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Abstract

We present a linear work parallel iterative algorithm
for solving linear systems involving Laplacians of pla-
nar graphs. In particular, if Ax = b, where A is the
Laplacian of any planar graph with n nodes, the al-
gorithm produces a vector x̄ such that ||x − x̄||A ≤ ǫ,
in O(n1/6+c log(1/ǫ)) parallel time, doing O(n log(1/ǫ))
work, where c is any positive constant. One of the
key ingredients of the solver, is an O(nk log2 k) work,
O(k log n) time, parallel algorithm for decomposing any
embedded planar graph into components of size O(k)
that are delimited by O(n/

√
k) boundary edges. The

result also applies to symmetric diagonally dominant
matrices of planar structure.

1 Introduction

Graph Laplacians owe their name to Laplace’s equation;
they arise in its discretization. They are also intimately
connected to electrical networks [5]. Solving Laplacians
in the context of those two classical Scientific Comput-
ing applications was important enough to motivate and
sustain for decades the research on multigrid methods
[2]. More recently, the reduction of symmetric diago-
nally dominant systems to Laplacians [12], in combi-
nation with the observations of Boman et al. [1], ex-
tended the applicability of Laplacians to systems that
arise when applying the finite element method to solve
elliptic partial differential equations.

Given the direct relationship of Laplacians with
random walks on graphs [3], it shouldn’t be surprising
that linear systems involving Laplacians quickly found
other applications in Computer Science. Yet, when
Vaidya introduced his combinatorial preconditioners for
accelerating the solution of Laplacian systems [29], very
few could foresee the wide arc of applications that
emerged during the last few years. Laplacian solvers
are now used routinely in applications that include
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segmentation of medical images [11], or collaborative
filtering [7]. They are also used as subroutines in
eigensolvers that are needed in other algorithms for
image segmentation [28], or more general clustering
problems [22].

Besides the great impact on real world applications,
the common thread among all these applications is that
they generate graphs with millions or billions of vertices.
Very often, the graphs are planar, as in the case of
two dimensional elliptic partial differential equations.
In several cases they additionally have a very simple
structure. For example, the graphs arising in medical
image segmentation are two and three dimensional
weighted grids [11]. Thus, it is extremely important
to design fast and practical solvers that specialize in
planar graphs.

The design of combinatorial preconditioners culmi-
nated in the recent breakthroughs of [27] and [6], that
showed that general Laplacians can be solved in time
O(n logO(1) n), and planar Laplacians can be solved in
time O(n log3 n), using as preconditioners low stretch
trees. The upper bound in this approach probably can-
not be improved beyond O(n log n), due to the log n
lower bound associated with the average stretch of span-
ning trees. This is known to be suboptimal for certain
classes of un-weighted planar graphs, where multigrid
methods work provably in linear time [2], matching up
to a constant the lower bound. So, a particularly ap-
pealing question presents itself; what can be done in
linear time? From a more practical point of view, one
additional shortcoming of the preconditioner of [6], is
that the algorithm for its construction is highly sequen-
tial. It is not known or obvious how to parallelize the
algorithm in order to exploit the availability of a mod-
erate number of processors in a parallel machine or in a
distributed environment.

In this paper we show that planar Laplacians can
be solved with O(n) work, in O(n1/6) parallel time. The
novel idea in our construction is to bypass the construc-
tion of the global low stretch tree for the given graph,
by exploiting the combinatorial structure of the under-



lying unweighted graph. In the case of planar graphs,
the graph can be decomposed into O(n/k) pieces of size
O(k), with each piece having a boundary of O(

√
k)

vertices. Then, a proper ”miniature” preconditioner
is constructed independently for each of these pieces.
The global preconditioner will be the aggregation of the
miniature preconditioners. Its quality will be bounded
above by the quality of the worst among the miniature
preconditioners.

One basic problem we have to solve in the process,
is the construction of a good decomposition. There
is a considerable body of literature on linear work
parallel algorithms for finding small vertex separators
in planar graphs, including [9]. However, the algorithm
and the underlying techniques are geared towards the
construction of 2-way separators. The fastest known
algorithms for constructing a small n/k-way separator
use variants of recursive bisection and run in time
O(n log n) [8, 14]. The complexity of both algorithms
is due to the computation of a full tree of balanced
separators, spending O(n) time for the construction of
each level of the tree. We note that there is an O(n) time
algorithm for constructing a full tree of separators for a
planar graph [10]. However, the separators constructed
in [10] are subtly different from the separators needed in
[8] or [14]. Furthermore, the algorithm of [10] requires
the computation of a BFS tree for the graph. It is a
long standing open problem whether a BFS tree can
be computed with O(n) work in o(n) parallel time.
In this paper we adapt the techniques of [9], to give
a linear work parallel algorithm for decomposing any
planar graph into connected components of size O(k),
that are delimited by O(n/

√
k) boundary edges.

1.1 Implementation and practicality notes.
We believe that besides the theoretical improvement,
our method can lead to more practical implementations.
An appealing characteristic of the miniaturization ap-
proach is the fact that it disconnects the problem of the
existence of a good preconditioner from its construction.
In most applications, one is interested in solving many
linear systems with a given Laplacian. The precondi-
tioners depend only on the given graph, hence they are
constructed a single time. In those situations, it makes
sense to spend more time on the construction of the
preconditioners. This is because their quality affects
the running time for every system that is solved. For
example, in this paper, we use the preconditioners of
Spielman and Teng for the construction of the mini pre-
conditioners. However, without giving the details here,
let us note that we can substitute them entirely with the
Steiner support trees [12, 19]. Steiner trees are usually
better than low stretch trees in practice, and provably

better for many natural families of graphs [21, 19]. A
major obstacle in their applicability as preconditioners
was that the algorithm for their construction is polyno-
mial in the size of the graph. Apart from the extra time
for the design of the miniature preconditioner, one can
also spend extra time for measuring its quality. With
a global preconditioner, one has to assume the usually
pessimistic theoretical guarantee for the quality of the
preconditioner. With our approach, the actual quality
can be measured easily, and the corresponding param-
eters in the solver can be adjusted accordingly. Test-
ing the quality of the preconditioner is also useful when
a fast algorithm for constructing the preconditioner is
good on typical instances, but may occasionally fail, as
it is the case with algorithms for constructing Steiner
trees. Failure instances can be detected, and the more
expensive accurate algorithm will be run only on them.

Finally, we note that the algorithm for decomposing
the graph seems to be necessary even for very simple
graphs such as weighted square grids. The reason is
that, whereas the square grid can be preconditioned
without running the decomposition subroutine, the
preconditioner undergoes a ”reduction” to a smaller
graph which recursively must be preconditioned. The
new smaller graph, does not inherit the nice properties
of the original graph.

2 Notation and technical statements

We will be considering planar weighted graphs G =
(V, E, w). Throughout the paper we will assume that
the given graph is connected and embedded. An
embedding can be found in linear time [13], and in at
most O(log2 n) parallel time, with parallel work ranging
from O(n log log n) to O(n log2 n), depending on the
parallel model [24, 16].

There is a natural isomorphism between graphs and
their Laplacians. The Laplacian A of a graph G can
be formed by letting A(i, j) = −wij and A(i, i) =
∑

i6=j wij . Conversely, given a Laplacian one can re-
construct the graph. For this reason, we will be identi-
fying graphs with their Laplacians. It is easy to see that
for two Laplacians A1 and A2 corresponding to graphs
G1 = (V, E, w1) and G2 = (V, E, w2), the graph that
corresponds to A1 + A2 is G = (V, E, w1 + w2). The
condition number of two graphs is defined as the ratio
λmax(A, B)/λmin(A, B), where λmax,min(A, B) are the
maximum and minimum non trivial generalized eigen-
values of the pair (A, B).

Let A = (V, E) be a graph, and V =
⋃m

i=1 Vi,
with Ai = (Vi, Ei) being the graph induced on Vi.
Furthermore, assume that E =

⋃m
i=1 Ei, and that every

edge lies in at most two Ai. Let W be the ”boundary”
set of nodes that appear in at least two Vi’s, and



Wi = W ∩ Ai. We will call W a vertex separator that
decomposes the graph into components of size maxi |Ai|.
We call

∑m
i=1 |Wi| the total boundary cost.

Throughout the rest of paper we let k be any fixed
constant. We will state the complexity of the algorithms
as a function of k. The first contribution of this paper
is the following theorem.

Theorem 2.1. Every planar graph with n nodes has
a vertex separator W , that decomposes the graph
into components of size O(k), with total boundary
cost O(n/

√
k). The separator can be constructed in

O(k log n) parallel time doing O(nk log2 k) work in the
CREW PRAM model, or in O(kn) sequential time.

Frederickson [8], and –in a more general setting–
Kiwi et al. [14], have given O(n log n) algorithms for
constructing the partitioning. The partitioning enables
the construction of a preconditioner with the following
guarantees.

Theorem 2.2. (Planar Ultra-Sparsify) Every pla-
nar graph A with n nodes has a subgraph B such that:
(i) κ(A, B) ≤

√
k, (ii) if we apply Gaussian elimination

on B by iteratively pivoting on degree one and two nodes
only, we get a planar graph C with O(n log3 k/

√
k)

nodes. Given the decomposition of Theorem 2.1, the em-
bedded graphs B, C can be constructed with O(n log2 k)
work, in O(k log n) parallel time.

The rest of the paper is organized as follows. In
Section 3 we give the proof of Theorem 2.1. In Section
4 we present the construction of the preconditioners.
Finally, in Section 5 we explain how for a large enough
constant k, we obtain the O(kn) time algorithm, and
we show that for all larger values of k the parallel
algorithm doing O(nk log2 k) work, has time complexity
that quickly approaches O(n1/6) as k increases. The
Appendix contains material that is well understood and
helps to make our presentation self-contained.

3 Planar Graph Partitioning

In this section we present an algorithm to partition a
connected embedded planar graph G of size n into pieces
of size at most O(k), by finding a set S of O(n/

√
k)

edges that will be the boundaries of the pieces. Each
boundary node is then incident to a number of pieces
equal to the number of edges incident to it in S. Hence,
the total cost of the boundary will be O(n/

√
k). The

algorithm is based on an algorithm of Gazit and Miller
[9]. It runs in O(k log n) parallel time, doing at most
O(nk log2 k) work.

Throughout this section we let Ḡ be a triangulation
of G. Given the embedding, the triangulation can be

computed easily with linear work in O(log n) time. Thus
every edge in Ḡ is either an edge in G or an added edge.
The separator will be the boundary between a partition
of the faces of Ḡ, consisting of O(n/

√
k) edges.

There are two natural graphs to define on the set
of faces F̄ of Ḡ. The first is where we connect two faces
if they share an edge, the geometric dual, denoted by
Ḡ∗. In the second, the face intersection graph, we
connect two faces if they share a vertex. Note that the
face intersection graph is not in general planar, while
the dual is planar. We say that a set of faces in F̄ are
edge/vertex connected if the corresponding induced
graph in the geometric dual/face intersection graph is
connected.

3.1 Neighborhoods and their cores. We define
the vertex distance dist(f, f ′) between two faces f and
f ′ to be one less than the minimum number of faces on
a vertex connected path from f to f ′. Since the faces
are triangular, dist(f, f ′) is equal to the length of the
shortest path from a vertex of f to a vertex of f ′, plus
one. Thus two distinct faces that share a vertex are
at vertex distance one. A d-radius vertex connected
ball centered at a face f ∈ F̄ , denote Bd(f), is the
set of all faces at distance at most d from f . That is,
Bd(f) = {f ′ ∈ F̄ | dist(f, f ′) ≤ d}. By induction on
the radius of the ball, one can show that a ball forms
a set of edge connected faces. We are now ready to
give the definition of a k-neighborhood, and some of its
consequences.

Definition. The k-neighborhood of a face f ∈ F̄
Nk(f) will consist of k faces defined as follows: (i) The
ball Bd(f) where d is the maximum d such |Bd(f)| ≤ k.
(ii) The faces at distance d + 1 from f picked so that
Nk(f) remains edge connected and of size k.

We call faces at a given distance from f a layer and
those at distance d+1 the partial layer. We define d+1
to be the radius of Nk(f). For each face we construct
its k-neighborhood. The neighborhood of a face f that
is incident to a node v of degree at least k, will have only
a partial layer. The partial layer can be constructed
by taking the first k faces going in a clockwise fashion
around v. In order to simplify our presentation, if a face
is incident to more than one nodes of degree more than
k, we will construct one k-neighborhood per each such
node, as described above. So, a given face may generate
up to three neighborhoods.

Lemma 3.1. The number of neighborhoods containing
any given face is O(klog k).

Proof. We seek to bound the size of the set C of faces
whose neighborhoods contain a given face f ′. The
neighborhoods are edge connected. If f ′ ∈ N , there



is an edge connected path of faces from f ′ to the center
of N . There are at most 6k neighborhoods of radius
r = 1 that may contain f ′. Every neighborhood of
radius r ≥ 2 that contains f ′ includes in its full layers
at least one of 18k given faces in B1(f

′), and B2(f
′). So,

from now on, we may assume that the neighborhoods
are full balls.

We claim that C is an edge connected set of faces.
To see why, let f ∈ C, with N(f) = Br(f). Let h be
the edge-incident face on the path from f to f ′. We
must have f ′ ∈ Br−1(h). Let I(f) be the set of faces at
distance 1 from f . We have Br(f) =

⋃

g∈I(f) Br−1(g).

Since h ∈ I(f), this implies that the radius of N(h) is
at least r − 1. Hence f ′ ∈ N(h), and h ∈ C.

We will find a set B of (2k)log k+1 neighborhoods
that cover all the faces in C. To form B we will be
removing, in rounds, sets of neighborhoods from C.
We start with N(f ′) = B0. Assume that in the tth

round we removed a set Bt. We will let Bt+1, be the
neighborhoods of the faces that have not been covered in
previous rounds, and are edge-incident to the faces in Bt.
Hence |Bt+1| ≤ 2k|Bt|. Let rt be the minimum radius
over the neighborhoods in Bt. To go from f ∈ Bt to f ′

the path must go through rt−1 layers of a neighborhood
N in Bt−1, before it reaches the center of N . By an
inductive argument, this gives that rt ≥ ∑t−1

i=0 ri ≥
2t−1. This implies that after d ≤ log k + 1 rounds,
the process must stop because rd becomes greater than
k, meaning that all neighborhoods in Bd have radius
greater than k, which is the maximum possible by
definition. So, |C| ≤ 3

∑d
i=1 |Bt| = O(klog k+2).

The critical fact is that each k-neighborhood Nk(f)
has a set Cf of core faces. The following key lemma
concerning the cores, follows by a standard pigeon hole
argument used by Lipton and Tarjan [17].

Lemma 3.2. Let Nk(f) be a neighborhood of radius r.
There exists a ball, B = Br′(f) such that 2(r − r′) +
|∂B| ≤

√
2k + 4. We call Br′(f) the core of Nk(f).

The importance of the cores becomes apparent in
the following Lemma.

Lemma 3.3. If Nk(f1) and Nk(f2) have at least one
vertex in common and P is any shortest path in Ḡ
from the boundary of f1 to the boundary of f2, then the
exposed part of P , that is the number of edges exterior
to Cf1

∪ Cf2
is at most

√
2k + 4.

3.2 An outline of the algorithm. With the
introduction of the neighborhoods and their cores, we
are ready to restate our goal for the rest of this section.
We aim to find a set P of O(n/k) paths or incisions,
with the following properties: (i) the removal of P

disconnects the graph into pieces of size O(k), (ii) the
two endpoints of each incision P ∈ P are faces whose
neighborhoods touch, so that Lemma 3.3 applies to P .
Then, for every incision P with end faces f1, f2, we will
include in the final separator S: (i) the boundaries of the
cores Cf1

and Cf2
, and (ii) the exposed part of P . One

way to think of this, is that we first find the incisions,
and then we add the cores of their end points on top
of them. Finally, we return to the graph the interior
of all the cores. It then becomes clear that the final
separator decomposes the graph into pieces of size O(k).
Furthermore, by Lemma 3.2 the number of edges added
in S per incision, is at most 2(

√
2k+4). Hence, the total

number of edges in the final separator is O(n/
√

k).
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Figure 1: Steps of the algorithm.

We now give a short outline of the algorithm. The
first step is to obtain a maximal set I of at most n/k
face-disjoint neighborhoods in Ḡ. We will call this the
set of independent neighborhoods. The maximality
of I will provide a good ”covering” of the graph, in the
sense that the neighborhood of every face exterior to I,
intersects at least one neighborhood in I. This step is
shown schematically in Figure 1a and it is described
formally in subsection 3.3. In the second step, we
assign each exterior face to one of the neighborhoods
in I, in order to decompose the graph into edge-
connected Voronoi regions of faces, each consisting
of the faces assigned to one neighborhood. This step
is depicted in Figure 1b and described in Section 3.4.
The edges between the Voronoi regions form a planar
graph that will be called the Voronoi boundary
graph. The nodes in the Voronoi boundary graph with
degree greater than 2 will be called Voronoi nodes.
The next step will be to further decompose the graph
into Voronoi-Pair regions, by finding paths between
the neighborhoods and the surrounding Voronoi nodes.
Two of the Voronoi-Pair regions are highlighted in
Figure 1c. We give the details in Section 3.5. Finally, we
separately split each Voronoi-Pair region, as described
in Section 3.6. Due to lack of space, we omit the proofs
of some of the easier lemmas. They are available in the
full version of the paper.



3.3 Computing the set of independent neigh-
borhoods. We say that two neighborhoods are in-
dependent if they share no faces of F̄ . Our goal will
be to compute a maximal set I of independent neigh-
borhoods. It is easy to compute I in O(kn) sequential
time. For the rest of this section let us denote with
|G| the number of edges of a graph G. We define the
containment graph B0 to be the bipartite graph with
the left side nodes corresponding to neighborhoods, and
the right side nodes corresponding to faces. Any given
neighborhood is joined with the k faces it contains. By
construction, |B0| ≤ 3kn. We also define the neigh-
borhood conflict graph N(B0), by letting nodes corre-
spond to neighborhoods, and edges joining neighbor-
hoods that intersect. By Lemma 3.1, every neighbor-
hood intersects at most O(klog k) neighborhoods. Thus
|N(B0)| = O(klog kn).

We will use a modification of Luby’s algorithm
[18], that was also used in [9]. We won’t directly run
the algorithm on the conflict graph. Instead, we will
simulate it on the containment graph. In every round
of the algorithm, every neighborhood N that remains
in the graph, picks randomly a number vN in (1, n4).
The simulation of one round will consist of k steps. In
the first step each N marks its center face with vN . In
every subsequent step, each N attempts to mark one
face f ∈ N that has not yet been marked by N . To
do this, it picks a face f ′ ∈ N that got marked by N in
previous steps, and shares an edge with f . It queries the
mark of f ′. If the mark of f ′ is higher than vN , N knows
that intersects a neighborhood with larger value. It thus
becomes inactive and won’t try to mark other faces for
the remaining steps. If the mark of f ′ is identical to vN ,
it goes ahead to mark f . In this way, every face receives
up to 3 requests to be marked, and the related writes can
be done independently. The biggest among the previous
mark of f and the 3 incoming values becomes the new
mark of f . After k steps, every N whose faces are
marked with vN joins I. Finally, all the neighborhoods
that joined I leave the graph along with their neighbors
in N(B).

Let Bt and N(Bt) be the containment and conflict
graphs before the tth round. It is not hard to see
that the above simulation includes in I at least as
many nodes as Luby’s algorithm. Hence N(Bt) loses a
constant fraction of its edges, and the algorithm finishes
in O(log n) rounds. Each round can be done in O(k)
parallel time. The total work is O(|Bt|) < O(|N(Bt)|).
There is some d = O(log2 k) such that |N(Bd)| = O(n).
Then, the total work for each of the first d rounds can
be upper bounded by the size of B0, and for the rest by
the size of N(Bt), which decreases geometrically from
|N(Bd)|. Hence the total work is O(nk log2 k) .

3.4 Decomposition into Voronoi Regions. The
goal of this section is to decompose the graph into edge
connected Voronoi regions, each corresponding to one of
the neighborhoods in I. At a high level, the approach
is to find the nearest neighborhood of each exterior face
f , and assign f to it. In the process, we will decompose
faces that have more than one nearest neighborhood
into more triangular faces, and assign these new faces
to neighborhoods.

Let f be an exterior face. Let ∂N denote the
faces on the boundary of a neighborhood N . We
define dist(f, N) = mina∈∂N dist(f, a), and dist(f) =
minN∈I dist(f, N).

Lemma 3.4. Let f be an exterior face of radius r.
Then r ≥ dist(f). Also, if N(a) ∈ I is such that
dist(f, N(a)) = dist(f) then N(a) and N(f) share at
least one vertex. Finally, every path of length at most
dist(f)−1 starting from the boundary of f , is contained
in N(f).

We now describe the algorithm. In what follows,
every exterior face f will compute a labelling of each of
its vertices, of the form d[a], where d will be a distance,
and a the index of a neighborhood in I. The labelling
will be local, and so no concurrent writes are needed.

1. Each neighborhood N(a) ∈ I marks all its faces
with the index of a. Also, for each boundary vertex v of
every face f , we compute the ”leftmost” (with respect
to f) BFS spanning tree of N(f) rooted on v.

2. If a vertex v is on the boundary of some N ∈ I,
it marks itself with 0 and submits clockwise the marks
to its unmarked surrounding faces, so that the faces
that receive the same mark are contiguous. This can be
done in O(log n) time with O(n) total work. In this way,
every exterior face f receives up to 3 marks through its
vertices. If f receives a through vertex v, it labels v
with 0[a]. Finally if f has received at least one mark,
it labels with 1 each vertex that has not been marked
with a 0.

3. By Lemma 3.4, to find the nearest neighborhood
of an exterior face f , it is enough to consider the nodes
in N(f) that are marked with 0. First, we label each
vertex v of f with the distance of the 0 vertex nearest to
v, plus one. This is by definition equal to dist(f). Let
us call the vertices labelled with dist(f) critical for f .
For each critical vertex v of f , we find the preferred
path P , defined as the leftmost path that (i) starts in
v, (ii) reaches a vertex w in a neighborhood N ∈ I, (iii)
has length dist(f) − 1. Lemma 3.4 implies that P is
contained in N(f), and thus it can be found in O(k)
time, by using the BFS computed in the previous step.
The face that lies anticlockwise (with respect to w) of
the last edge of P has already labelled v with 0[a], for



some a. Then, f labels v with dist(f)[a].
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Figure 2: Breaking exterior faces.

4. One can verify that there are six different
cases with respect to the type of labels that faces have
computed for their vertices. These cases are shown in
Figure 2, which also shows how each face is split into
smaller faces that are assigned to the neighborhoods.
After we split the faces that fall in to the first five cases,
the remaining faces are split when needed, to make the
graph triangular.

All the faces assigned to a given neighborhood in
N(a) ∈ I will be called the Voronoi Region of a.
We claim that the above construction produces Voronoi
regions that are edge connected.

Lemma 3.5. All the faces that share a vertex v compute
the same distance label for v.

Lemma 3.6. The Voronoi regions are edge connected.

Proof. By construction each neighborhood is edge con-
nected. So, it will suffice to show that for every exterior
face f ′ ∈ Ḡ′ that belongs to the Voronoi region associ-
ated with N(a), there is an edge connected path from
f ′ to a face of N(a). Let v be the critical vertex of f ′,
and f be the parent face of f ′ in Ḡ. It must be the case
that v was labelled with dist(f)[a] by f in Step 3.

If dist(f) = 1, then v is on the boundary of N(a).
The algorithm ensures that there is an edge connected
sequence of exterior faces surrounding v, that all marked
v with 1[a]. The face on the one end of the sequence
shares an edge with N(a). By the way we split the faces
of Ḡ, all the faces of Ḡ′ that are generated inside the
faces in the sequence, are labelled with a. This provides
the edge connected path from f ′ to N(a).

Now assume dist(f) > 1. Let P the preferred path
from v. By construction, the face g on the left of the
last edge of P has marked w with 0[a]. Now assume
that v is not in the last edge of P , and let v1 be the
vertex after v in P . We will consider the face f1 ∈ Ḡ
on the left of P that includes the edge (v, v1), and the
faces of Ḡ between f and f1 that touch v, as shown in

w

P1 P

f

v1

w1 a

b
 g

dist(f)[a]v

dist(f1)[a]

f1
t

Figure 3: Getting one step closer to N(a).

Figure 3. We show that these faces label v and v1 with
dist(f)[a] and dist(f1)[a] respectively.

Recall that Lemma 3.5 shows that the distance
labels are independent of the faces. We first show that
the labels of all vertices on the arc between f and f1

must be at least equal to dist(f). Assume for the sake of
contradiction that one of these vertices, say t, is labelled
with dist(f)− 1. This means that there is a path P1 of
length dist(f)−2 from t to a vertex marked with 0. The
path (v, t) + P1 has length dist(f) − 1. Then P is not
the preferred path. This is a contradiction. We know
already that v is critical for f . Since all the nodes of the
faces between f and f1, excluding f1, are labelled with
at least dist(f), v is critical for them as well. Therefore,
each of these faces uses independently exactly the same
definition to compute the label of v in Step 3, and so
the label is consistently [a].

It is easy to see that dist(f1) = dist(f) − 1. Since
all the other vertices of f1 are labelled with dist(f),
v1 must be labelled with dist(f1). The neighborhood
label computed for v1 by f1 is computed by considering
the last edge of the leftmost path of length dist(f) − 2
starting from v1. It is clear that this path is the segment
of P after v1, and thus the label is [a].

By applying this argument inductively it follows
that the set of all the faces F on the left of P , mark the
vertices of P with [a]. Finally consider all the faces of
Ḡ′ that were generated by splitting the faces of F . First
note that, by the way we split the faces of Ḡ, these faces
form an edge connected path from f ′ ∈ Ḡ′ to the face
g′ ∈ Ḡ′ that was generated inside g. Since dist(g′) = 1,
we know that there is an edge connect path from it to
N(a). The concatenation of the two paths forms an
edge connected path from f ′ to N(a).

Lemma 3.7. The set of preferred paths that reach a
given N ∈ I can be used to form a BFS spanning tree
of the Voronoi region of N . We call this the preferred
BFS tree of the Voronoi region.

Lemma 3.8. Each Voronoi region contains O(klog k)
faces.



3.5 Decomposition into Voronoi-Pair Regions.
To simplify our notation, we will be denoting Ḡ′ by
Ḡ. We have decomposed the graph into at most n/k
Voronoi regions. Their boundaries are edges of Ḡ.
Despite the fact that these regions are edge-connected
sets of faces, their boundaries may be not connected.
In general, every connected region can be decomposed
into a collection of simple boundary cycles, where the
faces exterior to one cycle are edge-disjoint to those of
another cycle. See [20] for a more complete discussion.
Let C denote the set of boundary cycles of all the
Voronoi regions. Any pair of boundary cycles in C,
corresponding to different Voronoi regions, can share
a path, a single vertex, or no vertices at all. We say
that a cycle in C is non-trivial if it shares a path with
at least one other cycle in C. The vertices where non-
trivial cycles intersect have degree at least 3. We call
these vertices the Voronoi nodes. Thinking of the
simple paths between the Voronoi nodes as edges, we get
a planar graph which we call the Voronoi boundary
graph, denoted by GI . The graph GI will not be in
general connected when the regions have disconnected
boundaries. We can think of GI as a set of connected
components, where each but one connected component
lies inside one face of another connected component. To
see this formally, pick an arbitrary ”outer” face fo of
Ḡ. To simplify our discussion we assume wlog that the
boundary of the region that contains fo is connected.
Every region Vg has a unique external boundary cycle
that lies closer to f0. The faces enclosed by the
boundary of each non-trivial internal cycle boundary of
Vg form a connected component of Ḡ. This boundary
is the outer face of a connected component Gc of GI .
Each of the other faces of Gc correspond to the external
boundary cycle of exactly one Voronoi region. It can
be seen that the number of faces of GI is equal to
the number of Voronoi regions that have a non-trivial
external boundary.

ccc

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

f

v1 v2

A B

g  

g

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

v1

v2

f

Figure 4: A Voronoi region and a Voronoi-Pair region.

A topological picture of a Voronoi region with a
disconnected boundary is shown in Figure 4. Searching
faces out from f , the boundary of Vf is initially con-
nected, until it reaches a saddle point, where it discon-
nects into two or more connected simple cycles. There

are paths from f to the saddle points that form a col-
lection of simple cycles and decompose Vf into Voronoi
subregions with simple cycle boundaries. Consider any
given subregion VfA

. Any point on the boundary of VfA

can be reached via a shortest path from f , that lies in
VfA

. Provided that we are given k ≥ 3 vertices on the
boundary of VfA

, we can decompose VfA
into k regions.

The boundary of each of these smaller regions consists of
one path on the boundary of VfA

, and two shortest paths
from its endpoints back to f . So, any segment along the
boundary between two different Voronoi regions Vf , Vg,
is reachable from both regions through shortest paths
that lie inside the two subregions of Vf , Vg that share
the given cycle, as depicted in Figure 4. This forms
what we call a Voronoi-Pair region.

Based on the above discussion we construct the set
P of incisions and the final separator S, as described
in Section 3.2. First, for each Voronoi region Vf we
add shortest paths from f to the saddle points. This
decomposes Vf into connected components with simple
boundaries. Then, we pick three arbitrary vertices on
every trivial cycle in C. Let V1 be the set of those
vertices, and V2 be the Voronoi nodes. Finally, for each
Voronoi region Vf we add to P the shortest paths from
f to each point of its boundary which is in V1 ∪ V2.
There are at least two such points on each boundary
cycle, and each Voronoi subregion is decomposed into
half-Voronoi pairs. Those are coupled with half-Voronoi
pairs inside the adjacent region Vg, and thus the graph
is decomposed into Voronoi-Pair regions.

Lemma 3.9. The number of paths added to P is at most
6n/k.

Proof. Let α be the number of trivial external bound-
ary cycles, and β be the number of non-trivial exter-
nal cycles. We have α + β ≤ n/k. Let f, v, e, p be
the number faces, vertices, edges, and connected com-
ponents of GI . We have β = f . The number of
paths to the saddle points is at most 2p + 2α. Fix
a connect component Gc of GI . Let fi,c be the sizes
of the faces of GI . The total number of paths in P
that are incident to Gc is

∑

i fi,c = 2ec. The num-
ber of paths to the points in V1 is at most 3α. Hence,
|P| ≤ 5α + 2p + 2

∑

c ec = 5α + 2p + 2e. From Euler’s
formula, we have β = 1 + p + e − v. Since 6v ≤ 4e, we
have 6β = 6+ 6p + 6e− 6v ≥ 6 + 6p+ 2e > 2p +2e. So,
|P| ≤ 5α + 6β ≤ 6n/k.

The algorithmic details of the construction of P and
S are easy and we present them in the full version of
the paper. The key is that Lemma 3.3 applies to all the
paths in P and these paths are constructed by using the
preferred BFS trees constructed along with the Voronoi
regions.



3.6 Splitting a Voronoi Pair. Let V denote the set
of Voronoi-Pair regions. By Lemma 3.8, the size of each
V ∈ V is bounded by O(klog k). We can run Frederick-
son’s algorithm [8] on the geometric dual of each V , to
add to the separator O(|V |)/

√
k edges that disconnect

V into pieces of size O(k). The total number of edges
added to S will be

∑

V ∈V O(|V |)/
√

k = O(n/
√

k). The

total work will be
∑

V ∈V O(|V | log |V |) ≤ n log2 k. The
algorithm can be run independently on each V , so the
parallel time is O(klog k).

Alternatively, we can decompose the Voronoi pairs
without invoking another separator algorithm. Due to
lack of space we give only a sketch of the algorithm.
Let Vf and Vg be the two Voronoi regions in the pair,
and Tf , Tg be their preferred BFS trees. Given a
segment between two vertices w1, w2 of the boundary,
we define the weight of [w1, w2] to be the total number
of the nodes contained between the paths from w1, w2

to their common ancestors, in Tf and Tg respectively.
We will decompose the boundary into non-overlapping
segments, such that: (i) every segment consisting of
one edge has weight larger than 2k, (ii) every segment
of weight less than k lies between two segments of
weight larger than k, (iii) all other segments have weight
between k and 2k. Let V3 be the set of the endpoints of
these segments. We add to P the shortest paths from
the vertices in V3 to f and g. Since the diameter of
the trees is O(k), this decomposition can be done in
O(k + log n) time with linear work. The total number
of paths added to P is O(n/k), by construction. We
are left with the segments consisting of only one edge,
whose weight can be up to O(klog k). Let M be the
component defined by one such segment. We separately
focus on each half of M . As implied by the proof of
Lemma 3.6, along with the preferred BFS TM , we have
implicitly computed a preferred spanning tree T ∗

M of
the geometric dual of M . The paths of faces in T ∗

M lie
along paths of TM , by construction. We will use parallel
tree contraction, to find the k-critical nodes of T ∗

M in
O(k) time, with O(|T ∗

M |) work (see [25] for definitions
and details). The number of critical nodes is O(|M |/k).
We will add to S the faces corresponding to the critical
nodes. This will decompose M into O(|M |/k) pieces
(called in [25] the k-bridges) of size at most O(k). The
vertices contained in each of these bridges are delimited
by three paths in TM . We will add these paths to P .
The total number of paths added to P in this step is
O(n/k) and the total work is O(kn).

4 Constructing the preconditioner

In this section we show how to construct the precondi-
tioner of Theorem 2.2 given the partitioning of Theorem
2.1. Let A = {Ai} be the components of the partition,

and Wi = Ai ∩ W . We have
∑

i |Wi| = O(n/
√

k), and
thus

∑

i |Ai| = O(n).
Every edge of A is contained in at least one Ai,

and in at most two; if it is contained in two, each
cluster gets half of its weight. In this way, we get A =
∑

i Ai. We let Bi be the subgraph of Ai constructed

by setting m = ⌈|Ai|/
√

k⌉ in Theorem 6.1. We have
|Bi| = |Ai| − 1 + |Ai|O(log3 k/

√
k), and κ(Ai, Bi) =√

k. The preconditioner will be B =
∑

i Bi. By

Lemma 6.1, we get κ(A, B) =
√

k. We will be greedily
removing degree one and two nodes in the interior
of each Ai independently. Concretely, we let Ci =
Eliminate(Bi, Wi) and C =

∑

i Ci. The algorithm
Eliminate is given in Section 6. This will provide a
partial Cholesky factorization of B = L[I, 0; 0; C]LT .
By Lemma 6.2, we have |Ci| ≤ 4(|Wi|+ |Ai| log3 k/

√
k),

and |C| ≤ ∑

i |Ci| = O(n log3 k/
√

k).
Each Bi can be constructed independently in time

O(|Ai| log2 k) using Theorem 6.1. Hence, the total work
for the construction of B is

∑

i |Ai| log2 k = O(n log2 k).
Since A, B are embedded, C comes automatically em-
bedded.

5 The solver and its complexity

In this section we review how the preconditioners can
be used to solve a given system.

5.1 The solver. Let A be a graph with n nodes, and
suppose we want to find an approximate solution x̄ for
the system Ax = b, so that ‖x − x̄‖A ≤ 1/2.

Given an approximate solution xi, one Chebyshev
iteration ([4]) obtains a better approximation xi+1. The
preconditioned Chebyshev iteration ([4]), is the Cheby-
shev iteration applied to the system B−1Ax = B−1b.
Each iteration uses only matrix-vector products of the
form B−1z, which is the solution of the system By = c.
It is well known that O(

√

κ(A, B)) Chebyshev itera-
tions guarantee the required approximation, provided
that the products B−1z are computed exactly.

In our setting, the preconditioner matrix B is
a Laplacian. Let A1 be the output of algorithm
Eliminate of Section 6, run on input (A, ∅). The partial
Cholesky factorization of B gives B = L[I, 0; 0, A1]L

T ,
where L is a lower triangular matrix with O(n) non-
zero entries. One can solve By = c, by solving for
z in [I, 0; 0, A1]z = L−1c, and then computing y =
L−T z by back-substitution. Therefore, we can solve
a system in B by solving a linear system in A1 and
performing O(n) additional work. However A1 may
be itself a big graph. Naturally, we can recursively
perform preconditioned Chebyshev iterations on A1,
with a preconditioner B1. This defines a hierarchy
of graphs A = A0, B0, A1, B1, . . . , Ar. In [27] it was



shown that the following recursive algorithm obtains the
required approximation:

Solve[Ai, b]: If i = r return A−1
r b. Otherwise,

perform 5
√

κ(Ai, Bi) ln κ(Ai, Bi) Chebyshev iterations,
with preconditioner Bi. Each time a product A−1

i+1c is
needed, use Solve[Ai+1, c] instead. Return the last
iterate.

5.2 Sequential complexity. We will assume that
for all i, 5

√

κ(Ai, Bi) lnκ(Ai, Bi) ≤ t, and |Ai|/|Ai+1| ≥
m. We let |Ar| be a constant, so that the corresponding
systems are solved in constant time. By an easy
induction, the total number of calls to Solve with
input Ai, is ti. For each call of Solve at level i, the
amount of work is O(t|Ai|) = O(tn/mi). Assuming
that the sequence of graphs can be constructed in
time T , if t/m < 1/2, the total amount of work is
T + O(tn

∑

i(t/m)i) = O(T + tn). In Theorem 2.2
we can pick a value of k that satisfies t/m = 1/2 for
a constant t. The time to construct the hierarchy is
T =

∑

i O((k + log2 k)n/mi) = O(kn). In comparison,
using the construction of [27], the number of levels must
be O(log n/ log log n) and using Theorem 6.1, we have
T =

∑

i(n/ti) log2(n/ti) = O(n log3 n/ log log n).

5.3 Parallel Complexity. Let us now turn our
attention to the potential for parallelism in algorithm
Solve. By Theorems 2.1 and 2.2, the hierarchy of
graphs can be constructed with O(nk log2 k) work in
O(k log2 n) time. The algorithm can be seen as a
sequence of Chebyshev iterations. At the end of Section
6 we outline how to compute the Cholesky factorization
with O(n) in O(log n) time. Hence each iteration can
be done with O(n) work in O(log n) time. Both the
sequential and the parallel algorithms will do the same
number of iterations, and thus the total parallel work is
proportional to the total sequential work.

The Chebyshev iterations must be performed se-
quentially, so their total number is the dominating fac-
tor in the time complexity. This is dominated by the
O(tr) iterations done at the bottom of the hierarchy. Let
m = tc. Given that |Ar| is constant, we have r ≤ logm n,
and tr = O(n1/c). Theorem 2.2 guarantees that c can be
taken arbitrarily close to 2, while the total work remains
O(n) with only a larger hidden constant. In compari-
son, the algorithm of [27] can also achieve a c arbitrarily
close to 2, but with an increase in the log terms in the
total work done by the algorithm.

We can improve the number of Chebyshev iterations
while keeping the amount of work linear, by stopping the
recursion at a higher level. In the following discussion
we omit inverse polylogarithmic factors. Let |Ar| = nα.
We have r = (1−α) logm n, and tr = n(1−α)/c. To solve

the systems in Ar we use the parallel nested dissection
algorithm of Pan and Reif [23]. The algorithm requires
as input a tree of small vertex separators for Ar. This
can be constructed one time, with o(n) work, and in
n(1−α)/c time using Klein’s algorithm [15]. Then, the
algorithm obtains a one-time factorization of Ar in
polylog(n) time, with O(n3α/2) work, which is linear
if a = 2/3. Then, every system in Ar can be solved in
polylog(n) time, with O(nα) work. The total amount of
work for solving the systems in Ar is O(n(1−α)/cnα) =
o(n). Hence the parallel time complexity approaches
O(n1/6) as c approaches 2, and the algorithm can use
only O(n5/6) processors.

6 Appendix

Lemma 6.1. (Splitting Lemma) Let A, B be graphs,
with A =

∑

Ai and B =
∑

Bi, where for all i, Ai, Bi

are graphs on the same set of nodes. Then κ(A, B) =
maxi κ(Ai, Bi).

The following theorem is an adaption of theorem
Ultra-Sparsify of [27], implicitly mentioned in [6]. The
AKPW trees of [27] are replaced by the low stretch trees
of [6]. For planar graphs sparsification, is not necessary,

and this saves the logO(1) n factor in the condition
number in the original statement of the theorem.

Theorem 6.1. (Ultra-Sparsify) Let A be a planar
graph with n nodes and m ≤ n be an integer. One can
find a subgraph B of A, with n−1+mO(log2 n log log n)
edges, such that κ(A, B) ≤ n/m. B can be constructed
in time O(n log2 n).

Let A = (V, E) be a graph, and S ⊂ V .
Eliminate(A,S): If v has degree 1 and it is not in

S, remove v and its adjacent edge. If v has degree 2 and
it is not in S, remove v and connect its neighbors with
an edge.

Lemma 6.2. Algorithm Eliminate returns a graph C
with at most 4(|S| + |E| − |V | + 1) nodes.

It is easy to see that Eliminate preserves the
planarity and the embedding of the input graph, as
well as all similar structural properties. Algorithm
Eliminate can be used to derive a partial Cholesky
factorization A = L[I, 0; 0, C]LT , where L has O(|V |)
non-zero entries.

Let us now give a sketch of the computation of L.
A more detailed exposition can be found, for example,
in [12]. Assume that the algorithm eliminates vertices
v1, . . . , vk in this order, producing a sequence of graphs
A = A0, A1, . . . , Ak = C, where Ai is the graph after
the elimination of vertex vi from Ai−1. Roughly, when



vertex vi is eliminated, the algorithm computes a lower
triangular matrix Li which has ones in the diagonal, and
other non-zeros only in the ith column, at the positions
of the neighbors of vi in Ai−1. Thus, Li depends only
on the graph induced on vi and its neighbors in Ai−1.

We have L =
∏k

i=1 Li. Assume that the eliminated
vertices can be separated into sets A1, A2, . . . , At, such
that no edges of A go between any pair of these sets.
Then, if nodes i and j belong to different sets, Li and Lj

commute. This can be shown formally by inspecting the
algebraic form of Li. Hence, we can write L =

∏

i LAi
,

where LAi
corresponds to the elimination of the nodes

in Ai, and can be constructed independently from the
other LAi

’s.
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