SVR: Practical Engineering of a Fast 3D Meshing
Algorithm *

Umut A. Acarf, Bendt Hudsorf, Gary L. Miller?, and Todd Phillip$

1 Toyota Technological Institute
2 Carnegie Mellon University

Summary. The recent Sparse Voronoi Refinement (SVR) Algorithm for mesieggion has
the fastest theoretical bounds for runtime and memory usage. Wenpr@sobust practical
software implementation of the SVR for meshing a piecewise linear compRgimensions.
Our software is competitive in runtime with state of the art freely availablkgmges on generic
inputs, and on pathological worse cases inputs, we show SVR indeeddesdts theoretical
guarantees to produce vastly superior runtime and memory usag¢hddretical algorithm
description of SVR leaves open several data structure design optapesially with regard
to point location strategies. We show that proper strategic choices cathyga@ect constant
factors involved in runtime.

1 Introduction

At last year's IMR conference we introduced a new meshingrétyn, Sparse
Voronoi Refinement (SVR), which provided the typical guaeas for theoretical
meshing algorithms, along with an unusual one that the gkgomran in near-linear
time [HMPO6]. The goal in designing SVR was to create a meghigorithm that
was similar in implementation and style to many widely usesbhing algorithms,
but with the added benefit of very strong worst-case boundghemuntime com-
plexity and space usage. An additional achievement of S\fRatsthe algorithm can
work in any fixed dimensionl. More recently, we proved that the algorithm can be
run in parallel, and we showed that the the Li-Teng sliveraeah algorithm could
easily be incorporated into the SVR framework [LTO1, HMPO7]

The main goals of the present work are twofold. First, to sipogliminary re-
sults on a new implementation of the sequential versionisfaigorithm. Second, to
discuss new data structures to empirically improve theime bf the point location
parts of the algorithm, which may be of more generally agtiie use. We focus on
point location because both in theory and practice, the danticost of SVR and
most other algorithms for meshing is the point location cost

* This work was supported in part by the National Science Foundatiorr gmédets CCR-
0122581 and Intel faculty gift.

2 Umut A. Acar, Bentt Hudson, Gary L. Miller, and Todd Phillips

U]

NANINININININAIN

P

Fig. 1. Left: A radiugedge quality 2.0 mesh of an assemblage of four hexagonal dumbbells
meshed by our software. Each dumbbell is described as a set & t&fning the two ends

and the connecting rod. The output is a set of tetrahedra that fill spalche barbells while
resolving the input. For visualiect we removed those tetrahedra in a standard postprocessing
step.Right: detail on the nearest approach of three of the dumbbells. Notice thatrdtectdra
grade smoothly away from the pinch point.

We compare SVR with two related codes: Pyramid by Shewchiie(Sa,
She98], which is available by request to him; and TetGen byS8)7, Si06],
which is available online. Our implementation of SVR congzarery favorably
to them, generating meshes that are of similar quality ape isi less time. Fur-
thermore, on pathological examples, prior codes run out @fory even at small
input sizes whereas SVR sees ndhidulty. Our implementation is available at
http://www.sparse-meshing. com, free for the research community.

SVR produces a quality conforming mesh that is size-optimahe number
of vertices [HMPO06]. One important concern in quality meshis how we define
the quality of tetrahedron. We use two separate measurdsrokat quality in the
algorithm and code. Both rely on tlercumball of a tetrahedron, the smallest ball
containing the tetrahedron’s vertices. We denote it'susdthecircumradiug as
R. The first quality measure we use is the radius-edge ratio tefrahedron: we
we compare the circumradil® versus the shortest edgeof the tet. In a good-
radius-edge tetrahedroR/e must be less than some valpeln three dimensions,
this metric is somewhat lacking, as it can admit poorly-gubglivers Radius-edge
is still useful however, since in a good radius-edge meséryevertex has bounded
degree [MTTW99].

The other quality measure is the ragaslius ratio: we compare the circumradius
Rto the radiug of the largest balinscribedby the simplex. The rati®/r of a good
quality element must be less than some vatu&his quality criterion does not admit
slivers, and is thus the one desired for output.

In the finite element method, an element with good radaukus ratio is known to
be numerically good under standard assumptions. The reesaise both measures
is that is it not well understood how to avoid creating skveuring the algorithm

SVR: A Practical Implementation 3

(though we do scour them from the final output). The SVR atbariprovably never
creates excessively bad radius-edge simplices even imtiweriediate stages of the
algorithm.

Time and Space UsageOur code takes as input a Piecewise Linear Complex
(PLC) [MTTW99]. Letn be the total number of input features (vertices, segments,
polygons, etc). Let /s be thespreadof the input, i.e. the ratio of the diameter of
the input space to the smallest pairwise distance betweadisjoint features of the
PLC.

SVR has worst case runtime bounded®(y log L/s+m), wheremis the number
of output vertices. This runtime bound is a vast improvenam@r prior meshing
algorithms for three and higher dimensions. For almostraéiresting inputs, this
bound is equivalent t®(nlog n+m), which is optimal (using a sorting lower bound).
SVR also has optimal output-sensitive memory usagma), which means that even
on pathological inputs it can process moderately largetsyeatirely in memory.

2 Related Work

There have been severaligrent approaches to the meshing problem. The idea of
generating a mesh whose size is within a constant factor tifihapwas first con-
sidered by Bern, Epstein, and Gilbert [BEG94] using a qusdapproach. A 3D
extension was given by Mitchell and Vavasis [MV00], who fateleased an imple-
mentation under the name of QMG [Vav00].

Chew introduced a 2D Delaunay refinement algorithm [Che88]showed ter-
mination. The quality of the initial triangulation was ingwed by adding the cir-
cumcenters of poor quality triangles as extra verticess phboduced a mesh with no
small angles, but inserted many more new vertices than sacefkuppert [Rup95]
extended this idea of adding circumcenters for 2D meshimraduce a mesh that
was within a constant factor in size from the optimal and &sodled line segments
as input features. Shewchuk implemented Ruppert’s algarih the very popular
Triangle code [She05b], which has since been extended aiibws enhancements
and remains actively maintained.

The extension of Ruppert’s algorithm to 3D has been ongo#sgarch. Some
methods assume that that Ruppert’s local feature sizeifumist given [MTTW99].
Others refine a bad radius-edge ratio mesh directly [She#BVBR]. These meth-
ods by themselves do not give quality meshes because thieglénslivers; a large
number of other techniques have been concocted that ainmmate slivers while
only slightly (at most linearly) increasing the output si2e3D version of Ruppert’s
algorithm in conjunction with a sliver-eliminating postegess produces a quality,
optimal-sized mesh. Shewchuk has implemented his higinezrtsional version of
Ruppert’s algorithm in Pyramid [She05a], but it has not yetieved an fiicial re-
lease and remains in alpha stage.

Of the many other algorithms for Delaunay refinement in 3D izre been pro-
posed [She98, MPWO02, CP03, CD03], none except SVR have ehatgdvial run-
time analysis. Trivial runtime bounds such@gn®) be found in most cases. Simple
examples can usually give bad worst-case performance fige maplementations of

4 Umut A. Acar, Bentt Hudson, Gary L. Miller, and Todd Phillips

SimpLIFIED-SVR
1: while Volume Mesh is not Conformingo
2 RerINE @ non-conforming tet
3 while Volume Mesh is not of Quality do
4: ReriNe a poor-quality tet
5: end while
6: end while

REFINE

7: if FiInoWarpPoINT then

8: Insert a vertex from some nearby feature

9: else if FINbENncroAcHED then

10: Recursively Reine all encroached lower-dimensional feature meshes
11: else

12: Add a circumcenter as a new vertex in this Mesh

13: end if

Fig. 2. A very loose description of a much simplified SVR. Most of the runtime wesdpent
on point location in evaluating lines 7 and 9 (See Section 8). More detailedips®de and
the full algorithm can be found in [HMPO06].

these algorithms. As mentioned, they will alifir from intermediate siz€(n?) in
the worst case.

2.1 Optimal Time Meshing Algorithms

Finding refinement algorithms that have provably good rares has also been of
interest. Spielman, Teng, akbhgor [STUO7] proved that Ruppert’s and Shewchuk’s
algorithms can be made to run @(Ig?L/s) parallel steps. They did not, however,
prove a work bound. Miller [Mil04] provided the first sub-giratic time bound in
2D with a sequential work bound @((nlg " + m)lgm), wherel is a localized
version ofL/s (in particular,I” < L/s). In addition to arO(nlg L/s + m) sequential
runtime, the SVR algorithm has been shown to be paralldizimbrun inO(lg L/s)
iterations with the same work [HMPQ7].

3 Overview of SVR

For a detailed description of SVR, refer to [HMPO06]. Herair briefly review
SVR for the purpose of describing the implementation neétlealgorithm. Coarse
pseudocode for SVR is described Figure 2. The input is gigea piecewise linear
complex (polygonal faces, segments, and vertices), thawileefer to as a set of
features Constraints on the input are described further in Sectiddwér the life of
the algorithm, SVR maintains a separate mesh for each teduhree dimensional
volume mesh is maintained covering the entire domain.

In SVR, these feature meshes begin very coarsely, andliyitia not conform
to the input at all. The meshes are then gradually refinedvoréasons: to maintain
quality, and to eventually conform. Refinement is done bgrafiting to insert the
circumcenter of a poor quality tetrahedron or of a non-confog tetrahedron. But
because the mesh does not yet conform, we may instead clwdéer, and insert

SVR: A Practical Implementation 5

a vertex from a nearby input feature instead of the circutere¥e do this to make
sure that new points are not created to close to the featurdes® to input points.
Additionally, before the volume mesh can insert near a featue may first need to
refine the feature itself. This is accomplished by protective feature witlprotective
balls that cannot be entered by the volume mesh. If the volume mesined to
insert a circumcenter thahcroachesipon a lower-dimensional protected ball, it first
yieldsto the lower-dimensional feature, and allows the latteefme itself. After the
lower-dimensional feature has refined, the volume mesh naayp t the point that
was inserted into the lower-dimensional mesh. Facet megbeste similarly with
respect to their bounding segments: if a facet mesh wishelinate a bad triangle
(because it has poor quality, or because the volume meslaated upon it), it
attempts to insert the circumcenter of the triangle, pbgsitelding to encroached
boundary segments afod warping to points not yet resolved in the facet mesh. A
putative new circumcenter may encroach on many protectile imultaneously; if
so, for good runtime we must make sure all tifieeted features refine themselves.

4 |Input Format

The input format is that of Shewchuk’s Pyramid, which is tihwious extension of
the Triangle format to the third dimension: An input file $sanith a header listing
how many inputs vertices there are, then lists their coatdm If there are segments
to conform to, it then lists their number and describes each jpair of vertex IDs.
Finally, if there are polygons, it lists their number andatéses each as a list of seg-
ment IDs. Holes and concavities are automatically foundreeed! not be mentioned
in the input.

For SVR to properly produce a quality mesh, users must somengitrict their
input. As usual, our mesher needs clean inputs: the codereytirt an error if a
polygon is not watertight, or if two polygons intersect eather geometrically but
no intersection is mentioned in the input. More importaritig algorithm sometimes
also fails if two input polygons intersect at an angle lessith(, even on clean input:
the problem is that refinement on one of the faces may enciaratte other, which
may loop back to encroach on the former. We can tell the mesbieto refine an
element smaller than some minimum size, which will returmusesh, albeit with
possibly some bad elements. It remains active researchviotbese issues in a more
principled but practical manner.

Our runtime proofs also require additional properties ef plolygonal features:
(1) polygons must be defined by only a constant-bounded nuofimints, (2) the
initial triangulation of each polygon must be of good quel{B) the initial triangu-
lation must not self-encroach. Violating any of these regmients impinges upon
the runtime properties, but the code will still properlyuret an optimal-size, good-
quality mesh. Polygons with; vertices on their boundary currently take tim(miz)
to preprocess; it would not be hard to reduce thi®fn, Ig n;) time, though it seems
unnecessary for all inputs we have on hand since genexatiyon the order of 4—20.
The second and third condition are repaired automaticallgduling more points to
the boundary and interior when creating the initial trigliagion; this causes the code
to run only logarithmically slower than optimal.

6 Umut A. Acar, Bentt Hudson, Gary L. Miller, and Todd Phillips

Constant ConstraintgDefault Value
Output Radius-Edgey, | p>2 2.0
Output Radius-Radiug;| o >> 3 not set
Sliver Growth,B B>2 3.0
Perturbed Insertio, | 0<6< 1 0.1
Yielding Ratio,k O<k<1 0.9

Fig. 3. Table of constants for SVR.

5 Algorithm Constants

Several constants for SVR are left to be chosen by the usguré=i3 gives an
overview of these constants and their defaults in our impleation.

The first constanjp, determines the radius-edge quality bound on every element
in the final output mesh. For most numerical methods usingriésh,p will have
a strong €fect on the quality and runtime of the method used, with a lgwgret-
ter shaped elements) being preferred. Of course, drigitgver will necessarily
increase the number of elements output by any meshing seft8&R included.

Many numerical methods also require the elimination ofesELM"00]. We
have extended SVR to eliminate extreme slivers using thehgTliver removal al-
gorithm [LTO1]. The algorithm randomly perturbs circumtarinsertions by a factor
of 6 to ensure that any new slivers created must be larger by erfatB, then re-
cursively works on the larger slivers. Eventually no larglérers can be created, and
so the mesh is sliver-free. The constangives an upper bound on the radiaslius
ratio of any output tetrahedron. Like all quality boundghteningo (reducing it)
will increase output size. The published proofs [LTO1, Li8Bggest the settings 6f
andB listed above; unfortunately, far they yield a gargantuan number. Therefore,
by default the sliver-removal code isfoHowever, the proof is known to be very
loose, and in practice we can eliminate much worse slivers ik provable. See the
experiments in Section 9.

5.1 Warping parameter

One of the more interesting constants to specify for SVResathrping parameter
k. This parameter controls the behavior of the warp operatidren we decide to
split a simplexs, we will warp to a point within distanck- R(s) of the center okiif
there is one. A higher value &fwill more aggressively look for a vertex to warp to,
which intuitively would help reduce the output mesh sizewideer, a higher value
of k also worsens the intermediate quality bound, which alloighdegree vertices
and thus hurts runtime. This section discusses the tfetweerk, runtime, and
output size, and aims to find a reasonable default settink for

First, in our original paper, we proved thatoi® > 2, our algorithm will termi-
nate with the aforementioned guarantees. This somewhs lihe user’s choice of
parameter settings. However, it is easy to show that we damilly use g’ that
satisfies the requirement, and, once all points have beertéuaksinto the mesh (and
thereforek is rendered irrelevant), we can improve the mesh qualityuyp In other
words, the user may ask for akyand any > 2.

SVR: A Practical Implementation 7

Under this framework, we can then ask about the optimalrggtif k in terms
of mesh output size, or in terms of runtime, leavim§ixed. We ran an experiment
on the point-cloud refinement code, tracking runtime angwiusize versu&. See
Figure 4. The main finding is that in practice, the output 8aadeed quite strongly
affected by the value of, whereas runtime is much lesffexted untilk becomes
very close to 1. Based on these results, we set the défaalue to 09 as being a
reasonable tradétbetween output size and runtime.

100000 T T T T T T 7

~

80000

60000

size
runtime

40000

20000 |

0 0
0.3 04 05 06 0.7 0.8 0.9 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4. Left: Number of vertices SVR outputs for the Stanford bunny, veksBsght: Runtime
of SVR on the Stanford bunny in arbitrary units, verguslotice the trade between mesh
size and runtime. Other natural and pathological examples showed diradadfs.

Another experiment we ran was to see how to best choose thetpavarp to.
When there are many choices, it may be that one is better tr@thenin particu-
lar, we expected that it would be best to choose the pointstas the prospective
Delaunay center among all available points to warp to; theition is that this is,
in a sense, the “median” and we are, in a sense, sorting. Wttkikés a good idea
depends on the order in which valid warp points will be seeredrly implementa-
tions, the diference was substantial. However, in the current implentientavith
the Voronoi shelling approach described in Section 8.4fiteepoint we find is far
from any vertex, making it a good choice. Therefore, we culyereport the first
point we can safely warp to.

6 Implementation in C++

We implemented our algorithm in-4&-, in the hopes of being most accessible to the
community, but still highly éicient. Almost all of the code is general-dimensional,
the exception is in the numerical predicates, where we ussv&iuk’s specific-
dimensional code [She97]. While the code is written in a gardimensional style,
we use the €+ template mechanism to choose the dimension at compile-Tifvet

is, anSVR<2> is a mesher in two dimensions, while 8WR<3> is in three dimen-
sions. This allows the compiler to unroll loops, perform stamt propagation on the
dimension term, and otherwise optimize the code to achikwesi no overhead over

a specific-dimensional code. The data structures are ableegis an API; we expect

8 Umut A. Acar, Bentt Hudson, Gary L. Miller, and Todd Phillips

this will allow more easily experimenting with post-proses and variations on our
algorithm.

7 Mesh Data Structures

Using any reasonable data structures, SVR will be faster itsacompetitors on
pathological examples. However, to also be useful on mormalbinputs, we must
be somewhat careful. We implemented SVR in a way that shagbarated the
implementation into four modules, so that we can easily ghararious pieces one
by one: (1) basic data structures ay@,|(2) the topological mesh structure; (3) the
geometry code and Delaunay structures; (4) the mesh refirteatgorithm.

The basic data structures are essentiairGtandard Templates Library (STL)
structures optimized for our usage. The STL and the Boostriigs are extremely
useful for quickly generating prototype code, but we havenghat many of their
structures are either too large or too slow for producticagesn many cases. When
profiling indicated that STL libraries were limiting facgmwe replaced them with
some of our own versions, in particular to have greater cbotrer memory alloca-
tion.

For the topological structure, we currently use a standaiater-based simplicial
complex (4 vertex pointers and 4 neighbour pointers peahetron). Client code
can optionally attach additional data using a templaterasni; the type of vertices
is itself also specified by a template argument. Simplicesreference-counted to
avoid complications and memory bugs when simplices areae=sd yet remain in
the SVR work stack. Access is typically via a generic deptt-Bearch routine.

The API has changed little as we tried various types of sinest we therefore
predict that, with relatively little fort, we could scale our implementation to much
larger sizes than tested here simply by replacing the uyidgrstructure with a com-
pressed mesh structure [Bla05]. The topological strudtuagso largely compatible
with the CGAL structures; one could write a thin adapter£lasview one structure
as the other. We chose to write our own structure in order ¥ ffiall control over
the implementation.

The Delaunay triangulation structure is a thin veneer oliersimplicial com-
plex. SVR computes the circumcenter and circumradius afyesienplex (to test for
quality), and does so repeatedly: simple empirical evidesttows about 10 times
per simplex in 3d. Therefore, we compute these values ordg,aand cache them as
data attached to each simplex. An LRU cache can easily beitsiibd for relatively
little runtime overhead to reduce the per-simplex memomgges this will become
critical if we use a compressed mesh structure.

The geometric code is largely drawn from Shewchuk’s notegenmetric cal-
culations [She99] and from his public-domain library [SAeRBHO01]. We use LA-
PACK for some calculations, but have found that for very kdwensional opera-
tions, which dominate our geometric requirements, the gbstarshaling and un-
marshaling data between our code and LAPACK dwarfs the dodteonumerical
calculations, and it is thus advisable to write them by hand.

The point location structures of the mesher are the mosbpednce-critical
ones; we describe them separately in great detail in Se8tion

SVR: A Practical Implementation 9

8 Point Location Data Structure

A point location data for SVR provides a good deal of room fariation in imple-
mentation. SVR requires that every time a vertex is coneitléor addition into the
volume mesh, SVR locally searches for any lower dimensitersture meshes, so
that the volume mesh might conform to these instead. Aduitly, SVR searches
for lower dimensional features that may need refinementrbeéf@an proceed with
this volume mesh insertion. Essentially, a correspondemest be maintained be-
tween the volume mesh and the feature meshes because theyanform to one
another. In the following section, we describe implemensaoch a correspondence.

Recall that SVR runs i©(nlg L/s+ m) time. Thenlg L/sterm is driven by the
cost of two operations: finding a point to warp to, and testorgencroachment. We
conflate these operations and call them hgiint location Themterm also includes
these operations, plus some other work. Therefore, pagatilan is the leading term
in the asymptotics on most inputs, and even when it is no§ & major constant
factor. Profiling information on various inputs verifies tltlais prediction holds in
practice in the current implementation: well over 20% of thetime — and 33% of
the cache misses — are directly due to point location, evearigg any ancillary costs
(mallogfree; memory overhead; cache evictions causing slowdolges/bere; etc).

The PLC input is described using a standarcidence posetsegments know
their endpoints and any internal vertices, polygons areriteed using a set of bound-
ary segments (and possible internal segments or vertiets)For simplicity, we
compute the transitive closure of the poset, linking fatetgertices, etc. The struc-
ture of this linking between meshes is shown in Figure 5.

To quickly handle point location queries, we need to keegktaf intersections
between elements of one mesh and elements of the mesh of adonwensional
feature (and vice-versa). The published SVR algorithm ubedVoronoi cells of
the mesh vertices as elements, to make the proofs most stickiere we report
on the diferences between several choices, all asymptotically akgumit but with
significant constant-factor flierences.

We formalize this notion: we maintain a bipartite map betwte abstract types
of anUpper container and &ower cell. See Figure 6. At the moment, we only have
two Lower types: circumspheres (for features of dimension 1 and hjgimel points
(for features of dimension 0). Points are of course merecisph cases of sphere
with radius 0, but they are fiiciently special to merit distinct consideration. This
formalism involvingUpper andLower is likely to extend to more interesting inputs
such as curves.

The point location data structure will need to perform théofeing three opera-
tions quickly:

FinoWarpPoiNT: Given a Delaunay simples in a meshM, determine whether
there exists an point to be insertedh(a child of M in the poset) that lies within
the warp balB(c(s), k - R(9)).

FinoEncroacuep: Given a pointp chosen by lvoWarpPoint for s, determine the
(possibly-empty) set of lower-dimensional protectivddlalthat p encroaches — that
is, pliesinb;.

10 Umut A. Acar, Benti Hudson, Gary L. Miller, and Todd Phillips

! v

;

14

® o o ,
a [) o -
o o O
e o o
°

Fig. 5. The volume mesh at the top of the figure has features consisting of cet fae
segments, and several input points. The point location structure mkstlliof the meshes
along the arrows shown. Note that these meshes may not all conforacihoother; input
points or feature refinements may not be resolved in the volume medtindgiitwo meshes
involves tracking the intersections between every lower dimensional etemd every higher
dimensional element.

Fig. 6. We maintain a map, tracking intersections betwégper containers antlower cells.

Urpate: Given a pointp chosen by BioWarpPoint in @ meshM, and given the
set of simplices befored, the cavity) and after §, thestar) insertingp, update the
point-location structures.

SVR: A Practical Implementation 11

We compare four dierent choices obipper in the following subsections. We
have experimented with all four for maintaining the pointdton structure for
points. For maintaining protected balls, we so far have aislyd the first method,;
trying other techniques remains future but high-priorityri

8.1 Circumballs asUpper

The easiest way to implemeniNBWarpPoinT and FNpENCcRoACHED S tO use the cir-
cumball B(c(s), R(s)) of each simplexs as theUpper elements. Indeed, any point
that we may warp to is iB(c(9), k- R(S)), a strict subset of the circumball. Similarly,
any lower-dimensional feature encroached by a point chibg&mnopWarpPoinT nec-
essarily intersects the circumball.

Urpate is only slightly more complicated: to compute thewer s intersecting a
new simplexs, we must find every lower-dimensional protected ball thégrisects
the circumball ofs. It is a standard fact that the set of circumballs of the ga@it
(the simplices before inserting), plus the neighbour€y of the cavity, covers the
set of new circumballs. Thus, we can computeltheer s intersectingc U Cy and
for each new simplex, filter this set to compute those inteitsg the circumball of
S.

8.2 Tetrahedra asUpper

When maintaining the uninserted points of a mesh, the apbrioabe prior section
stores a point repeatedly since the circumballs of the masisiect. If instead we
use the simplices directly, we avoid duplicates; this isltasis for in-simplex point
location being the most traditional kind.

The lack of overlap between regions greatly speeds upithar cost on con-
tained points: we can perform about half as many intersediceries on average
since we can shortcut execution at the first simplex of thetstd matches the ver-
tex. Furthermore, the star and cavity cover the same areae s@ed only relocate
the Lower s intersectingC, ignoring the neighbours. Finally, computing the set of
Lower vertices interestin@ is easier since we need not eliminate duplicates.

The cost of this approach is that now ilnBWarpPoint(S) we must find all the
simplices that intersect the circumball af There are only a constant number of
these, but finding them all is still expensive. Neverthelesge that every simplex
ever created is involved in ampare call, whereas only a small minority (empirically
about one in 18, in three dimensions) ever hame\WarpPoint called on them.

For maintaining lower-dimensional features, we do not gh& benefit of not
having duplicates, which makes this technique unlikely@aibeful. For uninserted
points, however, this point location structure is subsadigtfaster than in-sphere in
our experiments.

8.3 Voronoi Cells asUpper

Traditionally, the Delaunay triangulation is the most coomstructure to use for
point location, which made it the natural choice for the iempéntation. However,
determining whether a poini is owned by a simples is expensive: either an in-
sphere or an in-simplex test, both of which are essentiatgrmhinants of matrices
of rankd, which becomes a major cost irebhte. Another choice is to use the dual

12 Umut A. Acar, Benti Hudson, Gary L. Miller, and Todd Phillips

Voronoi diagram, as described in the original paper. A pgiig in the Voronoi cell
of a mesh vertex if v is the nearest neighbour fo If we know the old Voronoi
cell in which p lies (call it V(v)), then updating after the insertion of one mesh ver-
tex V' requires only two distance calculations: the distajpce v| and the distance
|p — Vv'|. Furthermore, there are many fewer vertices than simpliogs ratio of,
empirically, 1:6 in three dimensions (both in the experitsame ran, and in prior
reports [BlaO5g.g]). Thus, the overhead of the lists is greatly reduced cospty
using the simplices as the basic objects, which becomesrtenicnear the end of
the algorithm.

Searching thé&pper Voronoi cells for FnoWarpPoint has a disadvantage: we
must search every Voronoi cell that intersects the warp Wédlcan do this by search-
ing the set associated with every vertex on every simplexseleircumball intersects
the warp ball. In terms of implementation, this is only alstimcrease in code com-
pared to using the interior of simplices; but this is a muechdaarea being searched,
S0 we may visit many more vertices that are not in the warp balpractice, we
found this technique to be equal in runtime to using simglif@ point location,
although the memory usage is slightly reduced.

Beware of one pitfall when using Voronoi cells: Unlike siniggls, vertices have
long lifetime. Therefore, if each vertex has its own memargldor the list of unin-
serted points in its Voronoi cell — or uses the Sdib::vector class, which never
shrinks —, vertices inserted early in the run of the algamithill reserve a large
amount of memory even when they no longer need to track martices. This is
easily avoidable by actually releasing memory when it isomer needed, or by
using a single memory pool shared among all vertices.

8.4 Shelled Voronoi Cells adipper

When looking for a point to warp to, we take a Delaunay ball amdnk it by a
factor k. Therefore, any input point that is “near” a vertex need rotekamined
at all. However, the previously-described approaches takeote of this. An easy
way to implement this is to store uninserted points in theo¥ioi cells, as described
above, but within each Voronoi cell, bucket the points adow to distance from
the Voronoi site — that is, into concentric shells of geoinatly increasing radius
(see Figure 7). Upon adkbWarprPoINT query, we ignore any bucket that lies entirely
outside the query region; similarly, onrhhre we do not try to reassign points in
buckets that are closer to the old vertex than to the new. Asytically speaking,
this convert(lg L/s) distance calculations on an uninserted point chosen agey |
into O(1) distance calculations ar@(lg L/s) divide-by-two operations. Indeed, in
practice we saw the total runtime of the algorithm fall byfwghen we implemented
shelling of Voronoi cells as compared to either Voronoi €@t in-simplex point
location.

8.5 Further Refinements

As noted earlier, using the Voronoi diagram has the disadgenthat uninserted
points rather far from the query ball can be accessed. 8hallbes not reduce this
tendency: shelling only means that uninserted points virgecto a vertex will be

SVR: A Practical Implementation 13

Query Ball

Shelled Voronoi Cell

Fig. 7. lllustration of shelling and of a query on a shelled Voronoi cell. The shedl€ancen-
tric around the Voronoi site, with radius halving at each step toward thtercéthile all the
shells exist mathematically, in the implementation we only store those that iretiletest one
uninserted point. DuringikoWarpPoint, the uninserted point marked by an X is not visited
because the annulus that contains X does not intersect the query ball.

ignored. Another view of the problem is that we now understarll how to store
points near the mesh vertices, but the best strategy fangtpoint far from vertices
is not yet clear. One possibility is a hybrid, using shellfog points close to mesh
vertices, and in-sphere or in-simplex for points far frora tkertices. Another pos-
sibility is to locate in the Voronoi cells of both the mesh tiges and the element
circumcenters.

We have identified three times when we can completely avdithgdinoWare-
Pont. Clearly, if there are no uninserted vertices remainingixdrere, we can sim-
ply skip the call. This occurs in about 10% of the insertionstloe bunny dataset,
30% on the pathological input, and merely requires keepigipbal or per-mesh
counter. If we are retrying an insertion that caused a sriedirswe know we will
not warp since the previous iteration would have warped édeel. How often this
occurs depends on the sliver parameters. Finally, when s&rtim point due to a
crowded Steiner point, we can blindly insert any uninsextedex in the Steiner
point’s Voronoi cell. This happens 5% percent of the time lwnlbunny dataset, al-
most never on the pathological input. Together, then, wetlsseabout 15-30% of
split operations can avoid this call.

9 Experiments

We performed some experiments on our implementation taméte the runtime
and output size of our algorithm as compared to a few otheglbgavailable codes.
The experiments are on point-cloud inputs: as of this wgitihe point-cloud code
of both SVR and Pyramid is more mature than the feature-sid.de ran the ex-
periments on a desktop 3.2 GHz Pentium D with 2 GB RAM runnimuk 2.6. We

compiled all applications using the gcc compiler versioh B with compiler flags
-m32 -02 -g -fomit-frame-pointer -mtune=native -DNDEBUG for both C

and Cr+, except for one file in TetGen which cannot be optimized ardi thabe

compiled-m32 -00. All three codes currently assume 32-bit pointers, thounig t
should be easy to fix in all cases. We compare our implement&iVR) to Pyramid
0.50 [She05a] and to TetGen 1.4.2 [Si07]. For all meshes hereequired an out-

14 Umut A. Acar, Benti Hudson, Gary L. Miller, and Todd Phillips

put radiugedge quality of 2.0; unless otherwise noted, SVR did notquarfsliver
removal in these experiments. SVR used a value®fdr its k parameter (see Sec-
tion 5); Pyramid and TetGen use default values. We measuety using the UNIX
‘time’ utility and summed “user” (cpu) and “system” timesll Aeported times are
averaged over five runs.

9.1 Point cloud results

Input | SVR Pyramid TetGejh SVR Pyramid TetGen
Stanford Bunnyif = 34890) || 4.62 6.35 12.4 59702 59040 74269
Line & Circle (n = 2000) 0.80 4.79 6.8 12119 14003 14573
Line & Circle (n = 20000) 7.62 NA N/A| 120933 MA N/A
50x 50x 50 Grid (h = 125000){11.30 15.96 45.9 129839 129929 130140
100x 100x 100 Grid f = 10°){|97.71 179.04 40031016262 1017799 1018684

Table 1. Comparison of the SVR, Pyramid, and TetGen codes on a few point-ahpudis.
Both Pyramid and TetGen ran out of memory on ithe 20000 Line & Circle example, and
could not complete; otherwise, all examples fit in membegjft: Execution times (seconds of
CPU plus system time) versus inputs. Average of 5 riight: Output size, in vertices. All
three methods produce meshes of approximately the same size.

Table 1 shows a comparisons of timings and output sizes fissérg Pyramid,
and SVR on three inputs: (1) the Stanford Bunny, (2) line-einde (a pathological
guadratic example), and (3) points on a grid. All these isfuie then bounded by a
6 x 6 x 6 bounding box to avoid all boundaryfects. SVR is the fastest on all inputs,
increasingly so as complexity increases. Furthermorerediqied by theory, both
Pyramid and TetGen crash on very modestly-sized pathabgiputs. Even with
inputs of just 20,000 points, they can be made to try to atlboaore memory than
can be addressed with 32-bit pointers.

TetGen has a performance bug for meshing point clouds: utiresthe user first
invoke TetGen to produce and output a Delaunay mesh; thekénVetGen again
to load that mesh and refine it. On non-pathological inpus, itha low-order fect.
However, on pathological input the reloading of the mestsiartime cubic in the
number of vertices. This is a front-end issue and is not forefdal, so we subtract
out the time of the intermediate output and reload in the &atBnes we report.

The number of vertices and tetrahedra output by all threes@dsimilar. During
the development of SVR, we found that relatively minor chemin the code can
often change the output size by 20% in either direction (oiiteopposite directions
for different inputs), but not reliably so. As noted by Har-Peledl@ngdr [HPUO5],
one of the few consistently useful heuristics is to work angmallest simplex first,
as measured by its shortest edge; in our algorithm, thisdrapio also improve cache
efficiency since the smallest simplex is usually the most régenéate one.

Finally, we investigated the issue of slivers. On the bumagjugedge refine-
ment using either SVR or Pyramid created several thousamglises with dihedral
angles flatter than 175in both, dihedral angles ranged fronO@° to 17998°. Tet-

SVR: A Practical Implementation 15

Gen has a separate mesh optimization post-process whidhged dihedral angles
from 4.64° to 16856°. In our implementation of SVR with Li-Teng sliver removal,
we find we can achieve angles ranging only betwee@®20 15421° on the bunny
when asking for radiygadius quality of 9.0 (recall from elementary geometry that
an equilateral tetrahedron has ragdiadius ratio 3.0) . Unfortunately, Li-Teng only
provably works with very weak guarantees: at the best qualé demanded, the
technique is very brittle and often fails depending on srohénges in the param-
eter settings. This suggests two avenues for improvemeeaiking Li and Teng’s
algorithm to produce more practical bounds so that we negdrrgo beyond the
provable envelope, ayat the addition of a mesh optimization post-process to the
SVR code.

9.2 PLC results

The vast majority models available in mesh repositoriesendahose that use the
Pyramid input format we adopt — are triangulated surfacehe®sUnfortunately,
this is automatically an illegal input: the edges of a trigrapviously do not all meet
at non-acute angles. TetGen merges adjacent trianglesrth@tearly) coplanar; time
did not permit us to implement this type of input groomingsterad, we ran SVR on
several PLC examples provided to us by Jonathan Shewchuie &le strictly legal
according to our input restrictions (see Section 4); inipalar, they all have facets
meeting at acute angles. Nevertheless, we were able to ggagliality meshes of
about the same size as Pyramid’s output. We also synthesimedwn examples,
such as the ten-barbells example shown in the introductidich satisfy all the
theoretical requirements. On these examples, we were blsa@remove slivers
with dihedrals worse than about 6r 175, albeit not entirely reliably. The major
outstanding issues in the feature-set SVR code come downmpieinenting some of
the tricks that TetGen has to work with input that is, styicibeaking, illegal; and to
speed up the provably correct code using many of the techsige have discussed
and used in the point-cloud code.

9.3 SVR profiling

We made heavy use of profiling (particularly using the Valdrioolset) while opti-
mizing the underlying data structures for point-cloud refirent. Similar optimiza-
tion of the feature-set refinement code remains future wOrkvarious examples,
we find the following trends. First, a large fraction (aboQ#® of the time is spent
writing the output to an ASCII file. Applications for whichtie is critical will out-

put in a faster and smaller format, so let us ignore this dostthe platforms we
tested on (Intel, AMD, and PowerPC), we find the processaiessbout 0.7 to 1.0
instructions per clock cycle, which is in line with what we wd expect from an
unstructured code. The cache performance was good: eddlent |-cache misses,
while 1.5% of data reads reach to L2 and only 0.3% to main mgrmdis can be ex-
plained by the fact that SVR is fundamentally parallel [HMPGrherefore, merely
by using a work stack instead of a work queue, we achieve gatalldcality. An-

other illustration of this is that SVR could maintain abods £PU utilization in

tests where the mesh did not fit in memory. By contrast, Pydamder the same

16 Umut A. Acar, Benti Hudson, Gary L. Miller, and Todd Phillips

conditions stfers a 0.6% miss rate to main memory, and achieves less tharP1% C
utilization when it hits swap.

On the Stanford bunny example, the code issues about 5iénhitistructions.
Three major components each take almost exactly one bitistnuctions each. (1)
Calls to Shewchuk’s numerical predicates library, mostkgphere tests. (2) Com-
puting circumcenters, and performing distance calculatifor point location. (3)
Topologically updating the Delaunay triangulation. Thenaénder of the time is
taken up traversing the mesh to perform point location @sermaintaining the work
queues, allocating memory and maintaining reference spantl reading the input.
We note that it is critical that we use memory pools to allecgahall objects (list
nodes, simplices, and so on).

Major improvements in point-cloud meshing time will requithree improve-
ments. Most prosaically, we need to make our code run on 64rbhitectures to
take advantage of large memories; as the mesh size growsspgeteour lead over
previous codes to widen. Next, using a compressed meshsesla05] would
improve cache performance and allow us to mesh much largangbes entirely in
memory. Finally, we cache circumcenters because we woblehnotse repeatedly
recompute the circumcenter; but the sarfiec is true of in-sphere tests. It is highly
likely we could substantially reduce the cost of categojyafdove by merging it with
category (2). Major improvements in feature-set meshimg tare low hanging fruit
at the moment. After some more work to eliminate any remagiféctors of two in
sequential runtime, we expect eventually to look to paliadehe code, as we have
theoretically proved can be done.

10 Conclusions

We have shown that it is possible to implement the theorgtidascribed SVR algo-
rithm to achieve practical robust software. The strong gagtit runtime guarantees
underlying the SVR algorithm are clearly evident on simplareples. Performance
is competitive with existing codes on relatively well shdpeputs. For pathological
inputs, the superiority of SVR is unquestionable.

In the SVR implementation, we have combined strong theotk wigreat deal
of software engineering. Devising and implementing appade data structures was
crucial to implementing practical software. As well, atten to geometric predicates
is necessary for any robust code.

10.1 Extensions

The most obvious extension of the SVR code is to handle ang#tef input descrip-
tions. Modern geometries require a mesher that can handlectinput surfaces and
sharp corners; SVR on the other hand requires input to caone drhighly restricted
class (as do the algorithms underlying Pyramid and TetGen).

One of the elegant features of our SVR implementation isallabugh it is tuned
for performance in three dimensions, the data structueesexsatile enough for use
in four or more dimensions, which is of possible use in enmgrgpace-time meshing
applications. The only routines we need for a higher dinwradiimplementation
are fast yet robust in-sphere predicates in higher dimassidutomated techniques

SVR: A Practical Implementation 17

for generating these predicates are known [NBHO1], but tif@eémentation is not
currently available. Using exact arithmetic kernels sushr@ available with CGAL
is a possibility, for small problems where the runtime is critical.

Finally, we close by noting that SVR is known to be paralletile [HMPO7]. At
the moment we feel there are still large constant factorgtéxlain the sequential
implementation of the code; but as soon as those have beeuishrad, the next
obvious step will be to implement a multi-core version ofstkibde. The current
implementation has been explicitly geared toward leavipgnathat possibility.

Acknowledgments

We wish to acknowledge the help of Jonathan ShewchuKariog many useful tips
for the code and geometric predicates, for making availmbles pre-release version
of Pyramid, and for sending us some sample PLC inputs. Weaalstowledge Hang
Si's help in understanding TetGen; mesh drawings and mealitystatistics were
generated by TetGen.

References

[BEG94]

[Bla0s]

[CDO3]
[Che89]

[CPO3]

[ELM*00]

[HMPO6]

[HMPO7]

[HPUO5]
[Li03]

[LTO1]

Marshall Bern, David Eppstein, and John Gilbert. Provabbdgunesh generation.

J. Comput. Syst. S¢ci48(3):384-409, 1994.

Daniel K. Blandford. Compact Data Structures with Fast QuerieBhD thesis,
Computer Science Department, Carnegie Mellon University, Pittsbusgimgyl-
vania, October 2005. CMU CS Tech Report CMU-CS-05-196.

Siu-Wing Cheng and Tamal K. Dey. Quality meshing with weighteldud®ay
refinement.SIAM J. Comput.33(1):69-93, 2003.

L. Paul Chew. Guaranteed-quality triangular meshes. T&HReport TR-89-
983, Department of Computer Science, Cornell University, 1989.

Siu-Wing Cheng and Sheung-Hung Poon. Graded ConforDétaunay Tetra-
hedralization with Bounded Radius-Edge RatioPhaceedings of the Fourteenth
Annual Symposium on Discrete Algorithrpages 295-304, Baltimore, Maryland,
January 2003. Society for Industrial and Applied Mathematics.

Herbert Edelsbrunner, Xiang-Yang Li, Gary L. Miller, AndreastBopoulos,
Dafna Talmor, Shang-Hua Teng, AlpEingor, and Noel Walkington. Smooth-
ing and cleaning up slivers. IRroceedings of the 32th Annual ACM Symposium
on Theory of Computingpages 273-277, Portland, Oregon, 2000.

Bendt Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. |
Proceedings of the 15th International Meshing Roundtgtages 339-356, Birm-
ingham, Alabama, 2006. Long version available as Carnegie Mellonetsity
Technical Report CMU-CS-06-132.

Bendt Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Re
finement. In19th Annual ACM Symposium on Parallelism in Algorithms and
Architectures pages 339-347, San Diego, June 2007.

Sariel Har-Peled and Alpégor. A Time-Optimal Delaunay Refinement Algo-
rithm in Two Dimensions. Ir'Bymposium on Computational Geomef§05.
Xiang-Yang Li. Generating well-shapetidimensional Delaunay meshégheor.
Comput. Scj.296(1):145-165, 2003.

Xiang-Yang Li and Shang-Hua Teng. Generating well-shdpelhunay meshes
in 3D. In SODA '01: Proceedings of the twelfth annual ACM-SIAM symposium

18 Umut A. Acar, Benti Hudson, Gary L. Miller, and Todd Phillips

[Mil04]

[MPWO02]

on Discrete algorithmspages 28-37, Philadelphia, PA, USA, 2001. Society for
Industrial and Applied Mathematics.

Gary L. Miller. A time efficient Delaunay refinement algorithm. $ODA '04:
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete alg
rithms pages 400-409, Philadelphia, PA, USA, 2004. Society for Industnidl
Applied Mathematics.

Gary L. Miller, Steven E. Pav, and Noel J. Walkington. Fully reraental

3D Delaunay Refinement Mesh Generation.Eleventh International Meshing
Roundtable pages 75-86, Ithaca, New York, September 2002. Sandia National
Laboratories.

[MTTW99] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and NoehlWhgton. On the

IMVOO]

[NBHO1]

[Rup95]

[She97]

[Shegs]

[She99]
[She05a]
[She05b]
[Si06]

[Si07]
[sTUO7]

[Vav00]

radius—edge condition in the control volume metho8IAM J. Numer. Anal.
36(6):1690-1708, 1999.
Scott A. Mitchell and Stephen A. Vavasis. Quality Mesh Generaiiohligher
Dimensions.SIAM Journal on Computing9(4):1334-1370, 2000.

Aleksandar Nanevski, Guy E. Blelloch, and Robert Harpentomatic Genera-
tion of Staged Geometric Predicates.Imternational Conference on Functional
Programming pages 217-228, Florence, Italy, September 2001.

Jim Ruppert. A Delaunay refinement algorithm for quality 2-disi@nal mesh
generationJ. Algorithms 18(3):548-585, 1995.

Jonathan Richard Shewchuk. Adaptive Precision Floatiimg-Paithmetic
and Fast Robust Geometric Predicatd3iscrete & Computational Geometry
18(3):305-363, October 1997.

Jonathan Richard Shewchuk. Tetrahedral Mesh Genebgtibelaunay Refine-
ment. InProceedings of the Fourteenth Annual Symposium on Computational Ge-
ometry pages 86-95, Minneapolis, Minnesota, June 1998. Association for Co
puting Machinery.

Jonathan Richard Shewchuk. Lecture notes on geometuistnass, 1999.
Jonathan R. Shewchuk. Pyramid, 2005. Personal coitetion.

Jonathan R. Shewchuk. Triangle, 200%:tp: //www.cs.cmu.edu/~quake/
triangle.html.

Hang Si. On refinement of constrained Delaunay tetrahedralizatioProceed-
ings of the 15th International Meshing Roundtat#606.

Hang Si. TetGen, 200%tetgen.berlios.de.

Daniel Spielman, Shang-Hua Teng, and Alplor. Parallel Delaunay refine-
ment: Algorithms and analyseklCGA 17:1-30, 2007.

Stephen A. Vavasis. QMG, 2000.http://www.cs.cornell.edu/home/
vavasis/qmg-home.html.

