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Abstract

We present a game theory-based heads-up Texas Hold’em
poker player,GS1. To overcome the computational obsta-
cles stemming from Texas Hold’em’s gigantic game tree, the
player employs ourautomatedabstraction techniques to re-
duce the complexity of the strategy computations. Texas
Hold’em consists of four betting rounds. Our player solves
a large linear program (offline) to compute strategies for the
abstracted first and second rounds. After the second bet-
ting round, our player updates the probability of each pos-
sible hand based on the observed betting actions in the first
two rounds as well as the revealed cards. Using these up-
dated probabilities, our player computes inreal-timean equi-
librium approximation for the last two abstracted rounds.
We demonstrate that our player, which incorporates very
little poker-specific knowledge, is competitive with leading
poker-playing programs which incorporate extensive domain
knowledge, as well as with advanced human players.

Introduction
In environments with more than one agent, the outcome of
one agent may depend on the actions of the other agents.
Consequently, in determining what action to take, an agent
must consider the possible actions of the other agents. Game
theory provides the mathematical foundation for explaining
how rational agents should behave in such settings. Unfortu-
nately, even in settings where game theory provides defini-
tive guidance of an agent’s optimal behavior, the computa-
tional problem of determining these strategies remains dif-
ficult. In this paper, we develop computational methods for
applying game theory-based solutions to a large real-world
game of imperfect information.

For sequential games with imperfect information, one
could try to find an equilibrium using the normal (matrix)
form, where every contingency plan of the agent is a pure
strategy for the agent. Unfortunately (even if equivalent
strategies are replaced by a single strategy (Kuhn 1950a))
this representation is generally exponential in the size ofthe
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game tree (von Stengel 1996). Thesequence formis an al-
ternative that results in a more compact representation (Ro-
manovskii 1962; Koller, Megiddo, & von Stengel 1996;
von Stengel 1996). For two-player zero-sum games, there
is a polynomial-sized (in the size of the game tree) linear
programming formulation based on the sequence form such
that strategies for players 1 and 2 correspond to primal and
dual variables. Thus, a minimax solution1 for reasonably-
sized two-player zero-sum games can be computed using
this method (von Stengel 1996; Koller, Megiddo, & von
Stengel 1996; Koller & Pfeffer 1997).2 That approach alone
scales to games with around a million nodes (Gilpin & Sand-
holm 2005), but Texas Hold’em with its1018 nodes is way
beyond the reach of that method. In this paper, we present
techniques that allow us to approach the problem from a
game-theoretic point of view, while mitigating the compu-
tational problems faced.

Prior research on poker
Poker is an enormously popular card game played around
the world. The 2005 World Series of Poker had over $103
million in total prize money, including $56 million for the
main event. Increasingly, poker players compete in online
casinos, and television stations regularly broadcast poker
tournaments. Poker has been identified as an important re-
search area in AI due to the uncertainty stemming from
opponents’ cards, opponents’ future actions, and chance
moves, among other reasons (Billingset al. 2002). In this
paper, we develop new techniques for constructing a poker-
playing program.

Almost since the field’s founding, game theory has been
used to analyze different aspects of poker (Kuhn 1950b;
Nash & Shapley 1950; Bellman & Blackwell 1949; von
Neumann & Morgenstern 1947, pp. 186–219). However,
this work was limited to tiny games that could be solved
by hand. More recently, AI researchers have been applying

1Minimax solutions are robust in that there is no equilibrium
selection problem: an agent’s minimax strategy guarantees at least
the agent’s minimax value even if the opponent fails to play his
minimax strategy. Throughout this paper, we are referring to a
minimax solution when we use the term equilibrium.

2Recently this approach was extended to handle computingse-
quential equilibria(Kreps & Wilson 1982) as well (Miltersen &
Sørensen 2006).



the computational power of modern hardware to computing
game theory-based strategies for larger games. Koller and
Pfeffer (1997) determined solutions to poker games with up
to 140,000 nodes using the sequence form and linear pro-
gramming. For a medium-sized (3.1 billion nodes) variant
of poker called Rhode Island Hold’em, game theory-based
solutions have been developed using a lossy abstraction fol-
lowed by linear programming (Shi & Littman 2001), and
recently optimal strategies for this game were determined
using lossless automated abstraction followed by linear pro-
gramming (Gilpin & Sandholm 2005).

The problem of developing strong players for Texas
Hold’em is much more challenging. The most notable
game theory-based player for Texas Hold’em used expert-
designed manual abstractions and is competitive with ad-
vanced human players (Billingset al. 2003). It is available
in the commercial productPoker Academy ProasSparbot.

In addition to game theory-based research, there has also
been recent work in the area ofopponent modellingin
which a poker-playing program attempts to identify and ex-
ploit weaknesses in the opponents (Southeyet al. 2005;
Hoehnet al. 2005; Billings et al. 2004). The most suc-
cessful Texas Hold’em program from that line of research is
Vexbot, also available inPoker Academy Pro.

Our player,GS1, differs from the above in two impor-
tant aspects. First, it incorporates very little poker-specific
domain knowledge. Instead, it analyzes the structure of the
game tree and automatically determines appropriate abstrac-
tions. Unlike the prior approaches, ours 1) does not require
expert effort, 2) does not suffer from errors that might stem
from experts’ biases and inability to accurately express their
knowledge (of course, the algorithmically generated abstrac-
tions are not perfect either), and 3) yields better and better
poker players as computing speed increases over time (be-
cause finer abstractions are automatically found and used;
in the prior approaches an expert would have to be enlisted
again to develop finer abstractions). Second,GS1performs
both offline and real-time equilibrium computation.Spar-
botonly performs offline computation, andVexbotprimarily
performs real-time computation. Detailed offline computa-
tion allows GS1 to accurately evaluate strategic situations
early in the game, while the real-time computation enables
it to perform computations that are focused on specific por-
tions of the game tree, based on observed events, and thus
allows more refined abstractions to be used in the later stages
than if offline computation were used for the later stages
(where the game tree has exploded to be enormously wide).

In our experimental results section, we present evidence
to show thatGS1, which uses very little poker-specific do-
main knowledge, and which does not attempt to identify and
exploit weaknesses in opponents, performs competitively
againstSparbot, Vexbot, and advanced human players.

Rules of Texas Hold’em poker
There are many different variations of Texas Hold’em. One
parameter is the number of players. As most prior work
on poker, we focus on the setting with two players, called
heads-up. Another difference between variations is the bet-
ting structure. Again, as most prior research, we focus on

low-limit poker, in which the betting amounts adhere to a re-
stricted format (see next paragraph). Other popular variants
includeno-limit, in which players may bet any amount up to
their current bankroll, andpot-limit, in which players may
bet any amount up to the current size of the pot.

Before any cards are dealt, the first player, called thesmall
blind, contributes one chip to the pot; the second player (big
blind) contributes two chips.3 Each player is dealt twohole
cards from a randomly shuffled standard deck of 52 cards.
Following the deal, the players participate in the first of four
betting rounds, called thepre-flop. The small blind acts first;
she may either call the big blind (contribute one chip), raise
(three chips), or fold (zero chips). The players then alternate
either calling the current bet (contributing one chip), raising
the bet (two chips), or folding (zero chips). In the event
of a fold, the folding player forfeits the game and the other
player wins all of the chips in the pot. Once a player calls a
bet, the betting round finishes. The number of raises allowed
is limited to four in each round.

The second round is called theflop. Threecommunity
cardsare dealt face-up, and a betting round takes place with
bets equal to two chips. The big blind player is the first to
act, and there are no blind bets placed in this round.

The third and fourth rounds are called theturn and the
river. In each round, a single card is dealt face-up, and a
betting round similar to the flop betting round takes place,
but with bets equal to four chips.

If the betting in the river round ends with neither player
folding, then theshowdowntakes place. Each player uses
the seven cards available (their two hole cards along with
the five community cards) to form the best five-card poker
hand, where the hands are ranked in the usual order. The
player with the best hand wins the pot; in the event of a tie,
the players split the pot.

Strategy computation for the pre-flop and flop
GS1computes the strategies for the pre-flop and flop offline.
There are two distinct phases to the computation: the auto-
mated abstraction and the equilibrium approximation. We
discuss these in the following subsections, respectively.

Automated abstraction for the pre-flop and flop
For automatically computing a state-space abstraction for
the first and second rounds, we use theGameShrinkal-
gorithm (Gilpin & Sandholm 2005) which is designed for
situations where the game tree is much too large for an
equilibrium-finding algorithm to handle.GameShrinktakes
as input a description of the game, and outputs a smaller rep-
resentation that approximates the original game. By com-
puting an equilibrium for the smaller, abstracted game, one
obtains an equilibrium approximation for the original game.

We control the coarseness of the abstraction thatGame-
Shrinkcomputes by a threshold parameter. The abstraction
can range from lossless (threshold = 0), which results in
an equilibrium for the original game, to complete abstrac-
tion (threshold =∞), which treats all nodes of the game

3The exact monetary value of a chip is irrelevant and so we refer
only to the quantity of chips.



as the same. The original method for using a threshold in
GameShrinkrequired a weighted bipartite matching com-
putation (for heuristically determining whether two nodes
are strategically similar) in an inner loop. To avoid that
computational overhead, we use a faster heuristic. Letting
w1, l1 andw2, l2 be the expected numbers of wins and losses
(against a roll-out of every combination of remaining cards)
for the two hands, we define two nodes to be in the same ab-
straction class if|w1 −w2|+ |l1 − l2| ≤ threshold. We vary
the abstraction threshold in order to find the finest-grained
abstraction for which we are able to compute an equilibrium.

In the first betting round, there are
(

52

2

)

= 1,326 distinct
possible hands. However, there are only 169 strategically
different hands. For example, holding A♠A♣ is no differ-
ent (in the pre-flop phase) than holding A♦A♥. Thus, any
pair of Aces may be treated similarly.4 GameShrink auto-
maticallydiscovers these abstractions.

In the second round, there are
(

52

2

)(

50

3

)

= 25,989,600
distinct possible hands. Again, many of these hands are
strategically similar. However, applyingGameShrinkwith
the threshold set to zero results in a game which is still too
large for an equilibrium-finding (LP) algorithm to handle.
Thus we use a positive threshold that yields an abstraction
that has 2,465 strategically different hands.5

The finest abstraction that we are able to handle depends
on the available hardware. As hardware advances become
available, our algorithm will be able to immediately take ad-
vantage of the new computing power simply by specifying a
different abstraction threshold as input toGameShrink. (In
contrast, expert-designed abstractions have to be manually
redesigned to get finer abstractions.)

To speed-upGameShrink, we precomputed several data-
bases. First, ahandval database was constructed. It has
(

52

7

)

= 133,784,560 entries. Each entry corresponds to
seven cards and stores an encoding of the hand’s rank, en-
abling rapid comparisons to determine which of any two
hands is better (ties are also possible). These comparisons
are used in many places by our algorithms.

To compute an index into thehandval database, we
need a way of mapping 7 integers between 0 and 51 to a
unique integer between 0 and

(

52

7

)

− 1. We do this using the
colexicographical orderingof subsets of a fixed size (Bol-
lobás 1986) as follows. Let{c1, . . . , c7}, ci ∈ {0, . . . , 51},
denote the 7 cards and assume thatci < ci+1. We compute

4This observation is well-known in poker, and in fact optimal
strategies for pre-flop (1-round) Texas Hold’em have been com-
puted using this observation (Selby 1999).

5In order forGS1to be able to consider such a wide range of
hands in the flop round, we limit (in our model, but not in the eval-
uation) the number of raises in the flop round to three instead of
four. For a given abstraction, this results in a smaller linear pro-
gram. Thus, we are able to use an abstraction with a larger num-
ber of distinct flop hands. This restriction was also used in the
Sparbotplayer and has been justified by the observation that four
raises rarely occurs in practice (Billingset al. 2003). This is one of
the few places whereGS1incorporates any domain-specific knowl-
edge.

a unique index for this set of cards as follows:

index(c1, . . . , c7) =
7

∑

i=1

(

ci

i

)

.

We use similar techniques for computing unique indices in
the other databases.

Another database,db5, stores the expected number of
wins and losses (assuming a uniform distribution over re-
maining cards) for five-card hands (the number of draws
is inferred from this). This database has

(

52

2

)(

50

3

)

=
25,989,600 entries, each corresponding to a pair of hole
cards along with a triple of flop cards. In computing thedb5
database, our algorithm makes heavy use of thehandval
database. Thedb5 database is used to quickly compare how
strategically similar a given pair of flop hands are. This en-
ablesGameShrinkto run much faster, which allows us to
compute and evaluate several different levels of abstraction.

By using the above precomputed databases, we are able to
run GameShrinkin about four hours for a given abstraction
threshold. Being able to quickly run the abstraction com-
putation allowed us to evaluate several different abstraction
levels before settling on the most accurate abstraction for
which we could compute an equilibrium approximation. Af-
ter evaluating several abstraction thresholds, we settledon
one that yielded an abstraction that kept all the 169 pre-flop
hands distinct and had 2,465 classes of flop hands.

Equilibrium computation for the pre-flop and flop
Once we have computed an abstraction, we are ready to per-
form the equilibrium computation for that abstracted game.
In this phase of the computation, we are only considering
the game that consists of the first two betting rounds, where
the payoffs for this truncated game are computed using an
expectation over the possible cards for the third and fourth
rounds, but ignoring any betting that might occur in those
later rounds.

Two-person zero-sum games can be solved via linear pro-
gramming using the sequence form representation of games.
Building the linear program itself, however, is a non-trivial
computation. It is desirable to be able to quickly perform
this operation so that we can apply it to several different ab-
stractions (as described above) in order to evaluate the capa-
bility of each abstraction, as well as to determine how diffi-
cult each of the resulting linear programs are to solve.

The difficulty in constructing the linear program lies pri-
marily in computing the expected payoffs at the leaf nodes.
Each leaf corresponds to two pairs of hole cards, three flop
cards, as well as the betting history. Considering only the
card history (the betting history is irrelevant for the purposes
of computing the expected number of wins and losses), there
are

(

52

2

)(

50

2

)(

48

3

)

≈ 2.8 · 1010 different histories. Evaluat-
ing each leaf requires rolling out the

(

45

2

)

= 990 possible
turn and river cards. Thus, we would have to examine about
2.7 · 1013 different combinations, which would make the LP
construction slow (a projected 36 days on a 1.65 GHz CPU).

To speed up this LP creation, we precomputed a database,
db223, that stores for each pair of hole cards, and for each



flop, the expected number of wins for each player (losses
and draws can be inferred from this). This database thus has

(

52

2

)(

50

2

)

2

(

48

3

)

= 14,047,378,800

entries. The compressed size ofdb223 is 8.4 GB and it
took about a month to compute. We store the database in
one file per flop combination, and we only load into memory
one file at a time, as needed. By using this database,GS1
can quickly and exactly determine the payoffs at each leaf
for any abstraction. Once the abstraction is computed (as
described in the previous subsection), we can build the LP
itself in about an hour. This approach determines the payoffs
exactly, and does not rely on any randomized sampling.

Using the abstraction described above yields a linear pro-
gram with 243,938 rows, 244,107 columns, and 101,000,490
non-zeros. We solved the LP using the barrier method of
ILOG CPLEX. This computation used 18.8 GB RAM and
took 7 days, 3 hours.GS1uses the strategy computed in this
way for the pre-flop and flop betting rounds. Because our
approximation does not involve any lossy abstraction on the
pre-flop cards, we expect the resulting pre-flop strategies to
be almost optimal, and certainly a better approximation than
what has been provided in previous computations that only
consider pre-flop actions (Selby 1999).

Strategy computation for the turn and river

Once the turn card is revealed, there are two betting rounds
remaining. At this point, there are a wide number of histo-
ries that could have occurred in the first two rounds. There
are 7 possible betting sequences that could have occurred in
the pre-flop betting round, and 9 possible betting sequences
that could have occurred in the flop betting round. In ad-
dition to the different betting histories, there are a num-
ber of different card histories that could have occurred. In
particular, there are

(

52

4

)

= 270,725 different possibilities
for the four community cards (three from the flop and one
from the turn). The large number of histories makes com-
puting an accurate equilibrium approximation for the final
two rounds for every possible first and second round history
prohibitively hard. Instead,GS1computes inreal-timean
equilibrium approximation for the final two rounds based on
the observed history for the current hand. This enablesGS1
to perform computations that are focused on the specific re-
maining portion of the game tree, and thus allows more re-
fined abstractions to be used in the later stages than if offline
computation were used for the later stages (where the game
tree has exploded to be enormously wide).

There are two parts to this real-time computation. First,
GS1must compute an abstraction to be used in the equilib-
rium approximation. Second,GS1must actually compute
the equilibrium approximation. These steps are similar to
the two steps taken in the offline computation of the pre-flop
and flop strategies, but the real-time nature of this computa-
tion poses additional challenges. We address each of these
computations and how we overcame the challenges in the
following two subsections.

Automated abstraction for the turn and river
The problem of computing abstractions for each of the pos-
sible histories is made easier by the following two obser-
vations: (1) the appropriate abstraction (even a theoretical
lossless one) does not depend on the betting history (but does
depend on the card history, of course); and (2) many of the
community card histories are equivalent due to suit isomor-
phisms. For example, having 2♠3♠4♠5♠ on the board is
equivalent to having 2♣3♣4♣5♣ as long as we simply re-
label the suits of the hole cards and the (as of yet unknown)
river card. Observation 2 reduces the number of abstractions
that we need to compute (in principle, one for each of the
(

52

4

)

flop and turn card histories, but reduced to 135,408).6

AlthoughGameShrinkcan compute one of these abstrac-
tionsfor a given abstraction thresholdin just a few seconds,
we perform these abstraction computations off-line for two
reasons. First, since we are going to be playing in real-time,
we want the strategy computation to be as fast as possible.
Given a small fixed limit on deliberation time (say, 15 sec-
onds), saving even a few seconds could lead to a major rel-
ative improvement in strategy quality. Second, we can set
the abstraction threshold differently for each combination of
community cards in order to capitalize on the finest abstrac-
tion for which the equilibrium can still be solved within a
reasonable amount of time. One abstraction threshold may
lead to a very coarse abstraction for one combination of
community cards, while leading to a very fine abstraction for
another combination. Thus, for each of the 135,408 cases,
we perform several abstraction computations with different
abstraction parameters in order to find an abstraction close
to a target size (which we experimentally know the real-time
equilibrium solver (LP solver) can solve (exactly or approx-
imately) within a reasonable amount of time). Specifically,
our algorithm first conducts binary search on the abstrac-
tion threshold for round 3 (the turn) untilGameShrinkyields
an abstracted game with about 25 distinct hands for round
3. Our algorithm then conducts binary search on the ab-
straction threshold for round 4 (the river) untilGameShrink
yields an abstracted game with about 125 distinct hands for
round 4. Given faster hardware, or more deliberation time,
we could easily increase these two targets.

Using this procedure, we computed all 135,408 abstrac-
tions in about one month using six general-purpose CPUs.

Real-time equilibrium computation for the turn
and river
Before we can construct the linear program for the turn and
river betting rounds, we need to determine the probabilities
of holding certain hands. At this point in the game the play-
ers have observed each other’s actions leading up to this
point. Each player action reveals some information about
the type of hand the player might have.

Based on the strategies computed for the pre-flop and flop
rounds, and based on the observed history, we apply Bayes’
rule to estimate the probabilities of the different pairs ofhole

6Our use of observation 2 and our limit of three raises in the flop
betting round are the only places whereGS1uses domain knowl-
edge.



cards that the players might be holding. Lettingh denote the
history,Θ denote the set of possible pairs of hole cards, and
si denote the strategy of playeri, we can derive the proba-
bility that playeri holds hole card pairθi as follows:

Pr[θi | h, si] =
Pr[h | θi, si]Pr[θi]

Pr[h | si]
=

Pr[h | θi, si]Pr[θi]
∑

θ′

i
∈Θ

Pr[h | θ′
i
, si]

Since we already knowPr[h | θi, si] (we can simply look
at the strategies,si, computed for the first two rounds), we
can compute the probabilities above. Of course, the result-
ing probabilities might not be exact because the strategies
for the pre-flop and flop rounds do not constitute an exact
equilibrium since, as discussed above, they were computed
without considering a fourth possible raise on the flop or any
betting in rounds 3 and 4, and abstraction was used.

Once the turn card is dealt out,GS1creates a separate
thread to construct and solve the linear problem correspond-
ing to the abstraction of the rest of that game. When it is time
for GS1to act, the LP solve is interrupted, and the current
solution is accessed to get the strategy to use at the current
time. When the algorithm is interrupted, we save the cur-
rent basis which allows us to continue the LP solve from
the point at which we were interrupted. The solve then con-
tinues in the separate thread (if it has not already found the
optimal solution). In this way, our strategy (vector of prob-
abilities) keeps improving in preparation for making future
betting actions in rounds 3 and 4.

There are two different versions of the simplex algorithm
for solving an LP:primal simplexand dual simplex. The
primal simplex maintains primal feasibility, and searchesfor
dual feasibility. (Once the primal and dual are both feasible,
the solution is optimal.) Similarly, dual simplex maintains
dual feasibility, and searches for primal feasibility. (Dual
simplex can be thought of as running primal simplex on the
dual LP.) WhenGS1 is playing as player 1, the dual vari-
ables correspond to her strategies. Thus, to ensure that at any
point in the execution of the algorithm we have a feasible
solution,GS1uses dual simplex to perform the equilibrium
approximation when she is player 1. Similarly, she uses the
primal simplex algorithm when she is player 2. If given an
arbitrarily long time to deliberate, it would not matter which
algorithm was used since at optimality both primal and dual
solutions are feasible. But since we are also interested in in-
terim solutions, it is important to always have feasibilityfor
the solution vector in which we are interested. Our condi-
tional choice of the primal or dual simplex method ensures
exactly this.

One subtle issue is thatGS1 occasionally runs off the
equilibrium path. For example, suppose it isGS1’sturn to
act, and the current LP solution indicates that she should
bet; thusGS1bets, and the LP solve continues. It is pos-
sible that as the LP solve continues, it determines that the
best thing to have done would have been to check instead of
betting. If the other player re-raises, thenGS1is in a pre-
carious situation: the current LP solution is stating that she
should not have bet in the first place, and consequently is
not able to offer any guidance to the player since she is in
an information set that is reached with probability zero. Itis

also possible forGS1to determine during a hand whether the
opponent has gone off the equilibrium path, but this rarely
happens because their cards are hidden. In these situations,
GS1simply calls the bet. (Another technique for handling
the possibility of running oneself off the equilibrium path
as mentioned above would be to save the previous LP solu-
tion(s) that specified a behavior to use in the information set
that now has zero probability.)

Experimental results
We testedGS1 against two of the strongest prior poker-
playing programs, as well as against a range of humans.

Computer opponents
The first computer opponent we testedGS1 against was
Sparbot(Billings et al. 2003). Sparbotis also based on
game theory. The main difference is thatSparbotconsiders
three betting rounds at once (we consider two), but requires
a much coarser abstraction. Also, all ofSparbot’scomputa-
tions are performed offline and it is hard-wired to never fold
in the pre-flop betting round (Davidson 2005). Thus, even
with an extremely weak hand, it will always call a bet in the
pre-flop. Our results againstSparbotare illustrated in Fig-
ure 1 (left). When tested on 10,000 hands, we won 0.007
small bets per hand on average.

A well-known challenge is that comparing poker strate-
gies requires a large number of hands in order to mitigate
the role of luck. The variance of heads-up Texas Hold’em
has been empirically observed to be

±6/
√

N

small bets per hand whenN hands are played (Billings
2005).7 So, our win rate againstSparbotis within the es-
timated variance of±0.06.

The second computer opponent we played wasVexbot
(Billings et al. 2004). It searches the game tree, using a
model of the opponent to estimate the probabilities of cer-
tain actions as well as the expected value of leaf nodes. It is
designed to adapt to the particular weaknesses of the oppo-
nent, and thus, when facing a fixed strategy such as the one
used byGS1, it should gradually improve its strategy. Fig-
ure 1 (right) indicates thatGS1wins initially, but essentially

7One way to reduce the variance would be to play each hand
twice (while swapping the players in between), and to fix the cards
that are dealt. This functionality is not available inPoker Academy
Pro, and the opponent players are available only via that product,
so we have as yet been unable to perform these experiments.

Even controlling for the deal of cards would not result in an en-
tirely fair experiment for several reasons. First, the strategies used
by the players are randomized, so even when the cards are held
fixed, the outcome could possibly be different. Second, in the case
where one of the opponents is doing opponent modeling, it may be
the case that certain deals early in the experiment lend themselves
to much better learning, while cards later in the experiment lend
themselves to much better exploitation. Thus, theorder in which
the fixed hands are dealt matters. Third, controlling for cards would
not help in experiments against humans, because they would know
the cards that will be coming in the second repetition of a card se-
quence.
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Figure 1:GS1versusSparbot(left) andVexbot(right).

ends up in a tie after 5,000 hands. It is possible thatVexbot
is learning an effective counter strategy toGS1, although the
learning process appears to take a few thousand hands.

When playing against computer opponents,GS1was lim-
ited to 60 seconds of deliberation time, though it only used
about 9 seconds on average.

Human opponents
We also conducted experiments against human players, each
of whom has considerable poker-playing experience. Each
participant was asked to describe themselves as either “inter-
mediate” or “expert”. The experts play regularly and have
significantly positive winnings in competitive play, mainly
in online casinos. (In poker, unlike other competitive games
such as chess, there is no ranking system for players.)

GS1was competitive with the humans (Table 1). How-
ever, due to the large variance present in poker, there does
not appear to be strong evidence declaring it to be an over-
all winner or an overall loser. With human opponents it is
difficult to play a large enough number of hands to make
any definitive statements. AlthoughGS1ended up losing an
average of 0.02 small bets per hand, this is well within the
variance (±0.15 small bets per hand when 1,576 hands are
played). Interestingly,GS1won 0.01 small bets per hand on
average against the expert players.

When playing against human opponents,GS1was limited
to 15 seconds of deliberation time, though it only used about
4 seconds on average.

Player small bets per hand # hands
Intermediate player 1 0.20 71
Intermediate player 2 -0.09 166
Intermediate player 3 -0.40 100
Intermediate player 4 0.09 86
Expert player 1 -0.35 429
Expert player 2 0.19 325
Expert player 3 0.33 251
Expert player 4 0.09 148
Overall: -0.02 1576

Table 1: Small bets per hand won byGS1against humans.

Other related research on abstraction
Abstraction techniques have been used in artificial intelli-
gence research before. In contrast to our work, most (but
not all) research involving abstraction has been for single-
agent problems (e.g. (Knoblock 1994; Liu & Wellman
1996)). One of the first pieces of research utilizing abstrac-
tion in multi-agent settings was the development ofparti-
tion search, which is the algorithm behind GIB, the world’s
first expert-level computer bridge player (Ginsberg 1999;
1996). In contrast to other game tree search algorithms
which store a particular game position at each node of the
search tree, partition search storesgroupsof positions that
it determines are similar. (Typically, the similarity of two
game positions is computed by ignoring the less impor-
tant components of each game position and then check-
ing whether the abstracted positions are similar—in some
domain-specific sense—to each other.) Partition search can
lead to substantial speed improvements overα-β-search.
However, it is not game theory-based (it does not consider
information sets in the game tree), and thus does not solve
for the equilibrium of a game of imperfect information, such
as poker.8

Conclusions
We presented a game theory-based heads-up Texas Hold’em
poker player that was generated with very little domain
knowledge. To overcome the computational challenges
posed by the huge game tree, we combined our automated
abstraction technique and real-time equilibrium approxima-
tion to developGS1. We compute strategies for the first two

8Bridge is also a game of imperfect information, and partition
search does not find the equilibrium for that game either, although
experimentally it plays well against human players. Instead, parti-
tion search is used in conjunction with statistical sampling to sim-
ulate the uncertainty in bridge. There are also other bridge pro-
grams that use search techniques for perfect information games in
conjunction with statistical sampling and expert-defined abstrac-
tion (Smith, Nau, & Throop 1998). Such (non-game-theoretic)
techniques are unlikely to be competitive in poker because of the
greater importance of information hiding and bluffing.



rounds of the game in a massive offline computation with
abstraction followed by LP. For the last two rounds, our al-
gorithm precomputes abstracted games of different granu-
larity for the different card history equivalence classes.Also
for the last two rounds, our algorithm deduces the probabil-
ity distribution over the two players’ hands from the strate-
gies computed for the first two rounds and from the players’
betting history. When round three actually begins, our al-
gorithm performs an anytime real-time equilibrium approx-
imation (using LP) that is focused on the relevant portion of
the game tree using the new prior.

GS1outperformed both of the prior state-of-the-art poker
programs (although the statistical significance is tiny, par-
tially due to the variance in poker). This indicates that it is
possible to build a poker program using very little domain
knowledge that is at least as strong as the best poker pro-
grams that were built using extensive domain knowledge.
GS1is also competitive against experienced human players.

Future research includes developing additional techniques
on top of the ones presented here, with the goal of develop-
ing even better programs for playing large sequential games
of imperfect information.
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