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Abstract

We present new geometrical and numerical analysis structure the-
orems for the Delaunay diagram of point sets in RY for a fixed
o where the point sets arise naturally in numerical methods. In
particular, we show that if the largest ratio of the circum-radius
to the length of smallest edge over all simplexes in the Delaunay
diagram of P, DT(P), is bounded. (called the bounded radius-edge
ratio property), then DT(P) is a subgraph of a density graph. the
Delaunay spheres torm a k-ply system for a constant k. and that
we get optimal rates of convergence tor approximate solutions of
Poisson’s cquation constructed using control volume techniques.
The density graph result implies that DT(P) has a partition of cost
O(n'~"/y that can be efficiently found by the geometric separator
algorithm of Miller, Teng, Thurston. and Vavasis and therefore the
numerical linear system defined on DT(P) using the finite-volume
method can be solved efficiently on a parallel machine (either by
a direct or an iterative method). The constant ply structure ot De-
launay spheres leads to a linear-space point location structure for
these Delaunay diagrams with O(log n) time per query. Morecover,
we present a new parallel algorithm for computing the Delaunay
diagram for these point scts in any fixed dimension in O(logn)
random parallel time and n processors. Our results show that the
bounded radius-edge ratio property is desirable for well-shaped
triangular meshes for numerical methods such as linite element.
finite difference, and in parnticular. finite volume methods.

1 Introduction

The Delaunay diagram (and its dual, the Voronoi Digram) is one of
the most fundamental concepts in computational gcometry. Ge-
ometric propertics and algorithms {or Delaunay diagrams (DT)
have been active topics of research for several years. The 2D
Declaunay triangulation has several desired properties that make
it very important to applications such as computer graphics. nu-
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merical computing and geometric optimization [4]. In general, a
higher dimensional DT may have two drawbacks. One, it may
have an exponential number of simplices, @(n/*/#) [21] and two.
there will be simplices which have arbitrarily bad aspect ratio even
when the points are place with some care [14]. Those simplices
are called slivers in 3D. The goal of this paper is to address these
drawbacks in the context of Partial Differential Equations(PDEs)
parallel mesh generation and numerical solution. In particular,
we define a natural weaker aspect ratio condition and prove geo-
metrical structure theorems. and approximation theory estimates,
for meshes with elements of this aspect ratio which could con-
tain slivers, We provide additional justification for the usage of
Delaunay diagrams for numerical methods.

In the following paragraphs. we provide some basic back-
ground and motivation for our work and give a high level summary
of our results.

1.1 Motivations from Numerical Computing

Our work is motivated by the following directions of research
concerning Delaunay diagrams.

Approximation Theory and Delaunay Triangulations: Trian-
gulations of bounded domains in R? are used ubiquitously for
the construction of approximate solutions of parial differenual
equations. In order for a mesh to be useful in this context, it is
necessary that discrete functions generated from the mesh (such
as the piecewise linear functions) be capable of approximating
the solutions sought. Classical finite element theory [11] shows
that a sufficient condition for optimal approximation results to
hold is that the aspect ratio of each simplex in the triangulation be
bounded independently of the mesh used: however, Babuska [2]
shows that while this is sufficient, it is not a necessary condition.
We show that a bounded radius to edge ratio is sufficient to get op-
timal rates of convergence for approximate solutions of Poisson’s
equation constructed using control volume techniques [22, 30].
When approximating elliptic partial differential equations, such
as Poisson's cquation. it is desirable to construct approximations
that inherit various properties of the continuous problem. For
example, a self adjoint elliptic operator should result in a sym-
metric matrix when discretized. and elliptic operators satisfying
a maximum principle (such as the Laplacian) should result in
M-matrices: that is. diagonally dominant matrices with negative
off diagonal entries. Recall that it is precisely M—matrices that
satisfy discrete maximum principles. While virually all approxi-
mations of Poisson’s equations result in symmetric matrices, it is
well known that discrete maximum principles will not hold for ap-
proximations constructed on arbitrary meshes; in general. discrete
maximum principles will only exist for Delaunay triangulations
(this is an extension of a result stated in [12]). For example, the
finite element method is guaranteed to produce an M-matrix in



2-d only if the underlying triangulation is Delaunay.
Mesh Generation: An essential step in scientific computing is
to find a proper discretization of a continuous domain with a
mesh of simple elements such as triangular elements. This is the
problem of mesh generation. However. not all meshes have equal
performance in the subsequentnumerical solution. The numerical
and discretization error depends on the geometric shape and size
of suchas the angles and the aspect-ratio of its triangular elements.
The DT has some desired properties for mesh generation.
For example, among all triangulations of a point set in 2D, the DT
maximizes the smallest angle, it contains the nearest-neighbors
graph, and the minimal spanning tree, Moreover, discrete maxi-
mum principles will only exist for Delaunay triangulations. Chew
[10] and Ruppert [33] have developed Delaunay refinement algo-
rithms that generate provably good meshes for 2D domains. DT
based methods have also been used for coarsening and refinement
in domain decomposition and multi-grid methods. In addition to
Ruppert's Delaunay refinement algorithm, Bem, Eppstein, Gilbert
gave a provably good mesh generator using quad-trees (3]. 3D
mesh generation is much harder than 2D: only one provably good
mesh generator exists. It was developed by Mitchell and Vava-
sis [29] and uses oct-trees. On the other hand, various parallel
algorithms have been developed in recent years for finite ele-
ment methods but parallel mesh generation is still less common.
Theoretically, Bern, Eppstein, and Teng [5] developed the first
parallel algorithm for quality mesh generation in 2D, which in-
cludes parallel quad-tree construction. Although their approach
can be extended to 3D by parallelizing Mitchell and Vavasis oct-
tree algorithm [29], the constant in mesh size is fairly large. Itis
desirable to have a practical parallel mesh generator, especially
for 3D.

1.2 Motivations from Computational Geom-
etry

Much analytical and experimental work has been applied to DT
for points placed uniformly and randomly in fixed dimension,
the Poisson distribution [17, 6. 19]. As far as we can determine
the main importance of the uniform Poisson distribution tor DT
is that the distribution is easy to generate and thus useful for
running experiments. One drawback is that many implemented
parallel algorithms are tuned to work most efficiently for the uni-
form distributions [37, 35] but fail to be efficient for nonuniform
distributions. Here we define new point distributions for which
we can find efficient parallel algorithms and which include all the
distributions from the applications above. For these distributions
we must prove new structure theorems. Our distributions will al-
low arbitrary refinements, such as in Figure 1.2, that do not occur
in the uniform case but do occur in mesh generation.

Another drawback of uniform distribution is that the point
sets are not really uniform and smooth, making it unstable for
numerical approximation, Bem, Eppstein, and Yao (6] studied
various expected properties of the DT of points from uniform
distribution. They showed that with high probability, the smallest
angle is @(1/+/n) in 2D, but the expected maximum veriex degree
of a Delaunay triangulation is @(logn/ loglogn) in any fixed
dimension.

Algorithmically, by a well-known reduction(8], DT in d di-
mensions can be obtained from a projection of ad + | dimensional
convex-hull. A desired property ot convex-hull algorithms is

Figure I: Triangulation of well-spaced point set around a
singularity

output-sensitivity. The complexity of an output sensitive convex-
hull algorithm depends on the number of faces, F, in the convex-
hull. However, optimal parallel output sensitive Delaunay dia-
gram construction in high dimensions is still an open problem.
Chazelle [9], gave the first optimal deterministic convex-hull al-
gorithm. This algorithm is not output sensitive and thus is optimal
only in the worst-case sense. i.e., it runs in O(n log n+n'4/% ) which
is the worst-case number of faces possible in d > 3 dimensions.
Recently, Amato, Goodrich and Ramos [1] gave an optimal ran-
domized parallel algorithm for higher dimensions. They provide
a 3-d output-sensitive algorithm, but their algorithm is not output
sensitive for d > 3. There are no output sensitive parallel algo-
rithms for 4 > 3, all the sequential methods known seem to be
hard to parallelize. like the randomized incremental construction
algorithm, [13]. Seidel’s sequential output sensitive algorithm
[34). runs in O(n® + Flogn). It is therefore important to develop
efficient algorithms for 3D Delaunay tetrahedralization.

1.3 OQOur Contributions

By weakening the condition of bounded aspect ratio of well-
shaped meshes, we introduce a geometric condition, called
bounded radius-edge ratio, which is the ratio of the radius of
the Delaunay circumscribed sphere to the smallest edge in the
simplex. In 2D, the radius-edge ratio is equivalent to aspect-ratio
(See Section 2 for details), but it is a weaker condition for the 3D
case. We present the following results for point sets with bounded
radius-edge ratio:

Geometric Structure:

e The Delaunay diagram is a bounded density embedding.
® The set of Delaunay balls has the finite ply.
Numerical Analysis Structure:

e The bounded radius—edge ratio is sufficient to get optimal
rates of convergence for approximate solutions of Poisson’s
equation constructed using control volume techniques [22,
30].

The bounded density property implies that the DT of a point
set of bounded radius-edge ratio has a bounded degree. A density
graph is a special case of the overlap graph defined by the nearest
neighborhood system {27]. Therefore, we can use the geometric
sphere separator decomposition of Miller, Teng, Thurston and
Vavasis to develop a divide-and-conquer algorithm that reduces
the Delaunay diagram problem of a points in RY to a collection of
n independent convex hull problems of constant size in RY, The
resuiting algorithm finds the DT of a point set of bounded radius-
edge ratio in random O(log n) parallel time using n processors in
any a dimension.



The finite ply property of Delaunay spheres enables us to
use the geometric sphere separator decomposition to develop a
linear space. O(log n)-query time structure. We can also find such
a structure in O(log n) parallel time using n processors.

The optimal rates of convergence for numerical approxima-
tions of certain PDEs on meshes with bounded radius-edge ratio
illustrates the usefulness of this condition. This motivates the
need for algorithms to generate these meshes and investigate their
geometric properties.

Our parallel DT algorithms provide an important algorithmic
function for three dimensional mesh generation, coarsening, and
refinement. In conjunction with our point location structure. it
leads to parallel algorithm for adaptive multi-grid computations.

Bern et al[6] showed that the expected smallest angle of the
DT of a random point set in two dimensions is @(1/+/n). This re-
sult implies that with high probability, a random point set does not
have the bounded radius-edge ratio property. Their result implies
that, numerically, random point sets are not desirable for numer-
ical discretization. This result may be surprising, as the regular
grids used for the finite difference method had point density very
similar to uniform distribution. But the regular spaced points set
give great numerical stability. We introduce an algorithmically
efficient “smoothing” technique to make uniformly distributed
point sets well-spaced. i.e., having bounded radius-edge ratio.

We also show that the Declaunay balls of random point
set from the Poisson uniform distribution in 3D has ply
O((log n/ log log n)?) with high probability. thus cxtending the
expected extremes in Delaunay diagrams results.

1.4 Outline

In Section 2. we give definitions and notations. Section 3 presents
the geometrical structure theorems for the bounded radius-edge
ratio. Section 4 provides the approximation theory structure the-
orem. Section 5 describes a point generation and smoothing
technique. In Section 6, we present an efficient parallel algorithm
for computing the DT for bounded radius-edge ratio point sets.

2 Definitions

Suppose P = {pi,...,pa} is a point set in d dimensions. The
convex hull of d + | affinely independent points from £ forms a
Delaunay simplex if the circumscribed ball of the simplex contains
no point from P in its interior. The union of all Delaunay simplices
forms the Delaunay diagram. DT(P). If the set P is notdegenerate
then the DT(P) is a simplex decomposition of the convex hull of
P.

Associated with DT(P) is a collection of balls, called De-
launay balis, one for each cell in DT(P). The Dclaunay ball
circumscribes its cell. We denote the set of all Delaunay balls of

P by DB(P).
The geometric dual of Delaunay Diagram is the Voronoi
Diagram. which of consists a set of polyhedra Viiow My One 1oL

each point in P, called the Voronoi Polvhedra. Geometrically. V;
is the set of points p € RY whose Euclidean distance to p; is less
than or equal to that of any other point in . We call p; the center
of polyhedra V;. For more discussion. sce [32. 16].

Following [26]. we call a collection of balls in R’ a neigh-
borhood svstem. For this rcason, we refer the sct DB(P) the
Delaunav neighborhood svstem of P. The ply of a point p € RY

with respect to a neighborhood system B = {Bi,..., Ba} is the
number of balls from B that contains p. The ply of a neighbor-
hood system B is the largest ply among all points in RY. Given
a neighborhood system B = {B, ..., B,}, we define a family of
geometric graphs called overlap graphs.

Definition 2.1 (Overlap Graph) Let « > | and let B =
{Bi,...,Bn} bea k-ply neighborhood system. The (a, k)-overlap
graph of B is the undirected graph with vertices V = {1,..., n}
and edges E = {(i,)) : (BiN(a-B;) #®) and ((a - B)NB; # D)}.

An important property of overlap graphs, as shown by
Miller, Teng, Thurston and Vavasis [27] is that they have small
separator. The following theorem introduces sphere separators.
Theorem 2.2 (Sphere Separators) Let the neighborhood system
B ={B\,...,Ba} in R be k-ply. Then for each o > |, there is
a sphere S that divides B into three subsets: By, Be and Bo such
that (1) balls from B; are completely in the interior of § and
balls from Bg are in the exterior of 5, (2) there exists a constant
1/2 < & < | depending only on d such that |B)|, |Bg| < én; (3)
there is no edge in the (a, k)-overlap graph of B that connect any
ball from By with any ball in Be. (4) |Bo| = O(ak'/%n'="/9), §
is called a sphere separator and such a separaror can be found
in random linear time sequentiallv and in random constant time,
uSENg N Processors.

A special case of the overlap graph is the densiry graph (first
introduced by Miller and Vavasis [28]). The density condition of
an embedding is important for finite difference methods. Let G
be an undirected graph and let x be an embedding of its nodes in
RY. We say = is an embedding of G of densiry o if the following
inequality holds for all vertices v in G. Let u be the closest node
to v. Let w be the farthest node from v that is connected to v by
an edge. Then

||w(w) — m(v)|
7@ — =l = °

In general, G is an a-density graph in RY if there exist
an embedding of G in R with density . We will show later
that there is a A(a, o) depending only on @ and d such that the
maximum degree of an a-density graph is bounded by A(a, d).

3 Delaunay Graphs and Aspect Ra-
tios

The aspect ratio of a simplicial element is defined as the ratio
between its largest edge, and it height. Numerically, the bounded
aspect-ratio is a very desirable propenty for mesh discretization.
Computationally, it is important to generate the mesh and to per-
form point location in the meshefficiently. Geometrically, various
fundamental questions about DT need to be answered: Does the
Delaunay neighborhood system of a bounded aspect-ratio DT
have bounded ply? What is the "weakest” local condition that
point sets need to satisfy to ensure linear size DT and bounded ply
Delaunay neighborhood system? How can we efficiently generate
a point set with these desired conditions?

We give a weakened aspect-ratio property, called the
bounded radius-edge ratio propenty. We show that this local
condition implies

e The Delaunay diagram is a bounded density embedding and
has linear size in any dimension.

e The Delaunay neighborhood system has bounded ply.



3.1 Bounded Radius-Edge Ratio

Definition 3.1 (Bounded radius-edge ratio) A DT has radius-
edge ratio bounded by p 2> | if for each Delaunay simplex the
ratio of its circumscribed sphere radius to the smallest edge is
bounded by p.

In 2D, if a DT has radius-edge ratio bounded by p then its
smallest angle is at least sin~'(1 /(2p)). Thus bounded radius-
edge ratio implies bounded aspect ratio and vice verse. In 3D
and higher, the bounded radius-edge ratio does not guarantee that
the minimal dihedral angle is bounded. A notorious example is a
sliverin 3D which is a simplex whose four nodes are placed almost
in a square along the equator of their circumscribing Delaunay
sphere. The radius-edge ratio in that case is about V2. but the
area of the sliver can be arbitrarily close to zero. Thus, the radius-
edge ratio condition is weaker than the aspect-ratio condition and
hence all the structure theorems and algorithms presented in this
paper apply to the DT with bounded aspect ratio.

3.2 Density of Delaunay Diagrams

Here we show that if DT(P) has a bounded radius-edge ratio, then
its 1-dimensional skeleton is a density graph, and hence has a
bounded degree and a small sphere separator. We will use this
result in section 5 to develop an O(log n) parallel time n processor
parallel algorithm for constructing the Delaunay diagram. In all
the lemmas and theorems in this section. lct P be a point set in R¢
such that DT(P) has ratio bounded by p > 1.

Theorem 3.2 (Density Embedding) P is an o-densitv embed-
ding of DT(P) , where a is a constant dependent only on the
dimension d and p.

The standard volume argument can not be used to prove Theorem
3.2 becauseof slivers. We use the following notation in our proof:
for each point p € P, let N(p) be the set of all Delaunay simplices
incident to p. For each Delaunay simplex T € NM(p), we refer to
the vector from p to the center of the Delaunay sphere of T as the
radius vector of T. Two simplices are neighboring if they share
a common edge. The following lemmas will be used to prove
Theorem 3.2.

P

Figure 2: Projection of two intersecting spheres on the
plane defined by their radius vectors from .

Lemma 3.3 For ¢ = arcsine(1/2p)/4 there is a constant p, de-
pendent onlv on p, such that for all p € P, for each pair of
Delaunay simplices T\ and Ty in N(p), with radii R and r, if
the angle between the two radius vectors is smaller than ¢, then
<o

Proof: If R < r the Lemma is obvious. therefore assume R > r.
We depict the case in Figure 2. where we assume o < 6, We
have Rsin(8) = rsin(a +3),s0 & < “::—;5? & ?.'}:‘E- The vertices
of the simplex of the smaller Delaunay sphere can not be in the
interior of the larger Delaunay sphere. so there is an edge whose
size is less then 2rsin(8 + ). The bounded radius-edge ratio
property implies r/(2rsin(3 +e)) < p. Hence sin(f +a) > 1/2p
and therefore 3 +a > arcsine(1/2p)and 8 > 3arcsine(1/2p)/4.
Assign pi = 1/ sin[3arcsine(1/p)/4] to get R/r < py. a

Lemma 3.4 Let T\, T2 be two simplices, E(e) an edge of T\(T2),
R(r) the circumscribing sphere radius of T\(T3).

I. If T1 and T2 are neighbors then |E|[|e| < 4p*.
2. IfR/r < pi then |E|[le|] < 2pp1.
Proof:

1. If geis an edge common to the two simplices, then |E|/|e| =

(IE1/1gelXlgel/leD) < 4C°.
2. |El/lel = (EI/IRDR/r)(r/le]) < ppi2 a

Let v = max(2pp1, 4p%). To show the DT is a density graph.
we cover a very small sphere § centered at a point p € P by a
collection of circular patches with cone angle 8. The following
lemma is a folklore,

Lemma 3.5 There is a constant K dependent only on 6 and d
such that there is a cover of the unit sphere in R® with no more
than K circular patches whose angle is equal to 6.

Proof of Theorem 3.2, Let S be a very small sphere centered at
p € P. We cover § according to Lemma 3.5. Each radius vector
from p intersects sphere S in at least one cone patch (the patches
are not necessarily disjoint, so it could intersect more than one
patch). Assign to each radius vector a label which corresponds
to one of the patches it intersects. If two radius vectors have the
same label. then by Lemmas 3.4 and 3.3, the maximal ratio of the
edges belonging to the two simplices is bounded by .

Let e and E be the shortest and the longest Delaunay edges,
respectively, incident to p. There is a path between e and E
through edges that belong to neighboring simplices incident to p.
In each transition of the path. the edge lengths can grow by at
most a factor of .

We assign a label to eachedge in the path. The label indicates
the patch that the edge’s radius vectorintersects. If alabel appears
more than once in the path, we can “crase” all labels between
last and first appearance of the label, and instead use the ratio
information torced by the label, whichis «. This “erasing” process
reduces the number of labels to less then K because no label can
repeat. Therefore the ratio of | E] to || is bounded by & = ¥** and
hence P is an a-density embedding of DT(P). _ [m]

Lemma 3.6 The vertexdegree of eachnode in an a-density graph
in d dimension is bounded by (2a* + 2a)*

Proof: Foreachp € P, the neighboring nodes of p are contained
in the sphere with radius «|e| centered at p, where ¢ is the smallest
edge incident to p. Let g be one of p's neighbors, then ¢ has an
cdgeof length at least |e|, so ¢'s nearest neighbor is no closer than
le|/a. Theretore, the sphere centered at g of radius |e|/(2a) does
not intersect with the sphere centered at any other neighboring
node of p of radius |e|/(2a). A simple volume argument gives
the bound. =



3.3 Ply of Delaunay Spheres

Given a Delaunay graph with the bounded edge-radius condition,
a natural and important question is the structure of the Delaunay
spheres as a neighborhood graph. For example, if the Delau-
nay spheres have a small separator. than the in-circle test can be
performed cheaply, in O(log i) cost.

In general, the ply can be as large as O(n/¥/*) - which is the
upper bound for the Delaunay graph over n points. We show now
the ply is a constant for the bounded edge-ratio case, whereas for
the uniform distribution it is bounded by O(log n/%/#).

3.3.1 Ply for Bounded Radius-Edge Ratio

For bounded edge-radius ratio Delaunay graphs , we now show
the ply is a constant, i.e. each point in RY is contained in at most
some constant k Delaunay spheres.

We use the following notation: V is a Voronoi cell, v is
a Voronoi node, on the boundary of cell V. p is the Delaunay
node, p(V) is the Delaunay node in cell V. r(v) is the radius
of the Delaunay sphere whose center is v. and r(p)}(R(p)) is the
smallest(largest) Delaunay ball through p. e(p), E(p) is the size
smallest (largest) Delaunay edge of p.

In spite of slivers, Theorem 3.2 implies the finite Voronoi
cells have bounded aspect ratio, in terms of the ratio between
their inscribing and circumscribing spheres. We use a Lipschitz
function that captures that.

Definition 3.7 (local feature size (Ifs)) Givenaserofpoints P C
RY, the Ifs of each point g in R is the radius of the smallest sphere
that contains two points from P. [33]

Lemma 3.8 For a finite Voronoi cell V
0.5e(p(V)) < Ifs(V) < (1 + aple(p(V))

Proof: Let p be the Delaunay node of V., then Ifs(p) = e(p). A ball
of radius e/2 is contained in V, since the p is at least e/2 away
from all V's edges. Consider a point ¢ within that sphere, then
Ifs(q) > e/2, otherwise p would have a neighbor closer than e.
Also, Ifs(q) < d(p,q)+e < 3/2e. Now consider a point g outside
the sphere. Ifs(g) > e/2, as g is within p's Voronoi cell and
therefore no point is closer to g then p. Also. the Voronoi cell of p
is contained within a circle of radius max(R, E) < max(pa, a)e <
pae. Therefore, Ifs(q) < pae +e. o
On an infinite Voronoi cell, Ifs is unbounded. Forthe purpose
of our proof, we need a bounded Lipschitz, which would capture
for each cell, finite or infinite, its inherent quantities. Therefore,
we extend the point set £ to a point set P’, by adding points within
each infinite Voronoi cell V such that the Ifs remains bounded.
Lemma 3.9 There is an extension of the point set P to an infinite
point set P, such that for each Voronoi cell V, 0.5¢e(p(V)) <
Ifs(V) < (3 + aple(p(V))
Proof: Consider Figure 3. We form an infinite cone within the
infinite Voronoi cell, by extending infinite rays from p, parallel
to the infinite edges. We now add points to the infinite cone,
while making sure each point (include the first point, which is
the Delaunay point) has an empty sphere of radius e around it.
We add to P’ such a maximal packing for each cone of an infinite
Voronoi cell. Again, we have that within V. Ifs(g) > e/2. Assume
g is within the infinite cone. A circle of radius e around g must
contain at least one point from P’, otherwise ¢ could be added
to P, contradicting its maximality. For a point p' € P’ in the

Figure 3: An infinite 2-d Voronoi cell, with its sub-division.
The infinite sub-piece is divided into two infinite trapezoids,
and one infinite cone.

cone, Ifs(p’) < 2e, and therefore ifs(g) < 3e. Every point g
in the Voronoi cell is within distance R from the cone, therefore
Ifs(g) < R+ 3e < (pa + 3)e. a
Theorem 3.10 There exists a Lipschitz function g, with a Lips-
chitz constant | such that:

1. Fora Voronoi node v g(v) = r(v).
2. Fora Delaunay node p, g(p) = e(p)

3. Ina Voronoicell V
0.5e(p(V)) < g(V) < (3 + aple(p(V))

Corollary 3.11 Let p be a Delaunay node, § = 3 + ap, v any
value g attains over the Voronoi cell of p, than p has a sphere
of radius at least % around it that contains no other Delaunay
nodes.

Consider some Delaunay sphere D. Without loss of general-
ity, let its radius be of unit length. Consequently, at its center, pp,
g(pp) = 1. Consider another sphere S centered at pp with radius
0.5. See figure 3.3.1.

Figure 4: The crescent around g, CR(g), is defined as the
intersection of the spheres S and D.

Lemma 3.12 For each point q on the boundary of §, let CR(q)
be the crescent defined by the intersection of D, and the sphere
centered at q of radius 0.5 + —%‘!;1 CR(q) contains at most one
Delaunay point.

Proof: CR(g) is defined such that no two points in it are further
then 1/(26). By Theorem 3.10 g is 1-Lipschitz and therefore g's
value on the boundary of S is at least 0.5. Consider some g on the
boundary of 5. It belongs to some Voronoi cell whose Delaunay
pointis p. Since g(g) > 0.5, by Corollary 3.11 p(g) has an empty
sphere of radius at least 5 around it. Therefore, if p € CR(g). no
other Delaunay point can be in CR(g). If p does not fall in CR(q),
then CR(g) must be empty since no node can be closer to ¢ than
p. 0



Theorem 3.13 The ring PR defined by the sphere D, and the
sphere Dy with radius 1 + 0.25/ (963%) with the same center,
contains a finite humber (depending on (3 and the dimension d
only) of Delaunay nodes.

Proof: Foreach g, CR(g) is touching at its farthest point the sphere
with radius 1 + 1/(968%). We can pick a finite set of points g; on
the sphere S, such that there crescents intersect at . This will
give the required protective ring. o
Lemma 3.14 The sphere D can intersect at most a finite number
of smaller Delaunay spheres.

Proof: A smaller sphere either has a Delaunay node within the
protective ring PR, or has a node with an edge larger than 3/96,
but smaller than 1. There is only a finite number of nodes in PR,
and volume arguments imply there can be only a finite number
outside of PR. O

Theorem 3.15 The Delaunay spheres form a finite k-ply graph.
Proof: Let g be some point in RY. Let D be the largest Delaunay
sphere through g. D intersects at most a finite number of smaller
spheres. hence g can be contained only in a finite number of
spheres. O

3.3.2 Ply of Uniform Points

For uniform distribution. we use the homogeneous Poisson point
process of intensity one which is characterized by the property that
the number of points in a region is a random variable that depends
only on the d-dimensional volume of the region. In this model.
The probability of exactly k points appearing in any region of vol-
ume Vis e~V V*/k! and the conditional distribution of points in any
region given that exactly & points fall in the region is joint uniform.
Let P be a random point set created by the unit-intensity Poisson
process in R” over a cube of side length n'/“. Bem. Eppstein,
and Yao [6] showed that for that distribution, DT(P) has expected
maximum degree @(log n/ log log n) and 2D aspect-ratio \/n. We
now show that in the same framework. the expected maximun ply
of the Delaunay is bounded by Olog "/ n), and show that in 3-d
the expected maximum ply is at least O((log n/ log log ny).
Theorem 3.16 The ply of the Delaunav neighborhood svstem of
P is bounded by O(IOgr’” A p).
Proof: As shown in [6], with probability at least (1 — 1 /n*), the
radius of all Delaunay balls of P is bounded by ¢ log'/* n, where
¢\ is a constant depending only on 4. Suppose there are m balls
covering a point p. With probability at least (I — 1/n"), all m
Delaunay balls are contained in the ball B, of radius 2c, log'/
centered at p. With high probability the number of points in B, is
bounded by O(logn). Hence the number of Delaunay simplices
that are contained in B, is at most O(log!/?! n). o
Theorem 3.17 When d = 3, the expected ply of the Delaunay
neighborhood svstem of unifrom random point set P is at least
O((log n/ log log n)%).
Proof: Consider Preparata’s example [31] of a set of points with
large Delaunay graph: the union of the set of N/2 uniformly
placed points on a horizontal circle and another sct of N/2 uni-
formly placed points on a vertical line passing through the center
of the circle [31]. This example has ply of O(N?) since its @(N?)
Delaunay balls are all within a cube of size . We now show that
aconstruct similar to Preparata’s example has high probability of
appearing, for N = (log n/log logn).

Rather than placing points, we place small spheres of volume
log™" n, i is 1o be fixed later. The horizontal circle is of radius

O(log'/? n) and the vertical line is of the same length. The small
spheres are placed such that if a small sphere §; placed on the
horizontal circle is not empty, then for each nonempty sphere 52
on the vertical line: 3g € S, and 3p € §; such that g and p are
Delaunay neighbors. This is true if for any such §, and §; there
is a larger sphere (of radius O(log'/? n)) that includes S, and S;
but not any of the other §;’s. Since we are placing logn/ loglogn
spheres on a horizontal circle of length O(log'/? n), this is true for
i>6.

Our geometric constructis therefore a larger sphere of radius
§log'/? n, which is empty but for the smaller spheres 5;'s placed
in it, as described above. For a small enough 6, there are more
than n"? such empty independent spheres, with high probability
(see [6]). The following Lemma bounds below the probability
that some constant fraction of the horizontal spheres. and some
fraction of the vertical spheres, are not empty. That fraction, g,
is adjusted to compensate for i fixed above. Since we run n®°
independent experiments in one Poisson point process. such high
ply is actually expected to appear with high probability. Theorem
3.16 then follows.

Lemma 3.18 The probabilitv that qlogn/loglogn of the hor-
izontal and of the vertical spheres are non empry is at least

e~inTM

Proof: Let! = logn/ loglogn and k = gl for some small constant

g 10 be fixed later. Let a denote the volume of the smaller spheres.

Then (1) The probability that a small sphere is not empty is greater

than f: (2) The probability that k = glogn/ loglogn of the

spheres are non empty is at least (we omit the binomial, thus only

decreasing the probability): a'(l —a)~* Buta' = 2-9len and
i

(1 = a)f™ = ¢ mmaw=Tn > 1 Therefore, the probability of

k spheres non empty is at least e~'n™", (2) The probability of
both horizontal and vertical events occuring at the same time is
e~Ia7% O

4 Approximation of Poisson’s Equa-
tion

Below we show that a bounded radius-edge ratio is sufficient to
get optimal rates of convergence for approximate solutions of
Poisson's equation constructed using control volume techniques
[22. 30]. We first review the control volume method. and then
give a sketch of the error estimate.

4.1 Control Volume Discretizations

We now review the control volume technique for approximating
Poisson’s equation:
-Au =f} in n: “Ian=3,

where £2 C R is a bounded domain, and 4 is the Laplacian (e.g.
inthree dimensions, Au = uy+un+i;:). Forsimplicity we assume
that {2 is a polygonal domain so that it can be triangulated exactly.
We will consider Delaunay triangulations of 2 satisfying the
property that Voronoi regions corresponding to interior vertices
are contained within §2. The control volume technique uses both
the Delaunay and the Voronoi diagrams. Lelting V; be a Voronoi
cormresponding to an interior vertex p;, we integrate the partial



differential equation over V; to get

du
f =/ —Au =/ — Nt
-/V; Vi av; on

where the second equality follows upon integration by parts. Let
the length of the Delaunay edge joining verex p; to p; be denoted
by ki;, and let AV; to be the set of indices j such that p; is connected
to pi by an edge, i.e. the set of Delaunay neighbors of pi. For
each Delaunay edge there is an associated Voronoi face (or edge
in two dimensions) common to V; and V; which we denote by Aj;,
see Figure 5. Letting u; be an approximation of u(p;) (u being the
exact solution), the above equation is approximated by:

f =2
v, an
ol
JEN; YA -

W — i
Z |4 hy

JEN;

| Vilfi

(1]

In the above, f is the average value of f overthe Voronoi V;. This
equation is to hold for each interior vertex p;. and on the boundary
we set u; = g(p;). We construct a matrix for the linear system
with variables i;, such that line i of the matnix contains the above
linear constraints. The solution of this matrix is the control volume
approximation of our equation. It is transparent that the matrix
corresponding to this system of linear equation is an M-matrix
so that the discrete maximum principle will hold. MacNeal [22]
shows that in two dimensions this matrix is identical to that given
by the finite element method constructed using piecewise linear
functions on the triangulation; however. this is not the case in
three dimensions.

Figure 5: The Voronoi diagram of p;, the Delaunay edge
hy;, and the Voronoi face Aj.

4.2 Error Estimates

Nicolaides [30] established error estimates for the control volume
method. For quantities defined on the edges of the Delaunay mesh
Nicolaides defines the inner product (., .)w

(U, Viw = Z |Ailhii Ui Vi
Gig)
and corresponding norm ||.||w by

Ul = W, Dw,

where i indicates summation over all of the non-boundary
Delaunay edges.

Theorem 4.1 (Nicolaides) Let {u;} be the discrete solution given
by the control volume method, then define Ui = (u; — u;)/hy and

U and U by
g = 1) = ulp) wa:L/_a_“
i hy "l ), on

(u is the exact solution) then ||U — UV ||w < UV — U@|y.

Note that the right hand side of this error estimate depends
only upon the exact solution, and ||U||w is a discrete version of
the L2($2) norm of the gradient.

Nicolaides proceeded to estimate the error | U" — U?||w
under the assumption that the meshes had bounded aspect ratio;
however. we show that this hypothesis can be relaxed to the
situation where the radius-edge ratio is bounded.

Theorem 4.2 Let p = maxj rij/ hij be the radius-edge ratio, then
IV = UPllw < (1 + 40" I ul| 2y,

where D?u is the Hessian mairix of u (matrix of second derivatives)
and h = maxg ) hjj.

We note that, as usual, the estimate above can be localized
in the sense that the right hand side is actually sums of products
of h; and the L? norm of the second derivatives in small regions
containing the this edge. For this reason it is natural to refine the
mesh in regions where the second derivatives are large.

S Smoothing Random Point Sets

In this section, we show how to use two techniques. oversampling
and filtering to generate a well-spaced point set according to a
density function.

The aspect ratio, and degree of the Delaunay diagram of a
uniform random point set generated by the Poisson process are
all unbounded, as shown by Bern. Eppstein, and Yao [6]. The
ply of the Delaunay neighborhood system of this point set is also
unbounded, as shown in a previous section. If instead of using the
Poisson point process with intensity one, we oversampled such
that with high probability each unit area has at least one point, the
degree, aspect ratio and the ply would still be unbounded. Our
idea is to selectively remove some of the extra points after over-
sampling. By carefully using these two lechniques, oversampling
and filtering, we can efficicntly create a point set whose Delaunay
diagram has constant degree and constant ply.

Suppose, after oversampling based on uniform distribution,
each unit ball ball contains a sample point with high probability.
Let A be the random point set. Our filtering technique first build
a confiict graph G where each vertex comresponds (o a unit ball
centered at a sample point and the venices of two balls are con-
nected if one contains the other’s center in its interior. Let Sbe a
maximal independent sct of G. We call § a filtered points set of
A.

Lemma 5.1 The radius-edge ratio of S is bounded by 2.

Proof: Let R be the radius of the Delaunay ball of a Delaunay
simplex D. Let L be the length of the smallest cdge of D. We
have L > 1 because § is an independent set of A. Let the end
points of the smallest edge be p and g. If R, the Delaunay radius



of D, is larger than 2, then we candraw a unit ball B in the interior
of the Delaunay ball of D such that the distance between B and
the boundary of the Delaunay ball of D is at least 1. By the
oversampling assumption. B must contain a sample point. say w
from A. Because D is a Delaunay simplex. w does not belong to .
However. the distance from S to any point of §is at least 1. Thus,
w does not “conflict” with any other points in §, contradicting with
assumption that § is an maximal independentset of G. Therefore,
R<2andR/L < 2. o
The above Lemma ignored edge effect. By first going
through a similar lower dimensional process over the edges, with
a slightly smaller circle used for the conflict graph, we can show
a similar lemma with a slightly weaker aspect ratio bound for that
case as well. The result of this section can be extended to proba-
bility densities whose inverse, their spacing function. is smooth,
i.e., Lipschitz. with constant ratio [25]. We use the oci-tree as
an initial approximation for the points density, and then perform
smoothing and filtering to obtain a density closer to optimal. Of
course the oci—tree comers themselves could be well spaced. but
by using a rather coarse oct-tree, we get a random point set which
is well spaced. rather than boxes which are aligned with the x, ¥
coordinates. By filtering, we also get a point set whose density
is closer to optimal, compared with the oct-tree which is experi-
mentally shown to have high constants [33].
Algorithm sketch

o Apply the 3D balanced oct-tree or 2D balanced quad-tree
algorithm to approximate the Ifs.

e Ineach cell, place a constant number of points, and derive a
better bound of the local feature size by searchinga constant
number of nearby cells.

e Create a conflict graph over the points, by connecting two
nodes if the distance between them is larger than some con-
stant times the local feature sizc of either and return 2 max-
imal independent set of the graph.

This is a simple sketch of the algorithm. In the presence
of boundary faces and edges. a lower dimensional version of the
algorithm will have to be run first on the edges and faces of the
input.

6 Parallel Algorithms

Theorem 6.1 Let P be a point set in R". Assume DT(P) has
a bounded radius to edge ratio, then DT(P) can be found in
O(n log n) time sequentially and in randomized parallel O(logn)
time using n processors.

Our parallel algorithm uses the structure theorems of Section
3. Using sphere separator decomposition. it first finds a super-
graph of DT(P) that also has bounded degree. The supergraph
reduces the Delaunay diagram problems of n points in RYtoa
collection of n independent convex hull problems of constant size
in R". The

6.1 Density graphs as super-graphs for DT

We first define the a-densirv graph of a point set P, denoted
by DG.(P). Let B; be the nearest neighbor ball of pi, i.c.. the
ball whose center is p; and whose radius is equal to the distance
between p; 10 its nearest neighbor in P. The a-density graph of

P is the restriction of the a-overlap graph (See section 2) for this
neighborhood system to a density graph — that is, all edges that
are longer than o times the nearest neighbor are removed from
the cr-overlap graph.

Notice that the a-density graph of P is the supergraph of
any a-density embedding of a graph that uses P as its vertices.
Therefore, if DT(P) satisfies the bounded radius-edge ratio prop-
erty then by Theorem 3.2 there exists a constant e, depending
only on d and the radius ratio. such that DT(P) is a subgraph of
DGa(P). Notice also that DG, (P) has bounded degree as well.

Using a construction similar to the one presented in [18],
we can compute the a-density graph in random parallel O(log n)
lime using n processors.

6.2 Convex Hulls and Delaunay Triangula-
tions

We now discuss how to find the Delaunay diagram when a graph
guaranteed to be a supergraph of the Delaunay diagram is known.

Lemma 6.2 Let P be a point set in RY, G be a supergraph
of DT(P). Let D; the degree of node i in the graph G, and
D = max; D;. Then we can compute DT(P) from G in sequential
O( X Ten.4(Di)) and in parallel O(Tcy (D)) using n processors,
where Tcu a(m) is the sequential time for finding the convex hull
of m points in d dimensions.

Therefore, given G with a constantdegree bound, DT(P) can
be found in O(1) time using n processors.

In the proof of Lemma 6.2 we exploit the well known geo-
metric relationship between Delaunay diagrams and convex hulls.
For each point p in RY. let lifi(p) = (p, ||p]|®), where ||p|| is the
norm of vector given by p. Geometrically, lift maps point p verti-
cally onto the paraboloid x| = ZL x;

Brown (8] and Edelsbrunnerand Seidel [15] proved the following
result.

Lemma 6.3 Suppose P = {p1,....pa} is a point set in RY, Ler
Q = lift(P). Then DT(P) is isomorphic to the lower convex hull
of Q.

Lemma 6.3 reduces the problem of finding the Delaunay
diagram in d dimensions to the problem of finding the convex
hull in (d + 1) dimensions. Instead of using Lemma 6.3 directly,
we use it to relate a Delaunay diagram in 4 dimensions to a set of
small convex hull problems in the same dimension d.

Let g; = lift(p;). By Lemma 6.3, (pi, p;) is an edge in DT(P)
only if (g:, g;) is on the convex hull (lower hull) of @. One way to
recognize the set of edges with endpoint p; that belong to DT(P)
is to recognize the set of edges with endpoint g; that belong to the
convex hull of Q.

Lemma 6.4 Suppose we take a hyper-plane H in R*' close
enough 1o qi 10 separate g; and Q — {q:}. Let gj be the in-
tersection of qiq; and H. Then qiq; is an edge on the convex hull
of Q iff q; is on the convex hull of {q] :j # i}.

Lemma 6.4 yields another way to find DT(P): Lift P to
the paraboloid to obtain @ and solve the n convex hull problems
(one for each point in @) in d dimensions. The convex hull
problem for g; determines the set of convex hull edges of @ with
qi as an endpoint. and hence, the set of edges of the Delaunay
Triangulation of P with p; as an endpoint.

Now suppose G is a supergraph of DT(P). To determine
the set of edges with endpoint p; of DT(P), we simply lift the



graph neighbors of p; and perform a d dimensional convex hull
construction (as in Lemma 6.4). We can perform such local
operation independently for all points in parallel. Therefore. if
the maximum degree of G is D, we can compute DT(P) from G in
O(Ten,4(D)) using n processors, completing the proof of Lemma
6.2,

6.3 On-line Scheme for the algorithm

In previous sections, we developed an algorithm that efficiently
computes DT(P) given a constant &, such that DT(P) is a subgraph
of the &-density graph of P. However. it is not often the case that
é& is known a priori. Let o be some arbitrary value. and let G2 (P)
be the graph the algorithm generates when run with the constant
a. If @ > & then Go(P) = Ga(P) = DT(P). How do we know if
the o picked was large enough? The following theorem points to
one such test:
Theorem 6.5 If Go is a triangulation, or for higher dimensions,
a simplicial complex, then Gs(P) = Ga(P) = DT(P).
proof sketch: By the way we constructed G,, it is locally De-
launay, i.e.. the triangulation around each node is Delaunay with
respect to the node’s neighbors. Projecting the set of points onto
a higher dimension paraboloid, we notice the projection of the
triangles(simplices ) forms a surface which is convex at any node,
and therefore the surface is the convex-hull of the points. o
Thus. we need to be able to efficiently test whether G, is
a triangulation. If it is not, double the guess of . and rerun the
algorithm. The complexity of this scheme is

lOg Q‘(TDT(P] + T[CSl(P])

where Tp is the time to compute the Delaunay graph, and Tiest
is the cost of performing the test for triangulation.

How expansiveis it to test for triangulation? In 2-d. it seems
it would subsume testing if the embedding is planar, i.c.. if any
of the edges cross. However. the class of graphs our algorithm
produces comes with plenty of geometrical information. which
can be used to simplify the testing.

Definition 6.6 G.(P) is consistent if whenever node i las sim-
plex (i, i1, i3, .., ias1). then 50 do the other nodes in that simplex,
Lemma 6.7 G,(P) is a local Delaunav triangulation around
each node, therefore a node is either surrounded by triangles,
or is on the convex-hull of its neighbors.

Definition 6.8 Anedge (i, j) of Go(P) is a local convex-hull edge
if it is on the convex-hull of the set {k|(i,k) € Ga(P)} Ui

Since we may assume that we have already computed the
convex-hull of the point set it is trivial to test where the local
convex-hull is the convex-hull.

Theorem 6.9 If Ga(P) is consistent and its local convex-hull is
the convex-hull then it is a triangulation (simplicial complex).

Proof: We state the proof in 2-d. The same proof in 3D should
use faces instead of edges. We first prove that no two riangles
intersect, i.e. each point of R?\ P is in at most one triangle. We
then show that if a point is in no triangle, then it is outside the
convex-hull of P, and therefore the graph is a triangulation. By
way of contradiction, assume two edges intersect: (i, /) and (k, [).
Let i be the node with the largest nearest neighbor ball that has
an intersecting edge, and (k. ) is the last edge that intersects (4, j),
i.c no other edge intersects (i, ) closer to i . The edge (k. is
cither on the convex-hull of k, or the node i is in some triangle

(k, I, m). In the first case, i is outside the convex-hull of k, which
is a contradiction since the local convex-hull is the convex-hull.
Consider the case where { is inside the triangle (k, [, m), and we
can represent £ as the sum: M + Ak + Amm = i, A, A, Am are
real non-negative numbers s.t. A; + Ax + A = 1. We estimate i's
distance from m: d(i, m) = |Ae(k —m)+ (I —m)| < M| (k—m)| +
Al = m)| < max(d(l, m),d(k,m)). Assume d(k,m) > d(I,m),
hence i is closer to m than k. By the way we chose i, the nearest
neighbor ball of i is larger than the nearest neighbor ball of k.
therefore there is an edge between i and m in the a-density graph.
and the triangle (k. [, m) is not a legal local Delaunay triangle of
m — its Delaunay ball is not empty.

Theretore we can assume the graph is planar (or in 3-d, that
no two tetrahedra intersect). Pick a point ¢ € R?. and locate
the face a point is in. If the face is not triangular, walk along
the boundary of the face. For each node on the face's boundary,
the boundary is locally convex. Therefore, each component of
the face boundary is the boundary of a convex set. Since the
graph has a simple connected local convex-hull, this must be the
convex-hull of P. a

7 Final Remarks

We have defined a new aspect-ratio condition, the radius-edge
ratio, and showedthat geometrically, Delaunay triangulations with
that condition are an a-density graph, and that the ply of the
neighborhood system of the Delaunay spheres is constant. Our
results hold for any dimension. These properties are very desirable
for designing efficient parallel mesh algorithms, its generation,
formulation and partition. We present such algorithm for parallel
3D Delaunay diagrams. This construction is optimal for such
linear sized diagram.

Numerically, we have presented a new error analysis for the
control volume method. showing that a bounded radius-edge ratio
is sufficient to get global approximation theory error estimates for
Poisson’s equation.

Our geometrical and numerical structure theorems provide
two important motivations for Delaunay based numerical meth-
ods.
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