q−αx̂|α > 0} does not intersect the interior ofQ. A point that
is both light and dark is said to be on thesilhouette. The silhouette forms a border between
light and dark points. Note that points on thexy plane with a negativex coordinate are
mapped using the paraboloid mapping to a dark point.

The set of Delaunay points in the plane,P, is mapped to a set of 3D pointŝT on
the paraboloidQ̄. Let T̄ stand for the convex hull of̂T , and letT be the interior solid
bounded byT̄ . Clearly,T is a convex body contained inQ. We can classify points on̄T
as dark, light, and silhouette as well.

T̄ is composed of linear faces, edges, and points. For ease of exposition, we assume
no faces appear on the silhouette. We also assume that the points are in general position,
i.e., that all faces are triangular.H, the projection of the silhouette of̄T on the plane, is
then a simple path.

Note that the pointŝT are both onT̄ and on Q̄. Furthermore, if a point ofT̂ is
dark (light) in Q̄, it is also dark (light) inT̄ . However, if a point is dark inQ̄, its 2D
projection is left of or onL. If a point is dark inT̄ , its 2D projection is left of or on the
pathH. Therefore if a point is left of or onL, then it is left of or onH. This property
and hence the statement of the lemma is true in the more general setting in whichQ
is an arbitrary convex body,L is the projection of its silhouette onto the plane,T̂ is
an arbitrary set of points on̂Q, andH is the projection of the silhouette ofT onto the
plane.

We now give a simple characterization of when a face onT̄ is light, dark, or on the
silhouette in term of its circumscribing circle (assumingT̂ lie on the paraboloid).

DEFINITION 1. A Delaunay triangle is called a left, right, or middle triangle with respect
to a lineL, if the circumcenter of its Delaunay circle lies left of, right of, or on the line
L, respectively.

LEMMA 2. A face F is strictly dark, strictly light, or on the silhouette if and only if its
triangle in the plane is left, right, or middle, respectively.

PROOF. The supporting plane of faceF is of the formax+ by− z = c with normal
n = (a,b,−1). Now F is strictly dark, light, or on the silhouette if and only ifa < 0,
a > 0, ora = 0, respectively. The vertical projection of the intersection of this plane, and
the paraboloid, is described byx2+ y2 = ax+by+c, or by(x−a/2)2+ (y−a/2)2 =
c+ (a/2)2+ (b/2)2. This is an equation describing a circle whose center is(a/2,b/2)
and contains the three points of the triangle. Hence, this is the Delaunay triangle’s
circumcenter and this circumcenter is simply related to the normal of the corresponding
face of the convex hull.

Therefore the only time that a triangle will cause a face to be on the silhouette is when
its circumcenter is onL. For ease of exposition, we assume the following degeneracy
condition: no vertical or horizontal line contains both a point and a circumcenter. In
general we could allow faces on the silhouette in which caseH would could include
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triangles (or other shapes if degeneracies are allowed so that faces are not triangles).
We could then split the path into one that goes around the triangles to the left (HL) and
one that goes around the triangles to the right (HR) and use these to merge with the old
border for the recursive calls.

Analysis. We now consider the total work and depth of the algorithm, basing our
analysis on a CREW PRAM. The costs depend on the three subroutines END GAME,
LOWER CONVEX HULL, and BORDER MERGE. In this section we briefly describe sub-
routines that lead to theoretically reasonable bounds, and in the following sections we
discuss variations for which we do not know how to prove strong bounds on, but work
better on our data sets.

LEMMA 3. Using a parallel version of Overmars and van Leeuwen’s algorithm[23]
for theLOWER CONVEX HULL and Cole et al.’s algorithm [4] for theEND GAME, our
method runs in O(n logn) work and O(log3 n) depth.

PROOF. We first note that since our projections are always on a plane perpendicular to the
x or y axis, we can keep our points sorted relative to these axes with linear work (we can
keep the rank of each point along both axes and compress these ranks when partitioning).
This allows us to use Overmars and van Leeuwen’s linear-work algorithm [23] for 2D
convex hulls on sorted input. Since their algorithm uses divide-and-conquer and each
divide stage takesO(logn) serial time, the full algorithm runs withO(log2 n) depth. The
other subroutines in the partitioning are the median, projection, and BORDER MERGE.
These can all be implemented within the bounds of the convex hull (BORDER MERGEis
discussed later in this section). The total cost for partitioningn points is thereforeO(n)
work andO(log2 n) depth.

As discussed earlier, when partitioning a region(P, B) the number of internal points
within each partition is at most half as many as the number of internal points in(P, B).
The total number of levels of recursion before there are no more internal points is therefore
at most logn. Furthermore, the total border size when summed across all instances on
a given level of recursion is at most 6n. This is because 3n is a limit on the number of
Delaunay edges in the final answer, and each edge can belong to the border of at most
two instances (one on each side). Since the work for partitioning a region is linear, the
total work needed to process each level isO(n) and the total work across the levels is
O(n logn). Similarly, the depth isO(log3 n).

This is the cost to reduce the problem to components which have no internal points,
just borders. To finish off we need to run the END GAME. If the border is small—our
experiments indicate that the average size is less than 10—it can be solved by simpler
techniques, such as constructing the triangulation incrementally using point insertion. If
the border is large, then the Cole et al. algorithm [4] can be used.

Comparison with Edelsbrunner and Shi. Here we explain how our algorithm differs
from the original algorithm presented by Edelsbrunner and Shi [12]. Our algorithm uses
the same technique of partitioning the problem into subproblems using a path obtained by
projecting the point set and using a 2D convex hull subroutine. However, we partition the
points and border by finding a median, computing a 2D convex hull of a simple projection
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of the points, and then using simple local operations for merging the borders. In contrast,
since Edelsbrunner and Shi are solving the more general problem of a 3D convex hull,
they have to (1) find a 4-partition using two intersecting lines in thexy plane, (2) use
linear programming to find the face of the convex hull above the intersection, (3) compute
two convex hulls of projections of the points, (4) merge the borders, and (5) use point
location to determine which points belong to which partition. Each of these steps is more
complicated than ours, and in the case of step (3) our is asymptotically faster—it runs in
linear rather than thanO(n logn)—leading to an overall faster algorithm.

We can get away with the simpler algorithm since in our projection in 3D, all points
lie on a surface of a parabola. This allows us to find a face of the convex hull easily—we
just use the median point—and to partition the points simply by using a median line. This
avoids the linear programming and point location steps (steps (2) and (5)). Furthermore,
because of our median cut lemma (Lemma 1), our partitions can all be made parallel to
the x or y axis. This both avoids finding a 4-partition (step (1)) and also allows us in
linear time to keep our points sorted along the cut. Using this sorted order we can use
a linear work algorithm for the convex hull, as discussed. This is not possible with the
Edelsbrunner and Shi algorithms, since it must make cuts in arbitrary directions in order
to get the 4-partition needed to guarantee progress. On the down side, our partition is
not as good as the 4-partition of Edelsbrunner and Shi since it only guarantees that the
internal points are well partitioned—the border could be badly partitioned. This means
we have to switch algorithms when no internal points remain. However, our experiments
show that for all our distributions the average size of components when switching is
less than 10, and the maximum size is rarely more than 50 (this assumes that we are
alternating betweenx andy cuts).

We note that proving the sufficiency of the median test for the divide phase was the
insight that motivated our choice of the projection-based algorithm for implementation.
This work was also motivated by the theoretical algorithms presented in [24].

2.1. NESL Implementation. This section gives more details on the substeps and out-
lines the data structures used in the NESL implementation. NESL [13] is a nested data-
parallel language that is well suited to expressing irregular divide-and-conquer algo-
rithms of this type. It is very high level and allowed us to prototype, debug, and experiment
with variations of the algorithm quickly. The main components of the implementation are
the border merge, the convex hull, and the end game. An important result of our experi-
ments was that we noticed that subroutines that are not theoretically optimal sometimes
lead to more practical resultes. These subroutines are discussed below.

Border Merge. The border merge consists of merging the new Delaunay path with the
old border, to form two new borders. The geometric properties of these paths, combined
with the data structure we use, lead to a simple and elegantO(n) work, O(1) time
intersection routine.

The set of points is represented using a vector. The borderB is represented as an
unordered set of triplets. Each triplet represents a corner of the border, in the form
(ia, im, i b), whereim is an index to the middle corner point,ia is an index to the preceding
point on the border,i b is an index to the following point. Note that the border could have
pinch points, i.e.,B could contain two triplets with the same middle point (see Figure 6).
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Fig. 5.The six cases for merging the new and old border. The old border is in thick lines, and the partitioning
path in dotted lines. The convention in the drawings (and the program) is that the interior lies left of the border
when proceeding in the direction of the arrows. The resulting two new borders are in thin lines, with the new
left border marked with double arcs, and the new right border with a single arc.

The 2D convex hull algorithm returns a new border path,H, also represented as a set
of triplets.H andB have the following properties:

• No two edges cross since bothB andH are subsets of the set of Delaunay edges ofP.
• H is a simple path anchored at its endpoints onB.

The border merge can be computed by considering only the local structure ofH and
B. Specifically, we intersect pairs of triplets of equal middle index, one representing the
shape of the new border near the point, the other representing the shape of the old border.
The existence of pinch points inB does not affect this simple procedure, as each triplet
belonging to the pinched corner can be intersected independently with the new border.
Since the new border has distinctim’s the number of corner intersections computed is at
most the number of corners in the old border.

Figure 5 shows the six different cases for the intersection of the old and new triplets.
The core of the border merge is therefore a routine receiving two triplets, identifying
which of the six cases they fall into, and returning a set of new left border triplets and
right border triplets.

2D Convex Hull. The 2D convex hull is central to our algorithm, and is the most
expensive component. We considered three candidates for the convex hull algorithm:
(1) Overmars and van Leeuwens’ [23], which isO(n) work for sorted points. (2) Kirk-
patrick and Seidel’sO(n logh) algorithm [18], and its much simplified form as presented
by Chan et al. [21]. (3) A simple worst caseO(n2) quickhull algorithm, as in [25] and
[26]. All of these algorithms can be naturally parallelized.

Using the algorithm of Overmars and van Leeuwen [23] the convex hull of presorted
points can be computed in serialO(n)work, and the parallel extension is straightforward.
Since we can presort the point set, and maintain the ordering through thex andy cuts
we perform, using Overmars and van Leeuwen’s algorithm will result in linear work for
each convex hull invocation.

With the other algorithms we do not make use of the sorted order. The lower bound for
finding a 2D convex hull for unsorted input isO(n logh) work [18] making it seem that
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these algorithms should not perform as well given that our output sizesh are typically
around

√
n. The lower bound, however, is based on pathological distributions in which all

the points are very close to the boundary of the final hull. For more common distributions,
such as the ones that appeared in our experiments even with the highly nonuniform input,
the algorithms run in what appears to be linear work. This is because the Kirpatrick–
Seidel, Chan, and quickhull algorithms all throw away most of the interior points in the
first few levels of recursion.

Preliminary experiments showed that quickhull outperformed the Overmars and van
Leeuwen algorithm. The experiments also showed, however, that for quickhull some
of our distributions resulted in much more costly convex hull phases than the others,
in that they seemed to have much higher constants (they still scaled linearly with the
input size). Quickhull advances by using the furthest point heuristic, and, for extremely
skewed distributions, the furthest point does not always provide a balanced split. The
Kirpatrick–Seidel and Chan algorithms guarantee good splits but finding the splits is
more expensive making these algorithms slower for the more uniform distributions. We
therefore use an algorithm that combines a randomized version of Chan et al.’s algorithm
with the quickhull algorithm. Running the quickhull for a few levels makes quick progress
when possible and prunes out a large fraction of the points. Switching to the Chan et al.
algorithm at lower levels guarantees balanced cuts, which might be necessary for point
sets that did not yield to quickhull.

The End Game. Once the subproblems have no internal points, we switch to the end
game routine. The basic form of the end game is quicksort in flavor, since at each iteration
a random point is picked, which then gives a Delaunay edge that partitions the border
in two. As with quicksort, the partition does not guarantee that the subproblems are
balanced. For the end game we first need to decompose the border into a set of simple
cycles, since the borders can be disjoint and have pinch points (see Figure 6). The border
can be split by joining the corners into a linked list and using a list-ranking algorithm
(we use pointer jumping). After this step each subproblem is a simple cycle, represented
by an ordered list of point indices.

The core of the end game is to find a new Delaunay edge, and use this edge to split
the cycle into two new simple cycles. We find this edge using an efficientO(n) work,
O(1) time routine. We use a well known duality: the set of Delaunay neighbors of a point
q is equal to the set of points on the 2D convex hull after inverting the points around
q. The inversion takes the following form:̇P = {(p − q)/‖p − q‖ | p ∈ P}. Since
we are looking for one Delaunay neighbor only, rather than the full set, we do not need
to compute the convex hull, but rather just pick an extremal point. For example, ifq
belongs to a convex corner(pa,q, pb), we can draw a line betweenpa and pb and find
the furthest pointpd from that line, which will be on the convex hull (see Figure 7). If

Fig. 6. One of the border subproblems, created by running the basic algorithm until all the points are on the
border.
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Fig. 7. Starting in (a) with a border subproblem, we look for a new Delaunay edge of a pointq by using
inversion aroundq to move to the dual problem of finding convex-hull edges. This is shown using thick lines
in (b). The new Delaunay edge we pick is to the point farthest from the line between the points preceding and
following q, shown in a thin line.

pd is eitherpa or pb, then(pa, pb) must be a new Delaunay edge, otherwise(q, pd) is
a new Delaunay edge. For concave corners we can proceed similarly.

2.2. Implementation in MPI and C. NESL’s current parallel implementation layer as-
sumes an implicitly load-balanced vector PRAM model [27]. This can be efficiently
implemented on parallel machines with very high memory and communication band-
width, but achieves relatively poor performance on current RISC-based multiprocessor
architectures, due to the high cost of communication [28]. The final Delaunay triangu-
lation algorithm was therefore reimplemented for production purposes using the Machi-
avelli [22] toolkit, which has been specifically designed for the efficient implementation
of parallel divide-and-conquer algorithms on machines with limited communication
bandwidth.

Machiavelli uses the recursive subdivision of asynchronous teams of processors run-
ning data-parallel code to implement directly the behavior of a divide-and-conquer al-
gorithm. It obtains parallelism from data-parallel operations within teams and from the
task-parallel invocation of recursive functions on independent teams of processors. When
a processor has recursed down to a team containing only itself, it switches to a sequential
version of the code (or even a more efficient serial algorithm for solving the problem).
Machiavelli currently consists of a library of vector communication primitives, based on
C and MPI [14], and a small run-time system. The library provides an abstract model
of a vector, which is distributed in a block fashion across the processors of a team. It
also contains optimized communication functions for many of the idioms that occur in
divide-and-conquer algorithms, such as splitting and merging vectors. Local data-parallel
operation, such as elementwise mathematical functions on sequences, are implemented
as loops over the appropriate section of data on each processor. The run-time system
provides memory management and team operations.

The rest of this section describes some of the additional design decisions and opti-
mizations made in the MPI and C implementation, including the layout of data structures
and some modifications to subroutines. Most of the optimizations relate to reducing or
eliminating interprocessor communication. Analysis of the implementation can be found
in Section 3.3.
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Data Structures. As in the NESL implementation, sets of points are represented by
vectors, and borders are composed of triplets. However, these triplets are not balanced
across the processors as the point vectors are, but rather are stored on the same processor
as their middle point. A vector of indices is used to link the points inP with the triplets
in the bordersB and H . Given these data structures, the operations of finding internal
points, and projecting the points onto a parabola (see Figure 3), both reduce to simple
local loops with no interprocessor communication.

Finding the Median. Initially a parallel version of quickmedian [29] was used to find
the median internal point along thex or y axis. Quickmedian redistributes data amongst
the processors on each recursive step, resulting in high communication overhead. It
was therefore replaced with a median-of-medians algorithm, in which each processor
first uses a serial quickmedian to compute the median of its local data, then shares this
local median with the other processors in a collective communication step, and finally
computes the median of all the local medians. The result is not guaranteed to be the
exact median, but in practice it is sufficiently good for load-balancing purposes; this
modification decreased the running time of the Delaunay triangulation program for the
distributions and machine sizes studied (see Section 3.3) by 4–30%.

Finding the Lower Convex Hull. As in the original algorithm, the pruning variant of
quickhull by Chan et al. [21] is used to find the convex hull. This algorithm tests the slope
between pairs of points and uses pruning to guarantee that recursive calls have at most
three-quarters of the original points. However, pairing alln points and finding the median
of their slopes is a significant addition to the basic cost of quickhull. Experimentally,
pairing only

√
n points was found to be a good compromise between robustness and

performance when used as a substep of Delaunay triangulation (see Section 3.3 for
an analysis). As with the median-of-medians approach, the global effects of receiving
approximate results from a subroutine are more than offset by the decrease in running
time of the subroutine.

Combining Results. The quickhull algorithm concatenates the results of two recursive
calls before returning. In Machiavelli this corresponds to merging two teams of processors
and redistributing their results to form a new vector. However, since this is the last
operation that the function performs, the intermediate appends in the parallel call tree
(and their associated interprocessor communication phases) can be optimized away. They
are replaced with a single Machiavelli function call at the top of the tree that redistributes
the local result on each processor into a parallel vector shared by all the processors.

Creating the Subproblems. To eliminate an interprocessor communication phase in the
border merge step, the two outer points in a triplet are replicated in the triplet structure,
rather than being represented by pointers to point structures (which might well be stored
on different processors). All the information required for the line orientation tests can
thus be found on the local processor. The memory cost of this replication is analyzed in
Section 3.3. Additionally, although Figure 3 shows two calls to the border merge function
(one for each direction of the new dividing path), in practice it is faster to make a single
pass, creating both new borders and point sets at the same time.
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End Game. Since we are using the parallel algorithm as a coarse partitioner, the end
game is replaced with a standard serial Delaunay triangulation algorithm. We chose to use
the version of Dwyer’s algorithm that is implemented in the Triangle mesh generation
package by Shewchuk [30]. Triangle has a performance comparable with that of the
original code by Dwyer, and in addition uses adaptive arithmetic, which is important for
avoiding degenerate conditions in nonuniform distributions. Since the input format for
Triangle differs from that used by the parallel program, conversion steps are necessary
before and after calling it. These translate between the pointer-based format of Triangle,
which is optimized for sequential code, and the indexed format with triplet replication
used by the parallel code. No changes are necessary to the source code of Triangle.

3. Experiments. In this section we describe the experiments performed on both the
NESL and MPI and C implementations. The NESL experiments concentrate on abstract
cost measures, and are used to prove the theoretical efficiency of our algorithm. The MPI
experiments concentrate on running time, and are used to prove the practical efficiency
of our production implementation.

3.1. Data Distributions. The design of the data set is always of great importance for
the experimentation and evaluation of an algorithm. Our goal was to test our algo-
rithm on distributions that are representative of real-world problems. To highlight the
efficiency of our algorithm, we sought to include highly nonuniform distributions that
would defy standard uniform techniques such as bucketing. We therefore considered
distributions motivated by different domains, such as the distribution of stars in a flat
galaxy (Kuzmin) and point sets originating from mesh generation problems. The density
of our distributions may vary greatly across the domain, but we observed that the result-
ing triangulations tend to contain relatively few bad aspect-ratio triangles—especially
when contrasted with some artificial distributions, such as points along the diagonals
of a square [1]. Indeed, for the case of uniform distribution, Bern et al. [31] provided
bounds on the expected worst aspect ratio. A random distribution with few bad aspect-
ratio triangles is advantageous for testing in the typical algorithm design cycle, where it
is common to concentrate initially on the efficiency of the algorithm, and only at later
stages concentrate on its robustness. Our chosen distributions are shown in Figure 8 and
summarized here.

• The Kuzmin distribution: this distribution is used by astrophysicists to model the
distribution of star clusters in flat galaxy formations [32]. It is a radially symmetric
distribution whose density falls quickly asr increases, providing a good example of
convergence to a point. The accumulative probability function as a function of the
radiusr is

M(r ) = 1− 1√
1+ r 2

.

The point set can be generated by first generatingr , and then uniformly generating a
point on the sphere of radiusr . r itself is generated from the accumulative probability
function by first generating a uniform random variableX, and then equatingr =
M−1(X).



Design and Implementation of a Practical Parallel Delaunay Algorithm 259

Fig. 8. Our test-suite of distributions for 1000 points. For the Kuzmin distribution, the figure shows a small
region in the center of the distribution (otherwise almost all points appear to be at one point at the center).

• Line singularity: this distribution was defined by us as an example of a distribution
that has a convergence area (points very densely distributed along a line segment). We
define the probability distribution using a constantb ≥ 0, and a transformation from
the uniform distribution. Letu andv be two independent, uniform random variables
in the range [0,1], then the transformation is

(x, y) =
(

b

u− bu+ b
, v

)
.

In our experiments, we setb = 0.001.
• Normal distribution: this consists of points(x, y) such thatx andy are independent

samples from the normal distribution. The normal distribution is also radially sym-
metric, but its density at the center is much smaller than in the Kuzmin distribution.
• Uniform distribution: this consists of points picked at random in a unit square. It

is important to include a uniform distribution in our experiments for two reasons: to
contrast the behavior of the algorithm over the uniform distribution and the nonuniform
distributions, and also to form common ground for comparison with other relevant
work.

3.2. Experimental Results: NESI. The purpose of these experiments was to measure
various properties of the algorithm, including the total work (floating-point operations),
the parallel depth, the number and sizes of subproblems on each level, and the relative
work of the different subroutines. The total work is used to determine how work-efficient
the algorithm is compared with an efficient sequential algorithm, and the ratio of work to
parallel depth is used to estimate the parallelism available in the algorithm. We use the
other measures to understand better how the algorithm is affected by the distributions, and
how well our heuristic for splitting works. We have also used the measures extensively
to improve our algorithm and have been able to improve our convex hull by a factor of 3
over our initial naive implementation. All these experiments were run using NESL [13]
and the measurements were taken by instrumenting the code.

We measured the different quantities over the four distributions, for sizes varying
from 210 to 217 points. For each distribution and each size we ran five instances of
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the distribution (seeded with different random numbers). The results are presented using
median values and intervals over these experiments, unless otherwise stated. Our intervals
are defined by the outlying points (the minimum and the maximum over the relevant
measurements). We defined a floating-point operation as a floating-point comparison or
arithmetic operation, though our instrumentation contains a break down of the operations
into the different classes. The data files are available upon request if a different definition
of work is of interest. Although floating-point operations certainly do not account for all
costs in an algorithm they have the important advantage of being machine independent
(at least for machines that implement the standard IEEE floating-point instructions) and
seem to have a strong correlation to running time [1], at least for algorithms with similar
structure.

Work. To estimate the work of our algorithm, we compare the floating-point operation
counts with those of Dwyer’s sequential algorithm [33]. Dwyer’s algorithm is a variation
of Guibas and Stolfi’s divide-and-conquer algorithm, which is careful about the cuts in the
divide-and-conquer phase so that for quasi-uniform distributions the expected run time is
O(n log logn), and on other distributions is at least as efficient as the original algorithm.
In a recent paper, Su and Drysdale [1] experimented with a variety of sequential Delaunay
algorithms, and Dwyer’s algorithm performed as well or better than all others across a
variety of distributions. It is therefore a good target to compare with. We use the same
code for Dwyer’s algorithm as used in [1]. The results are shown in Figure 1 in the
Introduction.

Our algorithm performance is similar for the line, normal, and uniform distribution,
but the Kuzmin distribution is slightly more expensive. To understand the variation
among the distributions, we studied the breakdown of the work into the components of
the algorithm—finding the median, computing 2D convex hulls, intersecting borders,
and the end game. Figure 9 shows the breakdown of floating-point operation counts for
a representative example of size 217. These represent the total number of floating-point
operations used by the components across the full algorithm. As the figure shows, the
work for all but the convex hull is approximately the same across distributions (it varies

Fig. 9.Floating-point operation counts partitioned according to the different algorithmic parts, for each distri-
bution.
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Fig. 10.The depth of the algorithm for the different distributions and problem sizes.

by less than 10%). For the convex hull, the Kuzmin distribution requires about 25% more
work than the uniform distribution. Our experiments show that this is because after the
paraboloid lifting and projection, the convex hull removes fewer points in early steps
and therefore requires more work. In an earlier version of our implementation in which
we used a simple quickhull instead of the balanced algorithm [21], Kuzmin was 75%
more expensive than the others.

Depth. We now consider the depth (parallel time) of the algorithm. The depth was
determined by measuring the total depth of the call tree, always taking the maximum
depth over parallel calls and summing depth over sequential calls. Figure 10 shows the
depth as a function of problem size for the four distributions. As can be seen, the depth
is also not strongly affected by the distribution. As some of the constants in the depth
calculation for the different parts are estimated, the figure should be studied for the trends
it shows.

Effectiveness of Our Divide. To investigate the divide-and-conquer behavior of the
algorithm and how well our heuristic for separating point sets works, we look at the size
of the maximal subproblem at each level (see Figure 11). A parallel algorithm should
quickly and geometrically reduce the maximal problem size. As mentioned earlier, the
theory tells us that the number of internal points is decreased by a factor of at least 2
every level, but provides no guarantees for the number of points on the border of each
subproblem. Figure 11 shows the total size including the border. As can be seen, the size
goes down uniformly. The discontinuity at around level 20 represents the move from the
basic algorithm to the end game strategy.

Another Estimate of Work. A different kind of work estimate, which abstracts away
from the cost of the 2D convex hull, can be obtained by looking at the sum of the problem
sizes at each level (see Figure 12). Finding the median cut and intersecting the new border
with old performs work linear in this quantity.

This figure also provides a way to estimate the quality of the cuts we are performing,
since the points expanded by each cut are duplicated, and thus counted twice in the
sum of problem sizes. For example, a simple median cut of the line distribution taken
in the wrong direction can cause more points to be exposed as border points (and thus
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Fig. 11.The maximal piece size as a function of iteration for our algorithm on a representative example of 217

points from each distribution. The piece size includes both internal points and border points. The graph shows
that our separator and our end game work quite well for all the distributions.

duplicated) early on. The line distribution does indeed seem to be slightly more expensive,
but the agreement on the work among the distributions is surprisingly good. The curves
corresponding to the end game work are even more similar, though shifted from each
other. The shift occurs because each distribution reached the termination of the basic
algorithm at a different iteration.

The Algorithm as a Coarse Partitioner. Finally, we provide support for the contention
that the algorithm can be used to divide the problem into a number of subproblems
efficiently, and then switch to a sequential algorithm. Specifically, Figure 13 shows the
accumulative floating-point operation counts per iteration on 217 points versus the cost
of Dwyer’s sequential algorithm. In general, at leveli the number of subproblems is
2i . For example, consider using our algorithm for five levels to split the problem into
25 = 32 subproblems and then use a serial algorithm to solve each subproblem (probably
on 32 processors). The graph shows that the work involved in the splitting is only about
30% of the total work that is required by Dwyer’s algorithm.

Fig. 12. Sum of the sizes of all the subproblems per iteration, on a representative 217 points example from
each distribution.
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Fig. 13.The cumulative work in floating-point operation counts per iteration, for a representative 217 points
example from each distribution. The idea is to see how much work it is to divide the problem into 2i problems
in level i , versus the median cost of the sequential algorithm.

3.3. Experimental Results: MPI and C. In this section we present experimental results
for the MPI and C implementation on four machines, and analyze where the bottlenecks
are, the reasons for any lack of scalability, and the effect of some of the implementation
decisions presented in Section 2.2 on both running time and memory use. Unlike the
previous section which considered work in terms of floating-point operations, this section
reports running times and therefore includes all other costs such as communication and
synchronization.

To test portability, we used four parallel architectures: a loosely coupled workstation
cluster (DEC AlphaCluster) with 8 processors, a shared-memory SGI Power Challenge
with 16 processors, a distributed-memory Cray T3D with 64 processors, and a distributed-
memory IBM SP2 with 16 processors. To test parallel efficiency, we compared timings
with those on one processor, when the program immediately switches to the sequential
Triangle package [30]. To test the ability to handle nonuniform distributions we used the
four distributions specified earlier. All timings represent the average of five runs using
different seeds for a pseudorandom number generator. For a given problem size and seed
the input data is the same regardless of the architecture and number of processors.

Speedup. To illustrate the algorithm’s parallel efficiency, Figure 14 shows the time to
triangulate 217 points on different numbers of processors, for each of the four platforms
and the four different distributions. This is the largest number of points that can be
triangulated on one processor of all four platforms. Speedup is not perfect because as
more processors are added, more levels of recursion are spent in parallel code rather
than in the faster sequential code. However, we still achieve approximately 50% parallel
efficiency for the distributions and machine sizes tested—that is, we achieve about half
of the perfect speedup over efficient sequential code. Additionally, the Kuzmin and line
distributions show similar speedups to the uniform and normal distributions, confirming
that the algorithm is effective at handling nonuniform distributions as well as uniform
ones. Data for the Kuzmin and line singularity distributions are also shown in Table 1.
Note that the Cray T3D and the DEC AlphaCluster use the same 150 MHz Alpha 21064
processors, and their single-processor times are thus comparable. However, the T3D’s
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Fig. 14.Speedup of Delaunay triangulation program for four input distributions and four parallel architectures.
The graphs show the time to triangulate a total of 128k points as the number of processors is varied. Single
processor results are for efficient sequential code. Increasing the number of processors results in more levels
of recursion being spent in slower parallel code rather than faster sequential code, and hence the speedup is not
linear. The effect of starting with anx or y cut is shown in the alternately poor and good performance on the
highly directional line distribution. IBM SP2 results are for thin nodes, usingxlc -O3 and MPICH 1.0.12.
SGI Power Challenge results are for R8000 processors, usingcc -O2 and SGI MPI. Cray T3D results use
cc -O2 and MPICH 1.0.13. DEC AlphaCluster results are for DEC 3000/500 workstations connected by an
FDDI Gigaswitch, usingcc -O2 and MPICH 1.0.12.

Table 1.Time taken, and relative speedup, when triangulating 128k points on the four different platforms
tested.

Processors SP2 SGI T3D Alpha

Kuzmin distribution

1 8.42s (1.00) 10.48s (1.00) 13.02s (1.00) 13.19s (1.00)
2 5.42s (1.55) 6.12s (1.71) 8.05s (1.62) 7.63s (1.73)
4 3.31s (2.55) 3.28s (3.20) 4.25s (3.06) 5.17s (2.55)
8 2.19s (3.85) 1.96s (5.36) 2.53s (5.16) 3.89s (3.39)

Line singularity distribution

1 10.82s (1.00) 14.11s (1.00) 16.05s (1.00) 16.39s (1.00)
2 6.04s (1.79) 6.91s (2.04) 8.13s (1.97) 7.93s (2.07)
4 4.36s (2.48) 4.84s (2.92) 5.58s (2.88) 6.36s (2.58)
8 2.52s (4.30) 2.56s (5.51) 2.96s (5.43) 4.36s (3.76)
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Fig. 15.Scalability of Delaunay triangulation program for two input distributions and four parallel architectures.
The graphs show the time to triangulate 16k–128k points per processor as the number of processors is varied.
For clarity, only the fastest (uniform) and slowest (line) distributions are shown. Machine setups are as in
Figure 14.

specialized interconnection network has lower latency and higher bandwidth than the
commodity FDDI network on the AlphaCluster, resulting in better scalability.

To illustrate scalability, Figure 15 shows the time to triangulate a variety of prob-
lem sizes on different numbers of processors. For clarity, only the uniform and line
distributions are shown, since these take the least and most time, respectively. Again,
per-processor performance degrades as we increase the number of processors because
more levels of recursion are spent in parallel code. However, for a fixed number of
processors the performance scales very well with problem size.

To illustrate the relative costs of the different components of the algorithm, Fig-
ure 16(a) shows the accumulated time per substep of the algorithm. The parallel substeps
of the algorithm, namely median, convex hull, and splitting and forming teams, become
more important as the number of processors is increased. The time taken to convert to
and from Triangle’s data format is insignificant by comparison, as is the time spent in
the complicated but purely local border merge step. Figure 16(b) shows the same data
from a different view, as the total time per recursive level of the algorithm. This clearly
shows the effect of the extra parallel phases as the number of processors is increased.

Finally, Figure 17 uses a parallel time line to show the activity of each processor
when triangulating a line singularity distribution. There are several important effects
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Fig. 16. Two views of the execution time as the problem size is scaled with number of processors (IBM
SP2, 128k points per processor). (a) The total time spent in each substep of the algorithm. The time spent
in sequential code remains approximately constant, while convex hull and team operations (which includes
synchronization delays) are the major overheads in the parallel code. (b) The time per recursive level of the
algorithm; note the approximately constant overhead per level.

that can be seen here. First, the nested recursion of the convex hull algorithm within the
Delaunay triangulation algorithm. Second, the alternating high and low time spent in the
convex hull, due to the effect of the alternatingx and y cuts on the highly directional
line distribution. Third, the operation of the processor teams. For example, two teams of
four processors split into four teams of two just before the 0.94 second mark, and further
subdivide into eight teams of one processor (and hence switch to sequential code) just
after. Lastly, the amount of time wasted waiting for the slowest processor in the parallel
merge phase at the end of the algorithm is relatively small, despite the very nonuniform
distribution.

Fig. 17. Activity of eight processors over time, showing the parallel and sequential phases of Delaunay
triangulation and its inner convex hull algorithm (IBM SP2, 128k points in a line singularity distribution).
A parallel step consists of two phases of Delaunay triangulation code surrounding one or more convex hull
phases; this run has three parallel levels. Despite the nonuniform distribution the processors do approximately
the same amount of sequential work.
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Memory Requirements. As explained in Section 2.2, border points are replicated in
triplet structures to eliminate the need for global communication in the border merge
step. Since one reason for using a parallel computer is to be able to handle larger prob-
lems, we would like to know that this replication does not significantly increase the
memory requirements of the program. Using 64-bit doubles and 32-bit integers, a point
and associated index vector entry occupies 32 bytes, while a triplet occupies 48 bytes.
However, since a border is normally composed of only a small fraction of the total num-
ber of points, the additional memory required to hold the replicated triplets is relatively
small. For example, in a run of 512k points in a line singularity distribution on eight
processors, the maximum ratio of triplets to total points on a processor (which occurs
at the switch between parallel and sequential code) is approximately 2000 to 67,000, so
that the triplets occupy less than 5% of required storage. Extreme cases can be manufac-
tured by reducing the number of points per processor; for example, with 128k points the
maximum ratio is approximately 2000 to 17,500. Even here, however, the triplets still
represent less than 15% of required storage, and by reducing the number of points per
processor we have also reduced absolute memory requirements.

Performance of Convex Hull Variants. Finally, we investigate the performance of the
convex hull variants described in Section 2.2. A basic quickhull algorithm was bench-
marked against two variants of the pruning quickhull by Chan et al. [21]: one that pairs
all n points, and one that pairs a random sample of

√
n points. Results for an extreme case

are shown in Figure 18. As can be seen, then-pairing algorithm is more than twice as fast
as the basic quickhull on the nonuniform Kuzmin distribution (over all the distributions
and machine sizes tested it was a factor of 1.03–2.83 faster). The

√
n-pairing algorithm

provides a modest additional improvement, being a factor of 1.02–1.30 faster than the
n-pairing algorithm.

Fig. 18.Effect of different convex hull functions on time to triangulate 128k points on an 8-processor IBM
SP2. The pruning quickhull due to Chan et al. [21] has a much better performance than the basic algorithm
on the nonuniform Kuzmin distribution; using a variant with reduced sampling accuracy produces a modest
additional improvement.
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4. Concluding Remarks. In this paper we described an algorithm for Delaunay tri-
angulation that is theoretically optimal in work, requires polylogarithmic depth, and is
efficient in practice, at least when using some components that are not known to be
asymptotically optimal. In particular the main results are:

• The algorithm runs withO(n logn) work andO(log3 n) depth (parallel time) on a
CREW PRAM. This is the best bound that we know for a projection-based algorithm
(i.e., one that finds the separating path before making recursive calls).
• Using a variant of our algorithm that uses nonoptimal subroutines the constants in the

measured work are small enough to be competitive with the best sequential algorithm
that we know of. In particular, depending on the point distribution the algorithm ranges
from being 40% to 90% work-efficient relative to Dwyer’s algorithm [33].
• The algorithm is highly parallel. The ratio of work to parallel time is approximately

104 for 105 points. This gives plenty of freedom on how to parallelize the code and
was crucial in getting good efficiency in our MPI implementation (the additional
parallelism is used to hide message-passing overheads and minimize communication).
• An implementation of the algorithm as a coarse partitioner in MPI and C gets bet-

ter speedup than previously reported across a variety of machines and nonuniform
distributions.
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