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The shuffle-exchange graph is one of the best structures known for parallel computation. 
Among other things, a shuftle-exchange computer can be used to compute discrete Fourier 
transforms, multiply matrices, evaluate polynomials. perform permutations, and sort lists. The 
algorithms needed for these operations are quite simple and many require no more than 
logarithmic time and constant space per processor. An 0(N2/log2 N)-area layout for the 
shume-exchange graph on a two-dimensional grid is described. The layout is the first which is 
known to achieve Thompson’s asymptotic lower bound. 

1. INTRODUCTION 

The shuffle-exchange graph has long been recognized as one of the best structures 
known for parallel computation. Among its many applications, a shufIle-exchange 
computer can be used to compute discrete Fourier transforms, multiply matrices, 
evaluate polynomials, perform permutations and sort lists [ 15, 18, 191. The 
algorithms needed for these operations are very simple and many require no more 
than logarithmic time and constant space per processor. 

Recent developments in very large scale integration (VLSI) circuit technology have 
made it possible to fabricate large numbers of simple processors on a single chip. As 
most of the processors contained in a shume-exchange computer are simple, the 
shume-exchange graph serves as an excellent basis upon which to design and build 
chip-sized microcomputers. One of the main difficulties with such an architecture, 
however, is the problem of routing the wires which link the processors together in a 
shuffle-exchange network. Current fabrication technology limits the designer to two 
or three layers of insulated wiring on a chip and demands that he make the chip as 
small in area as possible. 

Abstracted, the designer’s problem becomes the mathematical question of how to 
embed the shuffhe-exchange graph in the smallest possible two-dimensional grid. 
Thompson was the first to formalize the question mathematically. In his thesis 1231 
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he showed that any layout (i.e., embedding in a two-dimensional grid) of the N-node 
shuffle-exchange graph requires at least R(N’/log* N) area. In addition, he described 
a layout requiring only O(N’/log ‘I2 N area. Shortly thereafter, Hoey and Leiserson ) 
[4] described an embedding for the suffle-exchange graph in the complex plane 
(called the complex plane diagram) and showed how the diagram could be used to 
find an O(N2/log N)-area layout for the N-node shuffle-exchange graph. Subse- 
quently, Leighton et al. [ 121, and (independently) Steinberg and Rodeh [ 211 showed 
how the complex plane diagram could be used to find an O(N2/log3’2N)-area layout. 

In this paper, we pursue an entirely different strategy in order to find an 
O(N*/log’ N)-area layout for the N-node shuffle-exchange graph, thus achieving 
Thompson’s asymptotic lower bound. In addition, we describe how the new 
techniques can be used to find O(N2/log2 N)-area layouts for more general graphs 
(such as the shuffle-shift-reverse graph). 

As is the case with much of the previous work on this problem, our results are 
more theoretical than practical. This is due, in part, to the fact that the layout 
procedure described in the paper is designed to produce good layouts for large 
shuffle-exchange graphs. Unfortunately, it produces poor layouts for small shuffle- 
exchange graphs and, for the time being, these are the networks of practical interest. 
Nevertheless, the methods developed in the paper do appear to have some practical 
value. For example, Leighton and Miller [ 131 have constructed a 19-by-36 layout for 
the 128node shuffle-exchange graph by extending the methods described in this 
paper. 

The remainder of the paper is divided into seven sections. In Section 2, we define 
the shuffle-exchange graph and the grid model of a chip. Section 3 contains more 
definitions and some useful combinatorial lemmas. The proofs of these lemmas 
are included in Section 4. In Section 5, we describe a near-optimal, 
O(N2 log log* N/log’ N)-area layout for the N-node shuffle-exchange graph. In 
Section 6, we show how to modify the near-optimal layout in order to produce an 
asymptotically optimal layout. In Section 7, we show how to lay out several 
supergraphs of the shuffle-exchange graph. We conclude in Section 8 with some 
remarks. 

2. PRELIMINARIES 

2a. The Shufle-Exchange Graph 

The shufle-exchange graph comes in various sizes. In particular, there is an N- 
node shuffle-exchange graph for every N which is a power of two. Each node of the 
(N = 2k)-node shume-exchange graph is associated with a unique k-bit binary string 
akel ..a a,. Two nodes w and w’ are linked via a shufle edge if w’ is a left or right 
cyclic shift of w (i.e., if w=ak-, ... a, and w’ =akW2 ... aOak-l or w’= 
aOak- ‘** a,, respectively). Two nodes w and w’ are linked via an exchange edge if 
wand w’ differ only in the last bit (i.e., if w=ak-l . ..a.0 and w’=akPl *..a,1 or 
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vice versa). As an example, we have drawn the 8-node shuffle-exchange graph in 
Fig. 1. Note that the shuffle edges are drawn with solid lines while the exchange 
edges are drawn with dashed lines. 

By replacing the nodes and edges of the shuffle-exchange graph by processors and 
wires (respectively), the shuflle-exchange graph can be transformed into a very 
powerful parallel computer (which we call the shufle-exchange computer). The 
computational power of the shume-exchange computer is partly derived from the fact 
that every pair of nodes in an N-node shuffle-exchange graph is linked by a path 
containing at most 2 log N edges and thus the communication time between any pair 
of processors is short. 

More importantly, however, the shuflle-exchange computer is capable of 
performing a perfect shuffle on a set of data in a single parallel operation. For 
example, consider a deck of 8 cards distributed among the 8 processors of the 8-node 
shutfle-exchange graph so that processor 000 initially has card 0, processor 001 
initially has card 1, processor 010 initially has card 2, and so forth. Next, consider a 
(parallel) operation of the shuffle-exchange computer in which each processor uZ a, a, 
sends its card across a shuffle edge to the neighboring processor u,u,u,. It is easily 
verified that, after completion of the operation, processor 000 contains card 0 (the 
top card in the shuflled deck), processor 001 contains card 4 (the second card in the 
shuffled deck), and so forth. 

The power of card shuflling and its mathematical abstractions is well known to 
magicians and mathematicians [l] as well as to computer scientists [ 18, 191. For a 
good survey of the computational power of the shuflle-exchange graph, we 
recommend Schwartz’ paper on ultracomputers [ 191. In addition, Stone’s paper [ 181 
contains a nice description of some important parallel algorithms based on the 
shuflle-exchange graph. 

2b. Necklaces 
As can be seen in Fig. 1, there is a natural partitioning of the shuflle edges into 

cycles. These cycles are called necklaces. A necklace is simply the collection of all 
cyclic shifts of some node of the graph. In particular, the necklace which contains the 
node w is called the necklace generated by w and is denoted by (w). For example, the 
necklace generated by 001 is (001) = (001,010, 100). 

If a necklace contains precisely k nodes, it is said to be fuZZ. Otherwise the necklace 
contains less than k nodes and is said to be degenerate. As Leighton et al. show in 

100 101 

cko--oq-~--l~ 

011 

FIG. 1. The g-node shuffle-exchange graph. 
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[ 121 the number of degenerate necklaces is quite small compared to the number of 
full necklaces. In particular, they prove 

LEMMA 1. At most O(N”‘) nodes are contained in the degenerate necklaces of an 
N-node shuffle-exchange graph. The remaining nodes are contained in N/log N - 
O(N 1’2/log N) full necklaces. 

2c. The Grid Model 

Among the many mathematical models that have been proposed for VLSI 
computation, the most widely accepted is due to Thompson and is known as the 
Thompson grid model [22, 231. The grid model of a VLSI chip is quite simple. The 
chip is presumed to consist of a grid of vertical and horizontal tracks which are 
spaced apart by unit intervals. Processors are viewed as points and are located only 
at the intersection of grid tracks. Wires are routed through the tracks in order to 
connect pairs of processors. Although a wire in a horizontal track is allowed to cross 
a wire in a vertical track (without making an electrical connection), pairs of wires are 
not allowed to overlap for any distance or to overlap at corners (i.e., they cannot 
overlap in the same track). Further, wires are not allowed to overlap processors to 
which they are not linked. (The routing of wires in this fashion is also known as layer 
per direction routing and Manhattan routing.) 

As an example, we have included a grid layout for the 8node shuffle-exchange 
graph in Fig. 2. Notice that we have omitted the self-loops in Fig. 2 since they are 
electrically redundant. In general, the embedding will not be planar (as it is in this 
example). 

Practical considerations dictate that the area of a VLSI layout be as small as 
possible. The area of a layout in the grid model is defined to be the product of the 
number of horizontal tracks and the number of vertical tracks which contain a 
processor or wire segment of the layout. For example, the layout in Fig. 2 has area 
18. As Leighton and Miller [ 131 have shown, this layout is suboptimal. 

Leiserson [ 71 observed that any M wires can be added to a layout by inserting at 
most 2M vertical and 2M horizontal tracks. Hence M wires can be added to a R(M)- 
by-Q(M) layout without increasing the area by more than a constant factor. As any 

FIG. 2. A grid model layout of the bode shuffle-exchange graph. 
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layout for the N-node shuffle-exchange graph must have Q(N/logN) vertical and 
Q(N/log N) horizontal tracks, the preceding observation means that a nearly 
complete layout for the shuffle-exchange graph with area A can be extended to a 
complete layout with area O(A). This result will be used at several points in the paper 
and is stated formally in 

LEMMA 2. Any area A layout which contains all but O(N/log N) nodes and edges 
of the N-node shuffle-exchange graph can be extended to form a complete layout for 
the N-node shufle-exchange graph with area O(A). 

As an immediate application of Lemma 2, we can henceforth ignore nodes which 
are contained in degenerate necklaces. This is because at most O(N”*) nodes are 
contained in degenerate necklaces (Lemma 1) and thus they can be inserted into any 
layout of full necklaces without increasing the total area by more than a constant 
factor (Lemma 2). 

3. SOME COMBINATORIAL LEMMAS 

In what follows, we will be particularly interested in the size and location of the 
longest block of consecutive O-bits in the k-bit binary string associated with each 
node. In order that the size of this block be the same for all nodes within a necklace, 
we allow blocks to begin at the end and end at the beginning of a string. For 
example, the longest block of zeros in the string 01010 starts at the fifth bit and has 
length two. 

Let Yk(t) denote the number of k-bit strings for which the longest block of 
consecutive zeros has length t. For example, Yy,(2) = 3. The following combinatorial 
lemma provides a good asymptotic bound on the growth of Yk(t). The proof of the 
lemma (as well as of Lemmas 4-6) is included in Section 4. 

LEMMA 3. For (logk)/2+loglnk<t<k and k-+ co, 

In order to illustrate the important features of the function in Lemma 3, we have 
sketched a graph of 2-k!Pk(t) versus t in Fig. 3. The maximum of 2-kylk(t) occurs at 
t = log k - 1, where 2-kYk(t) w (e”’ - 1)/e z 0.23865. For t > log k - 1, 2-kYk(t) 
decreases exponentially as t increases. For t < log k - 1, 2 -k Yk(t) decreases doubly 
exponentially as t decreases. 

Roughly speaking, Lemma 3 states that the longest block of consecutive zeros in 
nearly f of all k-bit strings has length precisely log k - 1. Further, there are not many 
strings of length k with substantially more than log k consecutive zeros and even 
fewer strings for which the longest block of consecutive zeros has length substantially 
less than log k. This information is further quantified in Lemma 4: 
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double 
exponential 

~woff .------ 3 

0 logk-1 k 
t 

FIG. 3. Density of k-bit binary strings for which the longest block of consecutive zeros has length t. 

LEMMA 4. The number of k-bit strings for which the longest block of consecutive 
zeros has length less than log k - log In k - 1 or length greater than 2 log k is at 
most 0(2k/k) = O(N/log N). 

By Lemma 2, we may ignore O(N/logN)-sized sets of nodes which have 
undesirable properties. As such nodes can be inserted with the addition of at most 
O(N/log N) vertical and horizontal tracks, we can always add them later without 
increasing the total area by more than a constant factor. By Lemma 4, we can thus 
henceforth consider only those nodes for which the longest block of zeros has length 
between log k - log In k - 1 and 2 log k. 

We will also be interested in the size of the second longest block of consecutive 
zeros in each string. Usually, the size of the second longest block of zeros will be 
very close to the size of the longest block of zeros. We state this observation more 
precisely in 

LEMMA 5. The sum over all necklaces of the difference in length between the 
longest and second longest blocks of consecutive zeros is at most O(N/log N). 

Using information about the size and location of blocks of zeros within the 
necklace, it is possible to distinguish one particular node in most necklaces. More 
precisely, we define the distinguished node of a necklace to be the node containing the 
longest leading block of zeros. For example, 00101 is the distinguished node of 
(01010). Should two or more nodes of a necklace begin with equal and maximum 
length blocks of zeros, then each node of the necklace contains at least two blocks of 
zeros of maximum length. In such cases, we distinguish that node for which the 
leading block of zeros has maximum length and for which the second occurrence of a 
maximum length block of zeros is as near as possible to the beginning of the string. 
For example, 01011 (not 01101) is the distinguished node of the necklace (10101). 
For some necklaces, such as (111) and (lOlOlOl), there is no uniquely distinguished 
node. As we show in Lemma 6 such necklaces are sufficiently rare that we need not 
consider them further. 



SHUFFLE-EXCHANGE GRAPH 345 

LEMMA 6. At most O(N/log N) nodes are contained in necklaces which fail to 
have a uniquely distinguished node. 

We refer to the leading block of zeros of a distinguished node as the primary block 
of zeros. If a distinguished node has two or more maximum length blocks of zeros, 
then the maximum length block following the primary block is referred to as the 
secondary block of zeros. These definitions can be easily extended to any node 
contained in a necklace which has a uniquely distinguished node. For example, the 
primary block of zeros of 01010 starts in the fifth bit and has length two. Note that 
this string does not have a secondary block of zeros. As another example, we note 
that the secondary block of zeros in the string 11010 consists solely of the fifth bit. 
Note that the secondary block of zeros (if it exists) always has the same length as the 
primary block of zeros. 

If the last bit of a node occurs in the primary block of zeros, we call that node a 
primary node. Similarly, if the last bit of a node occurs in the secondary block of 
zeros, we call the node a secondary node. For example, 10110 is a primary node, 
11010 is a secondary node and 10010 is neither primary nor secondary. 

Note that all primary and secondary nodes are necessarily even. (We say that a 
node is even if its last bit is 0 and odd if its last bit is 1.) Note also that, by Lemmas 
2 and 4, we need only consider necklaces which contain between log k - log In k - 1 
and 2 log k primary nodes. Such necklaces will also have at most 2 log k secondary 
nodes. 

In what follows, we will represent nodes in terms of their corresponding 
distinguished nodes. More precisely, we use the notation_a,-, .=. ai+,tijai-, .a. a, to 
denote the node ai-l .a. a,,akM1 ... ai. For example, 00101 denotes the node 10010. 
Using this notation, a primary node has the form 0 ... 0 ... Ow while a secondary 
node has the form 0 . . . Ow’O . . . 0 ... Ow”, where 0 ... Ow and 0 ..s Ow’O .a. Ow” are 
assumed to be distinguished nodes. 

4. PROOFS OF LEMMAS 3-6 

We now present the proofs of Lemmas 3-6. Such results can also be found in the 
recent work of Guibas and Odlyzko [2,3]. As the proofs are fairly technical, many 
readers may wish to skip this section and proceed directly to Section 5. 

In what follows, we will write F,Jt) to denote the number of k-bit strings which do 
not contain t - 1 consecutive zeros. Except for the string of all zeros (which we 
ignore), these are precisely the strings which do not contain the substring 

t v,=m. 
The proofs of Lemmas 3-6 depend heavily on the following combinatorial result: 
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THEOREM 1. For large t and k, 

Fk(t) = 2ke- kZ-feO(f2-2.k12-*9 

Proof: We first count the number p;(t) of k-bit strings which do not contain an 
occurrence of v1 between the beginning and end of the string (i.e., for the time being 
we ignore the occurrences of u, which begin at the end and end at the beginning of a 
string). 

Fix t and let fi denote the number of i-bit strings ending with U, which do not 
contain any other occurrences of u, in the string. Set F(x) = CEOfix’. Note that 
p:(t) is the (k + t)th coefftcient of F(x). Let f ij’ denote the number of i-bit strings 
ending in U, which contain precisely j occurrences of U, and set 

m 
F”‘(x) = x flj’xi, 

i=O 

Since occurrences of v, cannot overlap, it is not difftcult to show that F(j)(x) is iden- 
tical to F(xy for all j > 1. 

Let gi be the number of i-bit strings which end in v, (regardless of the number of 
other occurrences of u1 which appear in the string) and set G(x) = CEO gixi. Since 
gi = 2’-’ for all i > t, it is easily seen that G(x) = x’/( 1 - 2x). Also note that 

G(x) = 2 F(j)(x) = 2 F(xY’ = [l/(1 -F(x))] - 1 
./=I j=l 

and thus that 

F(x) = G(x)/(G(x) + 1) = x’/( 1 - 2x + x’). 

Thus p;(t) is simply the kth coefficient of l/(1 - 2x + x’). For example, !?$(2) = 5 
which is the coefficient of x4 in the expansion of l/(1 - 2x + x2). 

Let p(x) = 1 - 2x + x’. It is easily observed that gcd(p(x), dp(x)/dx) = 1 and thus 
that p(x) does not have any multiple roots for t > 2. Thus we can expand 

p(X)-’ = S AJ(x - ri), 
i=l 

where ( ril 1 < i < t) is the set of distinct (and possibly complex) roots of p(x) and 

‘i= [(~-ri)/~(~)lx=ri= ll[dP(X)ldXlx=ri 
for 1 < i < t. Once the roots of p(x) are known, we can calculate p;(t) from the 
formula 

FL(t) = - i Air,Tck+l). 
i=l 
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Although we do not know how to find the roots of p(x) explicitly for large t, we 
can describe them asymptotically. First observe that as t -+ oo, the absolute value of 
every root must approach either f or 1. Otherwise the absolute value of one term of 
p(x) would dominate the sum of the absolute values of the other two terms. For 
example, if 1 r I,< c < 4 as t + 03 for some root r and constant c, then 1 > I2rl + I r’ I 
for large t. 

If there are to be any roots r such that I T I+ f , it is essential that r + f . Otherwise, 
the real part of p(r) cannot vanish for large t. By substituting fes”’ for T, where 
s(t) + 0 as t -+ co, we find that 

1 - es(t) + 2 -rem = 0 

and thus that 

1 - (1 + s(t) + O@(t)*)) + 2-71 + 0(ts(t))) = 0. 

Thus s(t) = 2-’ + q(t), where [q(t)/ e 2-’ as t + co. Another iteration of this process 
reveals that q(t) = O(t2-*‘) and thus that 

r = Q2 -‘p* -2’) 
2 as t-+m. 

In fact, there is precisely one root, say I~, which approaches i as t + co. The 
absolute values of the remaining roots approach 1. In particular, the absolute values 
of these roots must be greater than or equal to 1 for large t. Otherwise there would be 
a root r and a function e(t) -+ O+ such that Irl = 1 - e(t). But then 

I2r1 = 2 - 2&(t) > 1 + 1 1 - E(t)J’ = I + 1 Yt / 

for t > 2 and it would be impossible for p(r) to vanish for large t, a contradiction. 
It remains to compute the A i. Since a”(x)/dx = tx’~ ’ - 2, we find that A, = 

-f+O(t2-‘)andthatAi=O(l/t)for2<i<t.Thus 

q?;(t) = O(l) _ [-f + O(fp)] 2k+l,-(k+1)*~‘eO(kt*~*‘). 

Replacing 1 t O(t2-‘) with e°Ct2-‘) and simplifying, we conclude that 

F;(t) = 2ke- k2-feO(t2-r,kt2-2r) 

for large t and k. 
The only strings which are included in the count of q;(t) but not in that of g,(t) 

are those of the form 

-I- t-i 
O * * * owm, 
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where 1 <i<t- 1 and w is a string which is included in the count of pLpt(t). Thus 

!Fk(t) = F;(t) - (t - 1) FL-*(t) 
= 2ke-k2~1e0(f2-‘,kt2~2f) _ ct _ 1) 2k-re-(k-t)2WeO(t2-‘,kt2P2’) 

= 2ke-k2~1eO(f2-‘,kt2~*1) 

for large t and k. This completes the proof of the theorem. I 

We can now prove Lemmas 3 and 4. 

Proof of Lemma 3. From the definition, we know that 

ylk(t) = Fk(t t 2) - !&(t •,- 1) 
= 2ke-k2-~WeO(t2-~,kt2-*~) _ 2ke-k2~~,~l’eO(t2-‘,k’2~2~) 

for large t and k. For t > (log k)/2 + log log k, both t2 -’ and kt2 -2t vanish as 
k+ co. In what follows, we will show that if t < k, then 

epk2-“+*’ - e-k2-(‘+” * 0([2-‘, kt2-2’) 

and thus that 
yktt) - 2k(e-k2W*) _ e-k2-l’+‘)), 

Assume for the purposes of contradiction that 

e-k2-“+2’ - e-k2-‘*+” < O(t2-‘, kt2-2’). 

FJJ,~~, e-,&(t+2) ‘v e-k2-(‘+‘) which means that e-k2~(ri2’tk2-‘ri’) N 1 and thus that 
k2-“+ 2, -+ 0. Thus we can use a Taylor series expansion of the exponentials to find 
that 

e-k2-(1+2) me-k2-(‘+‘)_(] -/&“+2’)- (1 +-“t”) 

= k2-“t2’ 

9 O(t2 -1, kt2 - 2f) 

provided that t < k, a contradiction. 1 

Proof of Lemma 4. The number of k-bit strings which do not contain a block of 
log k - log In k - 1 consecutive zeros is 

Fk(log k - log ln k) - 2ke-k2-‘osk+‘os’nk 

= 2klk 

= O(N/log N). 
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The number of k-bit strings which contain a block of 2 log k + 1 consecutive zeros 
is 

2k _ pk(2 log k + 2) - 2k _ ~ke-k2-2’0~k-*e0((lo~k)/k2) 

= 2k - 2k[ 1 - 1/(4k) + O((log k)/k*)] 

- 2k/4k 

= O(N/log N). I 

The proofs of Lemmas 5 and 6 depend on the following corollary to Theorem 1: 

COROLLARY 1. For bounded m > 0 and p, and large k and t, 

(k+P)lm 
c ‘k-mt+p (t) = 0(2k/km). 
I=1 

Proof: We first observe that for t < 2 log k/3, 

Fk-mt+p(t) < pk(2 log k/3) - 2ke-k2-(2’0gk’J3 = 2ke-k”’ 

and thus that 
21ogk/3 

1 Fk-m,+p(t) < 5 2ke-k”3 log k < Zklkm 
f=l 

for any finite m and p as k -+ 00. 
For larger values of t, 

!Fk-m,+p(t) -v 2k-m1+pepk2m’ 

and thus 
(k+p)lm Ck+p)lm 

2 Fk-mt+p(t) N 
t=Zlogk/3 

,=zgk,, 2k-mt+pe-k2mt. 

By making the change of variables r = t - log k, we can see that the preceding sum is 
at most 

(2ktplkm) f 2-mre-2-l 

r=-cc 

and thus at most 0(2k/km) = O(N/log N). I 

Proof of Lemma 5. A string whose longest block of zeros has length t and whose 
second longest block of zeros has length s < t is of the form 

t+ I 

WET-. *** Ow’, 
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where the longest block of zeros in ww’ has length s. By definition, there are at most 
kY k-1-1(~) such strings. Thus the sum over all necklaces of the difference between 
the sizes of the longest block and second longest block of zeros is 

k-l t 

<(l/k) c 1 (t-s)kyk-,-,(s) 
t=o s=o 

k-l t 

= c 1 (t - s)[ !&-t-l@ + 2) - Ir/,_,_ ,(s + I)] 
t=o s=o 

= i i y/,&,(S) 
s=1 t=s 

= + 

t 

k 
2ke-k2-SeO(s2-S,ks2-2’) =j- 2-tet2-’ 

El tes 

k 

< 2 (2ke- k2-~eO(s2-s,ks2-zs) 2-seO(s2F) 
> 

s=1 

k 
= \;’ ~k-se-k2-~eO(s2-s,ks2~2~~ 

i 
s=1 

= O(N/log N) 

by Corollary 1. 1 

Proof of Lemma 6. Consider a necklace which fails to have a uniquely 
distinguished node. Each node in such a necklace must have one of the following 
three forms: 

kl2 
(1) w,~20 *** ow3, -I_ 

t t 

(2) w,C%TG20*30 . . . Ow,, or I_-__ 
t t t 

(3) wl~20 . . . ow,o *40 **- ow,, ---- 
t t t t 

where t is the length of the longest block of zeros in any of the strings. It is easily 
seen that there are at most 
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(1) k Cf/‘l Fkp2((t + 2) nodes of the first type, 
(2) k* C:L31 ylkPJl(t t 2) nodes of the second type and 
(3) k3 Cf/“, FkPht(f t 2) nodes of the third type. 

By Corollary 1, we can thus conclude that there are at most O(N/log N) such nodes 
altogether. 1 

5. A NEAR-OPTIMAL LAYOUT 

We are now prepared to describe a near-optimal, preliminary version of the 
optimal layout. In Section 6, we will show how to modify this layout in order to 
construct an optimal O(N*/log* N)-area layout for the N-node shuffle-exchange 
graph. 

5a. Location of the Nodes 
The near-optimal layout is constructed from a log N x O(N/log N) grid of nodes. 

Each column of the grid corresponds to a necklace of the shuffle-exchange graph. 
The nodes of each necklace are ordered from top to bottom so that the ith node is a 
left cyclic shift of the (i - 1)th node for each i and so that the distinguished node is 
placed in the bottom row. The necklaces are ordered from left to right so that the 
values of the distinguished nodes form an increasing sequence. (The value of a node 
is simply the numerical value of the associated k-bit binary string.) For example, we 
have constructed such a grid for the 32-node shume-exchange graph in Fig. 4. In the 
figure, we have represented each node in terms of the associated distinguished node. 
This representation readily illustrates the fact that the last bit of any node in the ith 
row corresponds to the ith bit of the associated distinguished node. Note that the 
necklaces (00000) and (11111) have not been included since they are degenerate. 

5b. Insertion of the Edges 
It is easily observed that the shuffle edges can be inserted in the grid with the 

addition of O(N/log N) vertical and 2 horizontal tracks. In the following, we will 

ooooi oooii ooloi ooili ololi ollii 

FIG. 4. The grid of nodes for the 32-node shuffle-exchange graph. 
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show that the exchange edges can be inserted with the addition of O(N log log Nj 
log N) vertical and horizontal tracks. Thus the total area of the layout is 
O(N2 log log’ N/log’ N). This is only a factor of O(log log2 N) off from the lower 
bound of O(N2/log2 N). 

The analysis is divided into two parts. First we show that only O(N log log N/ 
log N) exchange edges link nodes which are in dr&v-ent rows of the grid. Such edges 
can be inserted with the addition of at most O(N log log N/log N) vertical and 
horizontal tracks. We then conclude the analysis by showing that at most O(N/log N) 
horizontal tracks are needed to insert the exchange edges which link two nodes in the 
same row. 

Consider an exchange edge which links two nodes that are in different rows of the 
grid. In particular, assume that the edge is incident to an even node in the ith row for 
some i. By definition, the even node can be represented as W&V’, where 1 w I= i - 1 
and WOW is the distinguished node of (wow’). The exchange edge is also incident to 
the odd node wiw’. By assumption, wiw’ is not located in the ith row and thus wlw’ 
is not a distinguished node. Since WOW is a distinguished node, we know that the ith 
bit of WOW’ (the bit that was changed in order to produce wiw’) must be in the 
primary or secondary block of zeros of WOW’. Otherwise, the primary and (if it 
exists) secondary blocks of zeros of wlw’ would be identical in location and size to 
the primary and secondary blocks of WOW’. This would imply that wlw’ is also 
distinguished, a contradiction. Thus wow’ must be a primary or secondary node. As 
was previously mentioned, we can assume that each necklace has at most 2 log k = 
2 log log N primary and 2 log log N secondary nodes. Thus at most 4 log log N nodes 
in each necklace are both even and incident to an exchange edge which links nodes in 
different rows. Since every exchange edge is incident to an even node and since there 
are O(N/log N) necklaces, we can concude that there are at most O(N log log N/ 
log N) exchange edges which link nodes in different rows. 

We-next show that those exchange edges which link two nodes that are in the same 
row can be inserted with the addition of at most O(N/log N) horizontal tracks. Once 
again, the analysis is divided into two parts. In the first part, we show that at most 
O(N/log N) exchange edges are contained in the first log k rows. Such edges can be 
trivially inserted with the addition of O(N/log N) horizontal tracks. In the second 
part, we show that only 2k-i horizontal tracks are needed to insert the exchange 
edges in the ith row for any i > log k. Since C:Z,,,k+, 2kPi < 2k/k = N/log N, this 
will be sufficient to show that at most O(N/log N) additional horizontal tracks are 
necessary to insert the remaining exchange edges. 

Consider a necklace which has t primary nodes for some t < log k. By definition, 
the nodes in the first t rows of such a necklace are all even. Thus, such a necklace 
can have at most r = log k - t odd nodes in the first log k rows. By Lemma 3, we 
know that there are 

Yk(t)/k - (2k/k)(e-k2-‘-2 - epk2-‘-‘) 

such necklaces for (log k)/2 + log In k < t < k. By Lemma 4, we can assume that t > 
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log k - log Ink - 1 and thus the total number of odd nodes occurring in the first 
log k rows is at most 

logk 

c (log k - t)(2k/k)(e-k’-‘-’ - e-kZ-rm’) 
t=logk-logInk- 

logInk+ 1 
= @k/k) c r(e-k2’-2-loek _ epk2’-l-‘08k) 

logInk+ 1 

= (Zk/k) x r(e-“-* - e-2’-‘) 

r=O 

log In k+ I 

< (2k/k) x emZrm2 

= O(N/log N). 

Since every exchange edge is incident to an odd node, the above bound implies that at 
most O(!V/log N) exchange edges are contained in the first log k rows. 

We next consider the number of horizontal tracks necessary to insert the exchange 
edges contained in the ith row for i > log k. This number is identical to the maximum 
number of exchange edges that can overlap each other at a single point of the ith row. 
In Fig. 5, we illustrate the necessary conditions for two exchange edges to overlap in 
the ith row. All representations are in terms of distinguished nodes. 

Note that the even end of an exchange edge is always to the left of the odd end. 
Also note that any node which occurs between W&V’ and wiw’ must be represented 
as w&vN, where w” > w’ or as wiw”‘, where w”’ < w’. In either case, the exchange 
edge incident to the overlapped node extends beyond the exchange edge linking wow’ 
to wiw’. Since there are at most 2kPi - 1 nodes between wow’ and wiw’, these facts 
imply that at most 2k-i exchange edges can overlap at any point of the ith row. This 
observation completes the argument that the near optimal layout requires only 
O(ZV2(log log N)*/log2 N) area. 

FIG. 5. Necessary conditions for exchange edges to overlap in the ith row. 
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6. AN OPTIMAL O(N*/log* N)-AREA LAYOUT 

In this section, we will modify the layout described in Section 5 in order to 
produce an optimal O(N*/log* N)-area layout for the N-node shuffle-exchange graph. 
In particular, we will relocate the primary and secondary nodes of each necklace so 
that they are closer to and in the same row as the nodes to which they are linked via 
an exchange edge. Before going into the details of this relocation, however, it is 
necessary to introduce some additional terminology. 

6a. More Definitions 

In order to construct an optimal layout for the shuffle-exchange graph, we have 
found it necessary to break up each necklace into two or, possibly, three pieces. The 
basic piece of each necklace consists of all those nodes which are neither primary nor 
secondary. The primary piece of each necklace consists of the primary nodes while 
the secondary piece consists of the secondary nodes (if there are any). For example, 
the basic piece of (01011) is {OiOll, OlOil, OlOli}, the primary piece is (~llll}, 
and the secondary piece is (0101 1 }. 

It is also necessary to extend the notion of a distinguished node to include pieces of 
necklaces. The distinguished node of a basic piece is the same as the distinguished 
node of the associated necklace. The distinguished node of a primary piece of a 
necklace is that node of the necklace which becomes distinguished when we ignore 
the primary block of zeros (i.e., when we temporarily replace the primary block of 
zeros in each node of the necklace with an equal-length block of ones). Similarly, the 
distinguished node of a secondary piece of a necklace is that node which becomes 
distinguished when we ignore the secondary block of zeros. For example, 010110111 
is the distinguished node of the basic pice of (01011011 l), 011011101 is the 
distinguished node of the primary piece, and 011101011 is the distinguished node of 
the secondary piece. Note that the distinguished nodes of the primary and secondary 
pieces of every necklace are necessarily odd nodes and thus are contained in the basic 
piece of the necklace. 

It is important to note that some necklaces (such as (01111)) have a distinguished 
node but do not have a distinguished node for the primary or secondary piece of the 
necklace. Fortunately, arguments such as those used to prove Lemmas 5 and 6 can 
be used to show that at most O(N/log N) nodes are contained in such necklaces. 
Thus, we can assume henceforth that every piece of every necklace has an associated 
distinguished node. 

6b. Location of the Nodes 

As in Section 5, the layout is constructed from a log N x O(N/log N) grid of 
nodes. Each column of the grid corresponds to a piece of a necklace. The nodes of 
each piece are arranged within a column so that a node of the form 
akP, ... akei ‘.. a, (where akPl . . . a, is assumed to be the distinguished node of the 
associated piece) is placed in the ith row of the grid. Note that nodes in the basic 
piece of any necklace (these include all odd nodes) are in the same row as they were 
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in the near-optimal layout described in Section 5. The columns are ordered from left 
to right so that the values of the distinguished nodes of the associated pieces form a 
nondecreasing sequence. For example, we have constructed such a grid for k = 5 in 
Fig. 6. 

Note that the necklaces (OOOOl), (OOOll), (OOlll), and (01111) have not been 
included in Fig. 6 since their associated primary pieces do not have distinguished 
nodes. 

6c. Insertion of the Edges 
As each necklace is broken up into at most four contiguous pieces in the modified 

grid (the basic piece may have been broken up into two contiguous pieces), the 
shuffle edges can be inserted with the addition of at most O(N/logN) vertical and 
horizontal tracks. In what follows, we will show that at most O(N/log N) vertical and 
horizontal tracks are needed to insert all of the exchange edges as well. Thus the area 
of the layout will be O(N*/log* N), which is optimal. 

As before, we divide the analysis of the exchange edges into two parts. We first 
show that at most O(N/log N) exchange edges link nodes which are in different rows 
of the grid. Such edges can thus be trivially inserted with the addition of at most 
O(N/log N) vertical and horizontal tracks. We then show that those exchange edges 
which link two nodes in the same row can be inserted with the addition of only 
O(N/logN) horizontal tracks. The arguments will be very similar to those in 
Section 5b. 

Consider an exchange edge which links two nodes which are in different rows of 
the grid. Since only primary and secondary nodes have been relocated, we can 
conclude from the arguments of Section 5b that the even node which is incident to 
the edge is either a primary or secondary node. In what follows, we will show that the 
even node is, in fact, a primary node. 

Assume for the purposes of contradiction that the even node is a secondary node. 
Then this node can be represented as w&v’ where WOW’ is the distinguished node of 
the secondary piece of (wow’) and ) WI = i - 1 for some i. By definition, wow’ is 
located in the ith row of the grid and is linked to wiw’ via the exchange edge. Since 

oiou 

0 
OOiOl OlWl OlEll 

4, 1 
OOlTl 01om oloii 011~1 

c 
ooioi oioii 

basic primary basic secondary primary 
coo101> c00101~ <OlOll, <OlOll~ <OlOll> 

FIG. 6. Relocated nodes for the 32.node shume-exchange graph. 
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wiw’ is odd, it is contained in the basic piece of (wl w’). By assumption, wiw’ is not 
also in the ith row and thus wl w’ cannot be the distinguished node of (wl w’). Since 
the lengths of the two blocks of zeros in wlw’ created by switching the ith bit from 0 
to 1 are less than the length of the primary block of zeros (in fact, the sum of their 
lengths is precisely one less than the length of the primary block), wlw’ will be the 
distinguished node of (wlw’) precisely when WOW’ is the node distinguished in 
(wow’) by ignoring the secondary block of zeros. By definition, this is the case 
precisely when WOW’ is the distinguished node of the secondary piece of (wow’). By 
assumption, WOW’ is the distinguished node of the secodary piece of (wow’) and thus 
we can conclude that wl w’ is the distinguished node of (wl w’), a contradiction. 

Next consider a primary node which is incident to an exchange edge linking two 
nodes in different rows of the grid. By the preceding arguments, this node must be of 
the form 

-+j(j(jj WlO .“. 0 lw’. 

where w10 -.. 01 w’ is the distinguished node of the primary piece of (w 10 -. . 01 w’) 
and either t, or 1, is larger than or equal to the length of the longest block of zeros in 
wl 1 w’. Otherwise, 

would (by definition) be the distinguished node of 

12 -- 
and thus WlO . . . OIO(jOlw’ 

would be on the same row as 

+-&jj WlO .“. Olw’, 

a contradiction. Each necklace contains at most 2r such primary nodes, where r is 
the difference between the lengths of the longest and second longest block of zeros in 
any string of the necklace. By Lemma 5, we can conclude that there are at most 
O(N/log N) such primary nodes in the entire shulfle-exchange graph. Thus, at most 
O(N/log N) exchange edges link nodes which are in different rows. 

Using the analysis developed in Section 5b, it is not difficult to show that at most 
9(N/log N) horizontal tracks are needed to insert the exchange edges which link two 
lodes that are in the same row. In particular, there are still only O(N/log N) odd 
lodes in the top log k rows of the grid and thus at most O(N/log N) exchange edges 
ire contained in the top log k rows. These can be trivially inserted with the addition 
)f just O(N/log N) horizontal tracks. 
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Again following the methods of Section 5b, it is not diff’cult to show that two 
exchange edges overlap on the ith row only if the first i bits of the associated nodes 
are identical. Thus at most 2k-i tracks are needed to insert all of the exchange edges 
in the ith row for all i > log k. Summing, we can again conclude that at most 
O(N/log N) additional horizontal tracks are needed to insert the remaining exchange 
edges. 

7. LAYOUTS WITH ADDITIONAL EDGES 

For some applications (such as the calculation of the discrete Fourier transform), 
it is useful to consider networks which have more than just shuMe and exchange 
edges. In particular, we might desire a layout for the shuffle-exchange graph which 
also includes shift, reverse and/or transpose edges. In what follows, we will show how 
to modify the optimal layout for. the shuffle-exchange graph so that these additional 
edges can be inserted without increasing the total area by more than a constant 
factor. 

7a. Shift Edges 
Shift edges link the ith node to the (i + 1)th node for all odd i. When combined 

with the exchange edges, the resulting network will have links between the ith and the 
(i + 1)th nodes for all i. The inclusion of such edges facilitates the computation of 
discrete Fourier transforms at sequential intervals of a continuous signal. In such 
applications, the input data contained in the ith processor is shifted to the (i + 1)th 
processor for each i after each computation of a discrete Fourier transform. The 
graph consisting of shutTIe, exchange and shift edges is known as the shuffle-shift 
graph. 

Using the methods developed in Section 6, it is not difficult to show that the N- 
node shuffle-shift graph can be laid out using only O(N*/log* N) area. As before, the 
necklaces are broken into two or three pieces and placed in a grid according to the 
value of the associated distinguished node. Thus the shuffle edges can be inserted as 
before using only O(N/logN) vertical and horizontal tracks. 

For most odd nodes, adding a 1 to the value of the node changes only a relatively 
small number of bits at the end of the string. Thus it can be shown that at most 
O(N/log N) shift edges link nodes which are in different rows. These can be easily 
inserted using only O(N/logN) vertical and horizontal tracks. Of those edges which 
link nodes in the same row, at most O(N/log N) are contained in the first log k rows. 
For i > log k, at most 2k-i shift edges overlap at any point of the ith row. By 
introducing an extra vertical track for each necklace piece, it is possible to separate 
the layout of the shift edges on each level from that of the exchange edges. Thus both 
can be inserted simultaneously in the ith row using only 0(2k-i) total horizontal 
tracks. By the arguments of Section 6, this means that at most O(N/log N) additional 
horizontal tracks are needed to embed all of the remaining shift and exchange edges, 
thus completing the argument. 

51 I /26/3-h 
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lb. Reverse Edges 

Reverse edges link pairs of nodes that are associated with binary strings which are 
reverses of each other. For example, ak- I . . . a, is linked to a,, .a. ak- 1 via a reverse 
edge. Since the algorithm which computes discrete Fourier transforms on the shume- 
exchange network leaves the output for node akP, . +. a, in node a, ..a ak- , , reverse 
edges provide a fast and convenient way of straightening out the solution. The graph 
consisting of shuffle, exchange, shift, and reverse edges will be referred to as the 
shufS-shift-reverse graph. 

Using the techniques developed in Section 6, it is also possible to show that the N- 
node shuffle-shift-reverse graph can be laid out in O(N’/log* N) area. The basic idea 
is to modify the layout described in Section 7a so that 

(1) pieces of necklaces which are reverses of each other are paired together in 
the left-to-right ordering, and 

(2) pieces of necklaces are folded in half. 

The first constraint insures that the maximal overlaps of the reverse edges in each 
row will be small while the second constraint insures that most reverse edges link 
nodes which are in the same row. Although it is not immediately obvious, it can be 
checked that these modifications do not substantially change the procedure for 
inserting the shuffle, shift and exchange edges which was described in Section 7a. 
Thus all of the edges can be inserted using at most O(N/log N) vertical and 
horizontal tracks. 

lc. Transpose Edges 

Transpose edges link the ith node to the (N - 1 - i)th node for each i. Viewed in 
terms of binary strings, transpose edges link each node to its complement. Although 
we do not know of any specific applications of transpose edges, they would be useful 
for problems that require frequent transposition of the data. 

By further modifying the optimal layout for the shuffle-shift-reverse graph, it is 
possible to add transpose edges without increasing the total area by more than a 
constant factor. In particular, the layout should be modified so that 

(1) pieces of necklaces which are complements of each other are paired 
together in the left-to-right ordering, and 

(2) the distinguished node is selected on the basis of the location of the longest 
block of consecutive identical bits (be they zeros or ones). 

The first constraint insures that the maximal overlaps of the transpose edges in 
each row are small while the second constraint insures that most transpose edges link 
nodes which are on the same row. Altough we do not present the details here, it is 
possible to show that such a layout can be constructed using only O(N*/log* N) area, 
the least possible. 
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8. REMARKS 

For some applications it is useful to consider optimizing measures other than area. 
For example, we might wish to minimize the number of wire crossings in the layout, 
the length of the longest wire in the layout, and/or the sum of the lengths of all the 
wires in the layout [lo]. In [9], Leighton shows that any layout for the N-node 
shuffle-exchange graph must have Q(N*/log* N) wire crossings. Since a layout with 
area A can have at most A wire crossings, the wire crossing lower bound is achieved 
by the layout described in this paper. 

As a consequence of the wire crossing lower bound, it is also shown in [9] that 
any layout for the N-node shuffle-exchange graph must have an edge of length 
f2(N/log* N) and total wire length Q(N*/log* N). The layout described in this paper 
clearly achieves the latter bound. It does not achieve the maximum wire length lower 
bound, however. In fact, we do not know of any layout for the N-node shuflle- 
exchange graph for which every wire has length o(N/log N). The layout described in 
this paper has wires of length O(N/log N). 

The methods developed in this paper can be used to find several other optimal 
layouts for the shume-exchange graph. The key variant is the method by which a 
node is distinguished. In particular, the method must be impervious to small 
alterations in the necklace. (This is so that most exchange edges will link nodes which 
are in the same row of the grid.) Only by changing the values of a bit in a small 
segment of the necklace (such as the primary or secondary block of zeros) should we 
be able to globally change the distinguished node. 

One such method of distinguishing a node is to select that node in the necklace 
which has the minimal value. Although the proof is fairly difficult, it can be shown 
that the layout for the N-node shuffle-exchange graph constructed in this manner has 
at most O(N*/log* N) area. 

As it previously was not known whether or not the N-node shuflle-exchange graph 
could be laid out in O(N*/log* N) area, several researchers have tried to develop 
alternate networks which can compute discrete Fourier transforms in O(N/log N) 
steps and which can be laid out in O(N*/log* N) area. The only other network 
discovered which has these properties is the cube-connected-cycles graph of Preparata 
and Vuillemin [ 171. At this point, it is not clear which network best serves as the 
basis for practical parallel computation. Whereas the shuffle-exchange graph appears 
to be simpler to program than the cube-connected-cycles, the cube-connected cycles 
has somewhat simpler layouts. And although the shutlle-exchange graph appears to 
have smaller layouts for small values of N (see [ 13]), the cube-connected-cycles 
layouts are more regular and nicely structured. 

Last, we would like to mention that the problem of finding a 3-dimensional layout 
for the shumeeexchange graph with minimum volume remains unsolved. In fact, the 
shuffle-exchange graph is one of the few natural structures for which optimal 3- 
dimensional layouts are not known. (See [ 11, 141 for a discussion of general layout 
strategies in 2 and 3 dimensions.) 
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