
First-Order Algorithm with O(ln(1/ε)) Convergence for ε-Equilibrium in
Two-Person Zero-Sum Games

Andrew Gilpin
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

Javier Peña
Tepper School of Business
Carnegie Mellon University

Pittsburgh, PA, USA

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

We propose an iterated version of Nesterov’s first-order
smoothing method for the two-person zero-sum game equi-
librium problem

min
x∈Q1

max
y∈Q2

xTAy = max
y∈Q2

min
x∈Q1

xTAy.

This formulation applies to matrix games as well as sequen-
tial games. Our new algorithmic scheme computes an ε-
equilibrium to this min-max problem in O(κ(A) ln(1/ε))
first-order iterations, where κ(A) is a certain condition mea-
sure of the matrix A. This improves upon the previous
first-order methods which required O(1/ε) iterations, and
it matches the iteration complexity bound of interior-point
methods in terms of the algorithm’s dependence on ε. Unlike
the interior-point methods that are inapplicable to large games
due to their memory requirements, our algorithm retains the
small memory requirements of prior first-order methods. Our
scheme supplements Nesterov’s algorithm with an outer loop
that lowers the target ε between iterations (this target affects
the amount of smoothing in the inner loop). We find it sur-
prising that such a simple modification yields an exponential
speed improvement. Finally, computational experiments both
in matrix games and sequential games show that a significant
speed improvement is obtained in practice as well, and the
relative speed improvement increases with the desired accu-
racy (as suggested by the complexity bounds).

Introduction
Game-theoretic solution concepts provide an appealing nor-
mative basis for designing agents for multi-agent settings.
The concepts are particularly robust in two-person zero-sum
games. Equilibrium-finding algorithms for computing ap-
proximately optimal strategies have been recently success-
fully applied to games as large as two-person Texas Hold’em
poker (Gilpin, Sandholm, and Sørensen 2007; Zinkevich,
Bowling, and Burch 2007; Zinkevich et al. 2007).

The Nash equilibrium problem for a two-person zero-sum
game can be formulated as a saddle-point problem (we will
describe this in detail later). The latter can in turn be cast
as a linear program (LP). However, for many interesting in-
stances of games, such as those that arise in real poker, these

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

LPs are enormous and unsolvable via standard algorithms
such as the simplex or interior-point methods.

To address this, some alternative algorithms have been
developed and have been shown to be effective in finding
ε-equilibria, where neither player can benefit more than ε
by deviating. These include an algorithm based on regret
minimization (Zinkevich et al. 2007) and iterative bundle-
based algorithms (Zinkevich, Bowling, and Burch 2007;
McMahan and Gordon 2007). There are no known conver-
gence rates for those algorithms in terms of ε.

Another recent approach (Gilpin et al. 2007) is based
on Nesterov’s (2005a; 2005b) first-order smoothing tech-
niques. The main strength is simplicity and low compu-
tational cost of each iteration. The algorithm finds an ε-
equilibrium within O(1/ε) iterations. In contrast, interior-
point methods find an ε-equilibrium within O(ln(1/ε)) iter-
ations (Wright 1997), but do not scale to large games due to
memory requirements.

In this paper we propose an iterated version of Nes-
terov’s smoothing algorithm for nonsmooth convex opti-
mization (Nesterov 2005b) that runs in O(κ(A) ln(1/ε)) it-
erations. In terms of ε, the iteration complexity is thus the
same as that of interior-point methods and exponentially bet-
ter than that of prior first-order methods. The complexity
also depends on a certain condition measure, κ(A), of the
payoff matrix A. Unlike interior-point methods, we inherit
the manageable memory usage of prior first-order methods.
So, our algorithm scales to large games and small ε.

First-Order Methods
Assume Q ⊆ Rn is a compact convex set and f : Q → R
is convex. Consider the convex optimization problem

min{f(x) : x ∈ Q} (1)

This paper is concerned with first-order methods for solv-
ing a particular form of problem (1). The defining feature
of these methods is that the search direction at each main
iteration is obtained using only first-order information, such
as the gradient or subgradient of the function f(x). This
feature makes their computational overhead per iteration ex-
tremely low, and hence makes them attractive for large-scale
problems.

The complexity of first-order methods for finding an ap-
proximate solution to (1) depends on the properties of f and

Q. For the setting where f is differentiable and ∇f , the
gradient of f , is Lipschitz1 and continuous, Nesterov (1983)
proposed a gradient-based algorithm with convergence rate
O(1/

√
ε). In other words, within O(1/

√
ε) iterations, the

algorithm outputs a value x ∈ Q such that f(x) ≤ f(x′)+ ε
for all x′ ∈ Q, including the optimal one. We refer to this al-
gorithm as Nesterov’s optimal method since it can be shown
that for that smooth class of problems, no gradient-based al-
gorithm has faster convergence. A variant by Lan, Lu, and
Monteiro (2006) also features O(1/

√
ε) convergence and

outperformed the original in experiments.
For the setting where f is non-differentiable, subgra-

dient algorithms are often used. They have complexity
Θ(1/ε2) (Goffin 1977). However, this pessimistic result is
based on treating f as a black box, whose value and sub-
gradient are available through an oracle. For a function f
with a suitable structure, Nesterov (2005a; 2005b) devised a
first-order algorithm with convergence rateO(1/ε).2 The al-
gorithm is based on a smoothing technique. The idea is that
the structure of f can be used to construct a smooth function
with Lipschitz gradient that resembles f . Then, the optimal
gradient algorithm applied to the smooth function yields an
approximate minimizer for f . This latter technique in par-
ticular applies to equilibrium problems arising in two-person
zero-sum games, as explained next.

Smoothing Scheme for Matrix Games
In this subsection we describe a smoothing method for the
min-max matrix game problem

min
x∈∆m

max
y∈∆n

xTAy = max
y∈∆n

min
x∈∆m

xTAy (2)

where ∆m := {x ∈ Rm :
∑m

i=1 xi = 1, x ≥ 0} is the set
of mixed strategies for a player with m pure strategies. The
game interpretation is that if player 1 plays x ∈ ∆m and
player 2 plays y ∈ ∆n, then 1 gets payoff−xTAy and 2 gets
payoff xTAy.

Nesterov (2005b) formulated a first-order smoothing
technique for solving for each agent’s strategy in a matrix
game separately. We present that idea here, but applied to
a formulation where we solve for both players’ strategies at
once.

Problem (2) can be rewritten as the primal-dual pair of
nonsmooth optimization problems

min{f(x) : x ∈ ∆m} = max{φ(y) : y ∈ ∆n}
where

f(x) := max
{
xTAv : v ∈ ∆n

}
,

φ(y) := min
{
uTAy : u ∈ ∆m

}
.

1Recall that a function f is Lipschitz with constant L if |f(x)−
f(y)| ≤ L|x− y| for all x and y in the domain of f .

2First-order methods have also proven to be effective for find-
ing approximate solutions to large-scale LPs (Bienstock 2002) and
to large-scale nonlinear convex programs (Smola, Vishwanathan,
and Le 2007). These approaches use O(1/ε2) iterations on
non-smooth problems. (For a special class of continuously dif-
ferentiable minimization problems (which is very different from
our non-differentiable setting) the first-order method presented by
Smola et al. (2007) runs in O(ln(1/ε)) iterations.)

For our purposes it will be convenient to cast this as the
primal-dual nonsmooth convex minimization problem

min{F (x, y) : (x, y) ∈ ∆m ×∆n}, (3)

where

F (x, y) = max
{
xTAv − uTAy : (u, v) ∈ ∆m ×∆n

}
.
(4)

Observe that F (x, y) = f(x) − φ(y) is convex and
min{F (x, y) : (x, y) ∈ ∆m × ∆n} = 0. Also, a point
(x, y) ∈ ∆m × ∆n is an ε-solution to (2) if and only if
F (x, y) ≤ ε.

Since the objective function F (x, y) in (3) is nonsmooth,
a subgradient method would be appropriate. Thus, without
making any attempt to exploit the structure of our prob-
lem, we would be faced with a worst-case bound on a
subgradient-based algorithm of O(1/ε2). However, we can
get a much better bound by exploiting the structure of our
problem as we now show.

The following objects associated to Equation (3) play a
central role in the sequel. Let

Opt := Argmin{F (x, y) : (x, y) ∈ ∆m ×∆n}

be the set of all optimal solutions and let dist : ∆m×∆n →
R be the distance function to the set Opt, i.e.,

dist(x, y) := min{‖(x, y)− (u, v)‖ : (u, v) ∈ Opt}.

Let (ū, v̄) ∈ ∆m ×∆n and µ > 0. Consider the following
smoothed version of F :

Fµ(x, y) = max{xTAv − uTAy − µ

2
‖(u, v)− (ū, v̄)‖2

: (u, v) ∈ ∆m ×∆n}. (5)
Let (u(x, y), v(x, y)) ∈ ∆m ×∆n denote the maximizer in
(5). This maximizer is unique since the function

xTAv − uTAy − µ ‖(u, v)− (ū, v̄)‖2

is strictly concave in u and v (Nesterov 2005b). It follows
from (Nesterov 2005b, Theorem 1) that Fµ is smooth with
gradient

∇Fµ(x, y) =
[

0 A
−AT 0

] [
u(x, y)
v(x, y)

]
,

and ∇Fµ is Lipschitz with constant ‖A‖2

µ .3 Let

D := max
{
‖(u, v)− (ū, v̄)‖2

2
: (u, v) ∈ ∆m ×∆n

}
.

Nesterov’s optimal gradient algorithm applied to the prob-
lem

min{Fµ(x, y) : (x, y) ∈ ∆m ×∆n} (6)
yields the following algorithm. Assume (x0, y0) ∈ ∆m ×
∆n and ε > 0 are given.

3‖A‖ denotes the matrix norm of matrix A which is associated
with some vector norm. In this paper, we will use the Euclidean
norm (L2-norm) for which it can be shown that ‖A‖ =

√
λ(ATA)

where λ(M) denotes the largest eigenvalue of matrix M .

smoothing(A, x0, y0, ε)

1. Let µ = ε
2D and (w0, z0) := (x0, y0)

2. For k = 0, 1, . . .

• (uk, vk) = 2
k+2 (wk, zk) + k

k+2 (xk, yk)
• (xk+1, yk+1) =

argmin{∇Fµ(uk, vk)T((x, y)− (uk, vk)) +
‖A‖2

2µ ‖(x, y)− (uk, vk)‖2 : (x, y) ∈ ∆m ×∆n}
• if F (xk+1, yk+1) < ε return
• (wk+1, zk+1) =

argmin{
∑k

i=0
i+1
2 ∇Fµ(ui, vi)T((w, z)− (ui, vi)) +

‖A‖2

2µ ‖(w, z)− (x0, y0)‖2 : (w, z) ∈ ∆m ×∆n}

Proposition 1 Algorithm smoothing finishes in at most

k =
2
√

2 · ‖A‖ ·
√

D · dist(x0, y0)
ε

first-order iterations.

Proof. This readily follows from (Lan, Lu, and Monteiro
2006, Theorem 9) applied to the prox-function

d(u, v) =
1
2
‖(u, v)− (ū, v̄)‖2,

which we used for smoothing in Equation (5). 2

Note that the vectors ū, v̄ can be any vectors in ∆m and
∆n. In our implementation, we take these vectors to be those
corresponding to a uniformly random strategy.

Iterated Smoothing Scheme for Matrix Games
We are now ready to present our main contribution. The
new algorithm is a simple modification of the smoothing al-
gorithm. At each iteration we call the basic smoothing al-
gorithm with a target accuracy. Between the iterations, we
reduce the target accuracy by γ > 1. Consider the following
iterated first-order algorithm for minimizing F (x, y).

iterated(A, x0, y0, γ, ε)

1. Let ε0 = F (x0, y0)

2. For i = 0, 1, . . .

• εi+1 = εi

γ

• (xi+1, yi+1) = smoothing(A, xi, yi, εi+1)
• If F (xi+1, yi+1) < ε halt

While the modification to the algorithm is simple, it yields
an exponential speedup with respect to reaching the target
accuracy ε:

Theorem 2 Each call to smoothing in Algorithm iter-
ated halts in at most

2
√

2 · γ · ‖A‖ ·
√

D

δ(A)
(7)

first-order iterations, where δ(A) is a finite condition mea-
sure of the matrix A.

Algorithm iterated halts in at most

ln(2‖A‖/ε)
ln(γ)

outer iterations, that is, in at most

2
√

2 · γ · ‖A‖ · ln(2‖A‖/ε) ·
√

D

ln(γ) · δ(A)
(8)

first-order iterations.
By setting γ = e ≈ 2.718... above gives the bound

2
√

2 · e · ‖A‖ · ln(2‖A‖/ε)
δ(A)

.

It can be shown that this is the optimal setting of γ for the
overall complexity bound in Theorem 2.

For the proof of Theorem 2, we need to introduce the con-
dition measure δ(A).

The Condition Measure δ(A)
We define the condition measure of a matrix A as

δ(A) = sup
δ

{
δ : dist(x, y) ≤ F (x, y)

δ
∀(x, y) ∈ ∆m×∆n

}
.

Notice that δ(A) can be geometrically visualized as a mea-
sure of “steepness” of the function F (x, y). We can relate
this to κ(A) by defining κ(A) := ‖A‖/δ(A). The following
technical lemma shows that δ(A) > 0 for all A.

Lemma 3 Assume A ∈ Rm×n and F is as in (4). There
exists δ > 0 such that

dist(x, y) ≤ F (x, y)
δ

for all (x, y) ∈ ∆m ×∆n. (9)

Proof. Since the function F : ∆m×∆n → R is polyhedral,
its epigraph epi(F) = {(x, y, t) : t ≥ F (x, y), (x, y) ∈
∆m ×∆n} is polyhedral. It thus follows that

epi(F) = conv{(xi, yi, ti) : i = 1...M}+{0}×{0}×[0,∞)

for a finite set of points (xi, yi, ti) ∈ ∆m ×∆n ×R+, i =
1, . . . ,M. Therefore F can be expressed as

F (x, y)=min

{
M∑
i=1

tiλi :
M∑
i=1

(xi, yi)λi = (x, y), λ∈∆M

}
.

(10)
Since min{F (x, y) : (x, y) ∈ ∆m × ∆n} = 0, we have
min{ti, i = 1, . . . ,M} = 0. Without loss of generality
assume t1 ≥ t2 ≥ · · · ≥ tN > 0 = tN+1 = · · · = tM .
We assume N ≥ 1 as otherwise Opt = ∆m × ∆n and (9)
readily holds for any δ > 0. Thus Opt = conv{(xi, yi) :
i = N + 1, . . . ,M}. Let

δ :=
tN

max{‖(xi, yi)− (x, y)‖ : i = 1...N, (x, y) ∈ Opt}

=
tN

max{‖(xi, yi)− (xj , yj)‖ : i = 1...N, j = N + 1...M}

We claim that δ satisfies (9). To prove this claim, let (x, y) ∈
∆m × ∆n be any arbitrary point. We need to show that
dist(x, y) ≤ F (x, y)/δ. Assume F (x, y) > 0 as otherwise
there is nothing to show. From (10) it follows that

(x, y) =
M∑
i=1

(xi, yi)λi, F (x, y) =
M∑
i=1

tiλi =
N∑

i=1

tiλi

for some λ ∈ ∆M . Let µ :=
∑N

i=1 λi > 0, and let
λ̃ ∈ ∆N be the vector defined by putting λ̃i := λi/µ, i =
1, . . . , N. In addition, let (x̂, ŷ) =

∑N
i=1(xi, yi)λ̃i =∑N

i=1(xi, yi)λi/µ ∈ ∆m × ∆n, and (x̃, ỹ) ∈ Opt be as
follows

(x̃, ỹ) :=

M∑

i=N+1

(xi, yi)λi/(1− µ) if µ < 1

(xM , yM) if µ = 1

Then (x, y) = µ(x̂, ŷ) + (1− µ)(x̃, ỹ) and consequently

‖(x, y)− (x̃, ỹ)‖ = µ‖(x̂, ŷ)− (x̃, ỹ)‖

= µ

∥∥∥∥∥
N∑

i=1

λ̃i((xi, yi)− (x̃, ỹ))

∥∥∥∥∥
≤ µ

N∑
i=1

λ̃i‖(xi, yi)− (x̃, ỹ)‖

≤ µmax{‖(xi, yi)− (x, y)‖ :
i = 1, . . . , N, (x, y) ∈ Opt}

= µtN

δ .

To finish, observe that

F (x, y) =
N∑

i=1

tiλi = µ
N∑

i=1

tiλ̃i ≥ µtN .

Therefore,

dist(x, y) ≤ ‖(x, y)− (x̃, ỹ)‖ ≤ µtN/δ ≤ F (x, y)/δ.

2

Proof of Theorem 2
By construction, for each i = 0, 1, . . . we have

dist(xi, yi) ≤
εi

δ(A)
=

γ · εi+1

δ(A)
.

The iteration bound (7) then follows from Proposition 1.
After N outer iterations Algorithm iterated yields

(xN , yN) ∈ ∆m ×∆n with

F (xN , yN) < εN =
F (x0, y0)

γN
≤ 2‖A‖

γN
.

Thus, F (xN , yN) < ε for N = ln(2‖A‖/ε)
ln(γ) and (8) follows

from (7).

The Subroutine smoothing for Matrix Games
Algorithm smoothing involves fairly straightforward opera-
tions except for the solution of a subproblem of the form

argmin
{

1
2
‖(u, v)‖2 − (g, h)T(u, v) : (u, v) ∈ ∆m×∆n

}
.

This problem in turn separates into two subproblems of the
form

argmin
{

1
2
‖u‖2 − gTu : u ∈ ∆m

}
. (11)

Problem (11) can easily be solved via its Karush-Kuhn-
Tucker optimality conditions:

u− g = λ1 + µ, λ ∈ R, µ ∈ Rm
+ , u ∈ ∆m, uTµ = 0.

From these conditions it follows that the solution to (11) is
given by

ui = max{0, gi − λ}, i = 1, . . . ,m,

where λ ∈ R is such that
∑m

i=1 max {0, (gi − λ)} = 1.
This value of λ can be computed in O(m ln(m)) steps via a
binary search in the sorted components of the vector g.

Smoothing Scheme for Sequential Games
Algorithm iterated and its complexity bound can be ex-
tended to sequential games. The Nash equilibrium problem
of a two-player zero-sum sequential game with imperfect in-
formation can be formulated using the sequence form repre-
sentation as the following saddle-point problem (Koller and
Megiddo 1992; Romanovskii 1962; von Stengel 1996):

min
x∈Q1

max
y∈Q2

xTAy = max
y∈Q2

min
x∈Q1

xTAy. (12)

In this formulation, the vectors x and y represent the strate-
gies of players 1 and 2 respectively. The strategy spaces
Qi ⊆ R|Si|, i = 1, 2 are the sets of realization plans of
players 1 and 2 respectively, where Si is the set of sequences
of moves of player i.

The approach we presented for equilibrium finding in ma-
trix games extends to sequential games in the natural way:
recast (12) as a nonsmooth convex minimization problem

min{F (x, y) : (x, y) ∈ Q1 ×Q2}, for (13)

F (x, y) = max{xTAv− uTAy : (u, v) ∈ Q1 ×Q2}. (14)
Algorithms smoothing and iterated extend to this con-

text by replacing ∆m and ∆n with Q1 and Q2, respec-
tively. Proposition 1 and Theorem 2 also extend in the same
fashion. However, the critical subproblem in the subroutine
smoothing becomes more challenging, as described next.

The Subroutine smoothing for Sequential Games
Here we describe how to solve each of the two argmin sub-
problems of smoothing in the sequential game case. Each
of those two subproblems decomposes into two subproblems
of the form

argmin
{

1
2
‖u‖2 − gTu : u ∈ Q

}
, (15)

where Q is a set of realization plans.
Our algorithm for this is a generalization of the solution

approach described above for the case Q = ∆k. In order
to describe it, we use some features of the sets of realiza-
tion plans in the sequence form representation of sequential
games. A detailed discussion of the sequence form can be
found in (von Stengel 1996). Recall that an extensive form
sequential game is given by a tree, payoffs at the leaves,
chance moves, and information sets (Osborne and Rubin-
stein 1994). Each node in the tree determines a unique se-
quence of choices from the root to that node for each one
of the players. Under the assumption of perfect recall, all
nodes in an information set u of a player define the same
sequence σu of choices.

Assume U is the set of information sets of a particular
player. For each u ∈ U let Cu denote the set of choices for
that player. Then the set of sequences S of the player can be
written as

S = {∅} ∪ {σuc : u ∈ U, c ∈ Cu}

where the notation σuc denotes the sequence of moves σu

followed by the move c. A realization plan for this player
is a non-negative vector x : S → R that satisfies x(∅) = 1,
and

−x(σu) +
∑

c∈Cu

x(σuc) = 0

for all u ∈ U .
It is immediate that the set of realization plans of the

player as above can be written in the form

{x ≥ 0 : Ex = e}

for some (1+|U |)×|S|matrix E with entries {0, 1,−1} and
the (1 + |U |)-dimensional vector e = (1, 0, . . . , 0)T. It also
follows that sets of realization plans are complexes. A com-
plex is a generalization of a simplex, and can be recursively
defined as follows:

(C1) The empty set ∅ is a complex.

(C2) Assume Qj ⊆ Rdj for j = 1, . . . , k are complexes.
Then the following set is a complex

{(u0, u1, . . . , uk) ∈ Rk+d1+···+dk : u0 ∈ ∆k,

uj ∈ u0
j ·Qj , j = 1, . . . , k}.

(The operation u0
j ·Qj multiplies all elements of Qj by u0

j .)
Note that any simplex is a complex: ∆k is obtained by ap-
plying (C2) with Qj = ∅, j = 1, . . . , k.

Given a complex Q ⊆ Rd and a vector g ∈ Rd, define
the value function vQ,g : R+ → R as

vQ,g(t) := min
{

1
2
‖u‖2 − gTu : u ∈ t ·Q

}
.

It is easy to see that vQ,g is differentiable in R+. Let λQ,g =
v′Q,g and let θQ,g be the inverse function of λQ,g . It is easy
to see that λQ,g is strictly increasing in R+. In particular, its
minimum value is λQ,g(0). The function θQ,g can be defined

in all of R by putting θQ,g(λ) := 0 for all λ ≤ λQ,g(0).
Finally, define the minimizer function uQ,g : R+ → Q as

uQ,g(t) := argmin
{

1
2
‖u‖2 − gTu : u ∈ t ·Q

}
.

The recursive algorithm ComplexSubproblem below com-
putes the functions vQ,g, λQ,g, θQ,g, and uQ,g for any given
complex Q. In particular, it computes the solution uQ,g(1)
to the subproblem (15). The algorithm assumes that Q is as
in (C2) and g =

(
g0, g1, . . . , gk

)
∈ Rk+d1+···+dk .

ComplexSubproblem(Q, g)

1. For i = 1, . . . , k let λ̃i : R+ → R and θ̃i : R → R+ be

λ̃i(t) := λQi,gi(t) + t− g0
i , θ̃i := λ̃−1

i .

2. Let θQ,g :=
∑k

i=1 θ̃i and λQ,g := θ−1
Q,g

3. Let uQ,g : R+ → Q be

uQ,g(t)0i := max
{
0,

(
g0

i − λQ,g(t)
)}

and
uQ,g(t)i := uQi,gi

(
uQ,g(t)0i

)
for i = 1, . . . , k.

While we presented Algorithm ComplexSubproblem in
recursive form for pedagogical reasons, for efficiency pur-
poses we implemented it as a dynamic program. The im-
plementation first performs a bottom-up pass that computes
and stores the functions λQ,g . Subsequently a top-down pass
computes the components of the minimizer uQ,g(t).

Theorem 4 Algorithm ComplexSubproblem is correct. In
addition, the function λQ,g is piecewise linear. Further-
more, if Q is as in (C2), then the total number of breakpoints
B(Q, g) of λQ,g is at most

k∑
i=1

max{B(Qi, gi), 1}.

If the breakpoints of λQi,gi are available, then
the breakpoints of λQ,g can be constructed in
O(B(Q, g) ln(B(Q, g))) steps, i.e., this is the run time of
Algorithm ComplexSubproblem.

Proof. The value function vQ,g(t) can be written as

vQ,g(t) = min

1
2

∥∥u0
∥∥2 −

(
g0

)T
u0 +

k∑
j=1

vQj ,gj

(
u0

j

)
:

u0 ∈ t ·∆k

}
. (16)

This is a constrained optimization problem in the variables
u0. Its Karush-Kuhn-Tucker optimality conditions are

u0
j − g0

j + λQj ,gj

(
u0

j

)
= λ + µj ,

λ ∈ R, µ ∈ Rk
+,

u0 ∈ t ·∆k, µTu0 = 0.

(17)

By basic differentiability properties from convex analysis
(see, e.g. (Hirriart-Urruty and Lemaréchal 2001, Chapter
D)), it follows that λQ,g(t) = v′Q,g(t) is precisely the value
of λ that solves the optimality conditions (17). From these
optimality conditions, we get u0

j = θ̃j(λ), j = 1, . . . , k for
the functions θ̃j constructed in step 1 of Algorithm Com-
plexSubproblem. Hence

t =
k∑

j=1

u0
j =

k∑
j=1

θ̃j(λ).

Therefore, θQ,g =
∑k

j=1 θ̃j . This shows the correctness of
Steps 1 and 2 of Algorithm ComplexSubproblem. Finally,
the correctness of Step 3 follows from (16) and (17).

The piecewise linearity of λQ,g readily follows from the
correctness of Algorithm ComplexSubproblem. As for the
number of breakpoints, observe that the number of break-
points of θ̃i is the same as that of λ̃i, which is either the
same as that of λQi,gi (if Qi 6= ∅) or 1 (if Qi = ∅). To get
the bound on B(Q, g), note that the total number of break-
points of λQ,g is the same as that of θQ,g , which is at most
the sum of the number of breakpoints of all θ̃i, i = 1, . . . , k.
Finally, the breakpoints of θQ,g can be obtained by sorting
the breakpoints of all of the θi together. This can be done in
O(B(Q, g) ln(B(Q, g))) steps. 2

ComplexSubproblem Example
We include a simple example to illustrate Algorithm Com-
plexSubproblem, as well as the use of our recursive def-
inition of complexes. For simplicity of the example, let
Q1 = ∆2 and Q2 = ∅. Then applying the recursive defi-
nition of complexes, (C2), we get that Q is the set{(

u0, u1
)

: u0 ∈ ∆2, u
1 ∈ u0

1 ·Q1

}
.

In a sequential game corresponding to this set of realiza-
tion plans, the player first chooses among actions a0

1 and a0
2,

with probabilities u0
1 and u0

2, respectively, and conditioned
on choosing action a0

1, the player may be asked to choose
among actions a1

1 and a1
2, which are played with probabili-

ties u1
1/u0

1 and u1
2/u0

1, respectively. (Note that there is no u2

in the above equation since Q2 = ∅, i.e., if the agent plays
a0
2, he will have no further actions.)
Now, given input vector g1 ∈ R2, we define the value

function for Q1 as

vQ1,g1

(
u0

1

)
:= min

{
1
2

∥∥u1
∥∥2 −

(
g1

)T
u1 : u1 ∈ u0

1 ·Q1

}
.

Then, as was done in the proof of Theorem 4, we can write
the value function for Q as

vQ,g(t) := min
{

1
2

∥∥u0
∥∥2 −

(
g0

)T
u0 + vQ1,g1

(
u0

1

)
:

u0 ∈ t ·∆k

}
for g =

(
g0, g1

)
∈ R4. This is the problem that Complex-

Subproblem is trying to solve in our example.

We first demonstrate the algorithm as it executes
ComplexSubproblem(Q1, g

1), i.e., the bottom of the recur-
sion. Since Q1 has no “sub-complexes”, we have

λ̃1(t) := t− g1
1 ,

λ̃2(t) := t− g1
2 .

The equations are graphed on the left in Figure 1. Step 1
of the algorithm constructs the θ̃i functions to be the inverse
of the λ̃i(t) functions. Once these inverses are computed,
Step 2 of the algorithm adds the θ̃i functions to obtain the
θQ1,g1 function, which is in turn inverted to construct the
λQ1,g1 function. This process of inverting, adding, and in-
verting again has a more intuitive description in the form
of a “horizontal addition” operation on the λ̃i functions. In
such an operation, two functions are added as normal, except
we flip the axis of the graph so that the x-axis and y-axis
are switched. This operation is illustrated in Figure 1. The
graph on the left in Figure 1 contains the λ̃i(t) functions.
These functions are “horizontally added” to obtain λQ1,g1

on the right in Figure 1.

t

λ̃1(t)

λ̃2(t)

−g1
1

−g2
1

λ(Q1, g
1)(t)

t

Figure 1: An illustration of Steps 1 and 2 of Algorithm
ComplexSubproblem applied to Q1 and g1.

At non-bottom parts of the recursion (λQ,g in our exam-
ple) we construct the piecewise linear functions similarly,
except that we have to take into account subsequent actions
using the piecewise linear functions (function λQ1,g1(t) in
our example) already computed for the nodes below the cur-
rent node in the recursion tree:

λ̃1(t) := t− g0
1 + λQ1,g1(t),

λ̃2(t) := t− g0
2

The “horizontal addition” operation for this case is depicted
in Figure 2.

Since λQ1,g1(t) and λQ,g are piecewise linear, our imple-
mentation simply represents them as a set of breakpoints,
which are represented by solid circles in Figures 1 and 2.
Given that we have finally constructed the piecewise linear
function at the root, we can determine the values of u0 and
u1 that solve the optimization problem in (15) as described
in Step 3 of Algorithm ComplexSubproblem. Specifically,
we first take t = 1 and solve for u0. To do this, we evaluate

t

λ̃1(t)

λ̃2(t)

−(g0
1 + g1

2)

−g0
2

λQ,g(t)

t

Figure 2: An illustration of Steps 1 and 2 of Algorithm ComplexSubproblem applied to Q and g.

λQ,g(1). Then we find the values of u0
1 and u0

2 such that

λ̃1(u0
1) = λQ,g(1),

λ̃2(u0
2) = λQ,g(1).

This last operation is straightforward since the functions in
question are monotonically increasing and piecewise linear.

Once we have computed u0
1, we can evaluate

λ(Q1, g
1)(u0

1) and find u1
1 and u1

2 that satisfy

λ̃1(u1
1) = λQ1,g1(u

0
1),

λ̃2(u1
2) = λQ1,g1(u

0
1).

Again, this operation is easy due to the functions being
monotonically increasing and piecewise linear. This com-
pletes the execution of Algorithm ComplexSubproblem on
our example.

Computational Experiments
In this section we report on our computational experience
with our new method. We compared our iterated algorithm
against the basic smoothing algorithm. We tested the algo-
rithms on matrix games as well as sequential games.

For matrix games, we generated 100 games of three dif-
ferent sizes where the payoffs are drawn uniformly at ran-
dom from the interval [−1, 1]. This is the same instance
generator as in Nesterov’s (2005b) experiments.

For sequential games, we used the benchmark instances
81, 10k, and 160k which have been used in the past for
benchmarking equilibrium-finding algorithms for sequential
imperfect-information games (Gilpin et al. 2007). These in-
stances are all abstracted versions of Rhode Island Hold’em
poker (Shi and Littman 2002), and they are named to indi-
cate the number of variables in each player’s strategy vector.

Figure 3 displays the results. Each graph is plotted with
ε on the x-axis (using an inverse logarithmic scale). The y-
axis is the number of seconds (using a logarithmic scale)

needed to find ε-equilibrium for the given ε. The matrix
game graphs also display the standard deviation.

In all settings we see that our iterated algorithm indeed
outperforms the smoothing algorithm (as the worst-case
complexity results would suggest). In fact, as the desired ac-
curacy increases, the relative speed difference also increases.

We also tested a version of our algorithm using the Lan
et al. (2006) variant of Nesterov’s optimal method (details
omitted). Although the guarantee of Theorem 2 does not
hold, that version performed nearly the same.

Conclusions
We presented a new algorithm for finding ε-equilibria in
two-person zero-sum games. It applies to both matrix
and sequential games. The algorithm has convergence rate
O(κ(A) ln(1/ε)), where κ(A) is a condition measure of the
matrix A. In terms of the dependence on ε, this matches the
complexity of interior-point methods and is exponentially
faster than prior first-order methods. Furthermore, our algo-
rithm, like other first-order methods, uses dramatically less
memory than interior-point methods, indicating that it can
scale to games much larger than previously possible.

Our scheme supplements Nesterov’s first-order smooth-
ing algorithm with an outer loop that lowers the target ε be-
tween iterations (this target affects the amount of smoothing
in the inner loop). We find it surprising that such a simple
modification yields an exponential speed improvement, and
wonder whether a similar phenomenon might occur in other
optimization settings as well. Finally, computational experi-
ments both in matrix games and sequential games show that
a significant speed improvement is obtained in practice as
well, and the relative speed improvement increases with the
desired accuracy (as suggested by the complexity bounds).

Acknowledgments
This material is based upon work supported by the National
Science Foundation under ITR grant IIS-0427858.

10-2

10-1

100

101

102

10-2 10-3 10-4 10-5

T
im

e
(s

)

ε

10x10 Matrix Games
iterative

smoothing

100

101

102

103

104

10-2 10-3 10-4 10-5

T
im

e
(s

)

ε

100x100 Matrix Games
iterative

smoothing

101

102

103

104

105

10-1 10-2 10-3

T
im

e
(s

)

ε

1000x1000 Matrix Games
iterative

smoothing

10-1
100
101
102
103
104

10-2 10-3 10-4

T
im

e
(s

)

ε

Sequential Game 81
iterative

smoothing

102

103

104

105

104 103 102

T
im

e
(s

)

ε

Sequential Game 10k
iterative

smoothing

102

103

104

105

106

103 102 101

T
im

e
(s

)

ε

Sequential Game 160k
iterative

smoothing

Figure 3: Time taken (in seconds) for each algorithm to find an ε-equilibrium for various values of ε.

References
Bienstock, D. 2002. Potential Function Methods for Ap-
proximately Solving Linear Programming Problems. Dor-
drecht: Kluwer International Series.
Gilpin, A.; Hoda, S.; Peña, J.; and Sandholm, T. 2007.
Gradient-based algorithms for finding Nash equilibria in
extensive form games. In 3rd International Workshop on
Internet and Network Economics (WINE).
Gilpin, A.; Sandholm, T.; and Sørensen, T. B.
2007. Potential-aware automated abstraction of sequential
games, and holistic equilibrium analysis of Texas Hold’em
poker. In Proceedings of the National Conference on Ar-
tificial Intelligence (AAAI), 50–57. Vancouver, Canada:
AAAI Press.
Goffin, J.-L. 1977. On the convergence rate of subgra-
dient optimization methods. Mathematical Programming
13:329–347.
Hirriart-Urruty, J., and Lemaréchal, C. 2001. Fundamen-
tals of Convex Analysis. Berlin: Springer-Verlag.
Koller, D., and Megiddo, N. 1992. The complexity of
two-person zero-sum games in extensive form. Games and
Economic Behavior 4(4):528–552.
Lan, G.; Lu, Z.; and Monteiro, R. D. C. 2006. Primal-
dual first-order methods with O(1/ε) iteration-complexity
for cone programming. Manuscript.
McMahan, H. B., and Gordon, G. J. 2007. A fast
bundle-based anytime algorithm for poker and other con-
vex games. In Proceedings of the 11th International Con-
ference on Artificial Intelligence and Statistics (AISTATS).
Nesterov, Y. 1983. A method for unconstrained convex
minimization problem with rate of convergence O(1/k2).

Doklady AN SSSR 269:543–547. Translated to English as
Soviet Math. Docl.
Nesterov, Y. 2005a. Excessive gap technique in nons-
mooth convex minimization. SIAM Journal of Optimiza-
tion 16(1):235–249.
Nesterov, Y. 2005b. Smooth minimization of non-smooth
functions. Mathematical Programming 103:127–152.
Osborne, M., and Rubinstein, A. 1994. A Course in Game
Theory. Cambridge, MA: MIT Press.
Romanovskii, I. 1962. Reduction of a game with complete
memory to a matrix game. Soviet Mathematics 3:678–681.
Shi, J., and Littman, M. 2002. Abstraction methods for
game theoretic poker. In CG ’00: Revised Papers from
the Second International Conference on Computers and
Games, 333–345. London, UK: Springer-Verlag.
Smola, A. J.; Vishwanathan, S. V. N.; and Le, Q. 2007.
Bundle methods for machine learning. In Proceedings of
the Annual Conference on Neural Information Processing
Systems (NIPS).
von Stengel, B. 1996. Efficient computation of behavior
strategies. Games and Economic Behavior 14(2):220–246.
Wright, S. J. 1997. Primal-Dual Interior-Point Methods.
Philadelphia, PA: SIAM.
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).
Zinkevich, M.; Bowling, M.; and Burch, N. 2007. A
new algorithm for generating equilibria in massive zero-
sum games. In Proceedings of the National Conference on
Artificial Intelligence (AAAI).

