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Abstract

Both SAT and #SAT can represent difficult prob-
lems in seemingly dissimilar areas such as plan-
ning, verification, and probabilistic inference.
Here, we examine an expressive new language,
#∃SAT, that generalizes both of these languages.
#∃SAT problems require counting the number of
satisfiable formulas in a concisely-describable set
of existentially-quantified, propositional formulas.
We characterize the expressiveness and worst-case
difficulty of #∃SAT by proving it is complete for
the complexity class #PNP [1], and relating this
class to more familiar complexity classes. We also
experiment with three new general-purpose #∃SAT
solvers on a battery of problem distributions includ-
ing a simple logistics domain. Our experiments
show that, despite the formidable worst-case com-
plexity of #PNP [1], many of the instances can be
solved efficiently by noticing and exploiting a par-
ticular type of frequent structure.

1 Introduction
#∃SAT is similar to SAT and #SAT—determining if a propo-
sitional boolean formula has a satisfying assignment, or
counting such assignments. SAT may be written as ∃~x φ(~x),
and #SAT may be written as Σ~x φ(~x), where ~x is a vector of
finitely many boolean variables and φ(~x) is a propositional
formula. #∃SAT allows a more general way of quantify-
ing than SAT or #SAT. Specifically, a #∃SAT problem is
Σ~x∃~y φ(~x, ~y), which corresponds to counting the number of
choices for ~x such that there is a ~y satisfying φ(~x, ~y).

The integer answer to a #∃SAT instance has a natural in-
terpretation: the number of formulas that are SAT from a
concisely-described but exponentially large set of formulas.
Each full assignment to the Σ-variables ‘selects’ a particular,
entirely ∃-quantified, residual formula—i.e., ∃~y φ(~x, ~y) for
some ~x—from the set. If a concise quantifier-free representa-
tion of ∃~y φ(~x, ~y) could be found efficiently, #∃SAT would
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reduce to #SAT. In most instances, however, the existential
quantification is required for concise representation.

#∃SAT captures a simple type of probabilistic interaction
useful for testing the robustness of a policy under uncer-
tainty. As an example, imagine a delivery company ponder-
ing whether to purchase more vehicles to improve quality-of-
service (QoS). They wonder if, under some world model, the
probability of timely delivery could be significantly improved
with more vehicles. We answer this question by counting1

how many random scenarios (e.g., truck breakdowns and road
closures) permit delivery plans (sequences of vehicle move-
ments, pickups, and dropoffs) that meet QoS constraints (ev-
ery package is delivered to its destination by some predeter-
mined time) for both the current fleet and the augmented one.

This logistics problem can be pseudo-formalized as

Σ~b,~c,~r ∃~p QoS(~b,~c,~r, ~p),

where the vector ~b describes which vehicles break down, ~c
lists road closures, ~r lists delivery requests, and ~p defines the
plan of action. QoS is a formula that describes initial posi-
tions, goals, and action feasibility. After realizing all uncer-
tainty, we are left with an instance of a famous NP -complete
problem: finding ~p is bounded deterministic planning.

#∃SAT is a subset of general planning under uncertainty
that requires that all uncertainty is revealed initially. This
excludes the succinct description of any problem that has a
more complicated interlacing of action and observation. For
example, the logistics problem does not describe the random
breakdown of trucks after they leave the depot.

However, #∃SAT is still very expressive—we character-
ize its complexity in §2. We provide three exact solvers for
#∃SAT in §3, before testing implementations of these ap-
proaches in §3.1 and §3.2.

The experiments are encouraging, and show a type of struc-
ture that can be noticed and exploited by solvers. Our ex-
periments and algorithms may be useful not just for #∃SAT
problems, but also for problems with more complicated un-
certainty. We are hopeful that similar structure can be discov-
ered and exploited in these settings, and that our solvers can
be used as components or heuristics for more general solvers.

1Throughout, for simplicity, we discuss unweighted #∃SAT,
where each scenario is equally likely. Our algorithms also work for
the weighted problem; furthermore, some weighted problems reduce
to unweighted ones by proper encoding.



Related work. SAT is the canonical NP -complete prob-
lem. Many important problems like bounded planning (e.g.,
[Kautz and Selman, 1999]) and bounded model checking
(e.g., [Biere et al., 2003]) can be solved by encoding prob-
lem instances in a normal form—like conjunctive normal
form (CNF) or DNNF ([Darwiche, 2001])—and using an off-
the-shelf SAT solver such as GRASP [Marques-Silva and
Sakallah, 1999], Chaff [Moskewicz et al., 2001], zChaff [Fu
et al., 2004], or MiniSat [Eén and Sörensson, 2006]. Current
work in satisfaction modulo theory (SMT; e.g., [Nieuwenhuis
et al., 2006]) is a continuation of this successful program.

This method of solvingNP -complete problems (convert to
normal form and solve with a SAT solver) succeeds because
SAT solvers can automatically notice and exploit some kinds
of structure that occur frequently in practice. Techniques in-
clude the venerable unit-propagation rule [Davis et al., 1962],
various preprocessing methods (e.g., [Eén and Biere, 2005]),
clause learning [Marques-Silva and Sakallah, 1999], restart-
ing [Gomes et al., 1998], and many others. As a result, mod-
ern SAT solvers can tackle huge industrial problem instances.
Scientists and engineers can largely treat them as black boxes,
not delving too deeply into their code; and, improvements to
SAT solvers have immediate and far-reaching impact.

SAT is not fully general and there are many reasons to ex-
amine more general settings. Many of these settings amount
to allowing a richer mixture of quantifiers: there is a SAT-like
problem at each level of the polynomial hierarchy, formed by
bounded alternations of ∀ and ∃. QBF is even more general,
allowing an unbounded number of ∃ and ∀ alternations; QBF
is PSPACE-complete [Samulowitz and Bacchus, 2006].

Bounded alternation of ∃ and Σ quantifiers yields another
hierarchy of problems, and our #∃SAT problem is one of the
two problems at its second level. Other members of this hier-
archy include the pure counting problem, #SAT (the canoni-
cal #P -complete problem) and Bayesian inference (also #P -
complete [Roth, 1996]), as well as the two-alternation de-
cision problem MAXPLAN [Majercik and Littman, 1998;
2003] and the unbounded-alternation PSPACE-complete de-
cision problem stochastic SAT (SSAT; [Littman et al., 2001]).
Our counting problem is related to a restriction of SSAT.

MAXPLAN bears a number of similarities to #∃SAT. It
asks if a plan has over a 50% probability of success, and can
be thought of as asking an ∃#SAT thresholding question—
the opposite alternation to our #∃SAT. MAXPLAN has a
different order of observation that, in the planning analogy,
means the MAXPLAN agent commits to a plan first, then ob-
serves the outcome of this commitment. The #∃SAT agent
observes first, then acts. MAXPLAN is NPPP -complete
(complete for the class of problems that are solvable by an
NP machine with access to a PP oracle), and we compare its
expressiveness to #∃SAT in §2.

While #SAT is in PSPACE and, could in theory, be solved
by a QBF solver we are not aware of any empirically useful
reductions of #SAT to QBF. Indeed, we are not aware of a re-
duction that does not involve simulating a #SAT solver with
a counting circuit—these are thought to be a difficult case for
QBF solvers (e.g., [Janota et al., 2012]). We expect the rela-
tion between #∃SAT and QBF to be similar.

#∃SAT is also a special case of another general problem—

it is a probabilistic constraint satisfaction problem [Fargier
et al., 1995] with complete knowledge and binary variables.
The restriction to #∃SAT not only allows us to develop both
novel algorithms but also stronger theoretical results.

We note that this paper concerns exact solvers rather than
approximate solvers (e.g., [Wei and Selman, 2005] or [Gomes
et al., 2007]). This is for several reasons. First, we are inter-
ested in solvers that provide non-trivial anytime bounds on
the probability range—so we can terminate if our bounds be-
come sufficiently tight or are sufficient to answering a thresh-
olding question. Secondly, we believe that exact solvers will
generalize better to first-order settings such as [Sanner and
Kersting, 2010] or [Zawadzki et al., 2011].

2 Complexity
The previous section mentions a number of other problems
that generalize SAT. In this section we clarify how expres-
sive #∃SAT is compared to them with three theoretical state-
ments. For each, we provide a proof sketch and some intu-
ition about how to interpret the result.

Our first result is that #∃SAT is complete for #PNP [1].
#P , by itself, is the class of counting problems that can be
answered by a polynomially-bounded counting Turing ma-
chine. A counting Turing machine is a nondeterministic ma-
chine that counts paths rather than testing if there is a path.
The machine’s polynomial bound applies to the length of its
nondeterministic execution paths.

The superscripted oracle notation used in #PNP [1] refers
to a generalization of the #P counting machine that allows
the machine to make a single query to anNP -complete oracle
per path. This oracle seems weak at first glance—there is a
simple reduction from NP to #P , so why would a single
call to this oracle help? A later result shows, however, that
this oracle call does change the complexity class unless the
polynomial hierarchy collapses.
Thm. 1 (Complete). #∃SAT is complete for #PNP [1].

Proof. First we show that our problem is in #PNP [1].
Our oracle-enhanced, polynomially-bounded counting Tur-
ing machine can solve this problem by nondeterministically
choosing the Σ-variables, and then asking the oracle whether
the entirely ∃-quantified residual formula is SAT or not.

Second, we show that an arbitrary problem A ∈ #PNP [1]

can be converted to an instance of #∃SAT in polynomial time.
This is done through a Cook-Levin-like argument: since
there must be some oracle-enhanced, polynomially-bounded
counting Turing machine M that counts A, we will just sim-
ulate it in a #∃SAT formula φ. Here, we use Σ-variables to
describe the time-bounded operation of the underlying count-
ing Turing machine, and ∃-variables to describe the time-
bounded operation of the NP oracle. We omit the techni-
cal detail of this description in the interests of brevity, but
the time required to construct this simulation is bounded by a
polynomial in the size of the original input.

We now turn to whether the oracle call actually adds some-
thing; #PNP [1] is not merely #P in disguise.
Thm. 2. If #∃SAT reduces to #P , then the polynomial hier-
archy collapses to ΣP

2 .



This proof is based on the fact that a ‘uniquifying’ Tur-
ing machineMUNQ—a machine that can take a propositional
boolean formula (p.b.f) φ and produce another p.b.f. ψ that
has a unique solution iff φ has any (and none otherwise)—
cannot run in deterministic polynomial time unless the poly-
nomial hierarchy collapses to ΣP

2 (a corollary of [Dell et al.,
2012] and [Karp and Lipton, 1982]).

Proof. Suppose #∃SAT reduces to #P . Then there is a poly-
nomial time Turing machine MRED that reduces any Σ∃-
quantified p.b.f. Φ = Σ~x∃~y φ(~x, ~y) to a p.b.f. ψ such that
counting solutions to ψ answers our #∃-counting question
about Φ. Therefore, Φ must have the same number of Σ∃-
solutions as ψ has solutions: Count#∃(Φ) = Count#(ψ).

We use MRED to uniquify any boolean formula φ as fol-
lows. First, form the #∃SAT formula Φ = Σx∃~y [x ∧ φ(~y)].
By design, Count#∃(Φ) = 1 iff Count#(φ) ≥ 1.

Then, since we have assumed that #∃SAT reduces to
#SAT, we can run Φ through MRED to produce a p.b.f.
ψ. Since Count#∃(Φ) = Count#(ψ), ψ is the uniquified
version of φ. This whole process runs in polynomial time if
MRED is, so MRED cannot exist unless PH collapses.

Thus, the oracle call (probably) adds expressiveness and
our problem #∃SAT is (probably) more general than #SAT.

Finally, we combine some existing results to show that
NPPP contains PPNP [1], a decision class closely related to
our counting class. Class PPNP [1] is ‘close’ in the sense that
it Cook-reduces to our counting class #PNP [1].

Cor. 1. PPNP [1] ⊆ NPPP

Proof. Follows from Toda’s theorem [Toda, 1991] (middle
inclusion): PPNP [1] ⊆ PPPH ⊆ PPP ⊆ NPPP .

This establishes that a closely related decision problem to
our #PNP [1] is contained in NPPP , the complexity class that
MAXPLAN is complete for. The result suggests that thresh-
olding questions for #∃SAT are possibly less expressive than
MAXPLAN, but also easier in the worst case.

3 Algorithms
The previous section establishes #∃SAT’s worst-case diffi-
culty, but we know from many other problems (e.g., SAT) that
the empirical behavior of solvers in practice can be radically
different than the worst-case complexity.

In the next two sections we explore the empirical behavior
of three different solvers on several distributions of #∃SAT
instances. #∃SAT generalizes both SAT and #SAT, so the
first two solvers are adaptations of algorithms for those set-
tings. The final solver is a novel DPLL-like procedure, and
capitalizes on an observation specific to the #∃SAT setting.

Our design principle for these solvers is to use a black box
DPLL solver as an inner loop. First, our solvers automati-
cally get faster whenever there is a better DPLL solver. Sec-
ond, the inner loop of the black-box solver is already highly
optimized, so we can avoid zealously optimizing much of our
solver and focus on higher-level design questions.
mDPLL: A SAT inspired solver. One intuition for #∃SAT

problems is that instances with a small number of Σ-variables

might be solvable by running a SAT solver until it sweeps
across every Σ-assignment (rather than returning after finding
the first satisfying assignment, like we would in SAT). We test
this intuition by generalizing DPLL.

Our first algorithm, mDPLL, searches over Σ-assignments
(consistent total or partial assignments to the Σ-variables),
pruning whenever a Σ-assignment can be shown to be SAT
or UNSAT. Each Σ-assignment defines a subproblem S =
〈φ,AΣ, UΣ, U∃〉, where φ is the original formula, AΣ ⊂ LΣ

is the Σ-assignment, and UΣ ⊆ VΣ and U∃ ⊆ V∃ are the
unassigned Σ and ∃ variables. LΣ, L∃, VΣ, V∃ are sets of the
Σ and ∃ variables and literals.

Our implementation is iterative (we maintain an explicit
stack), but for clear exposition we present mDPLL as a recur-
sive procedure. mDPLL is a special case of mDPLL/C (Alg 1)
that skips lines 4-8. These two cases are explained later in the
description for mDPLL/C. mDPLL first checks if a subprob-

Algorithm 1
1: function MDPLL/C(S = 〈φ,AΣ, UΣ, U∃〉)
2: if UnSatLeaf(S) then return 0
3: if SatLeaf(S) then return 2|UΣ|

4: if InCache(S) then
5: return CachedValue(S)

6: if Shatterable(S) then . Skip for mDPLL
7:

〈
C(1), . . . , C(m)

〉
← Shatter(S)

8: return
∏m

i=1 mDPLL/C(C(i))

9: 〈Sx, S¬x〉 ← Branch(S)
10: return mDPLL/C(Sx) + mDPLL/C(S¬x)

lem S is either an SAT or UNSAT leaf in the UnSatLeaf and
SatLeaf functions. Both of these checks are done with the
same black box SAT solver call. S is an UNSAT leaf if φ
is UNSAT assuming AΣ ((

∧
a∈AΣ

a) ∧ φ is UNSAT), and a
SAT leaf if the solver produces a model where each clause
in φ is satisfied by at least one literal not in UΣ. If S is not a
leaf then the subproblem is split into two subproblems Sx and
S¬x in the Branch function by branching on some Σ-variable
in UΣ.2

Σ-literal unit propagation is a special case of branching
where the implementation has fast machinery to determine
if one of the children is an UNSAT leaf. ∃-literal unit propa-
gation is handled by the black box solver.

Thm. 3. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-
count κ, mDPLL returns κ.

Proof by induction on structure omitted for brevity. See
[Zawadzki et al., 2013] for details.
mDPLL/C: a #SAT inspired solver. For problem in-

stances with a large number of Σ-variables we might suspect
that #SAT’s techniques are more useful than SAT’s. There
are at least two families of exact #SAT solvers: based on
either binary decision diagrams (BDDs [Bryant, 1992]) or
DPLL with component caching like cachet [Sang et al.,
2005]. In this paper we focus on component caching. Mod-
ern caching solvers tend to outperform BDD solvers and our

2We use an activity-based branching heuristic similar to VSIDS
[Moskewicz et al., 2001] in our implementation.



initial experiments with BDD solvers were unpromising.3

mDPLL/C (Alg 1) adds two cases (lines 4-8) to mDPLL. If
S is not a leaf, then InCache checks a bounded-sized cache
of previously counted components for a match.4 If there is a
match the CachedValue is returned.

If S is neither cached nor a leaf, then Shatterable checks
S for components using depth first search. Components are
subproblems formed in the Shatter step by partitioning UΣ∪
U∃ into disjoint pairs U (1)

Σ ∪ U (1)
∃ , . . . , U

(m)
Σ ∪ U (m)

∃ so that
no clause in φ contains literals from different pairs. Each
component C(i) = 〈 φ(i), AΣ, U

(i)
Σ , U

(i)
∃ 〉 has a formula φ(i)

that is restricted to only involve literals from U
(i)
Σ ∪ U (i)

∃ —
the satisfiability of a component is relative to this restricted
formula. Detection and shattering are expensive—profiling
component caching algorithms reveals that solvers spend a
large proportion of their time doing this work [Sang et al.,
2004]—but can dramatically simplify counting in #SAT.

In both mDPLL and mDPLL/C our implementations aug-
ment φ with learned clauses found by the black box solver.
Since we explicitly check S for feasibility in the UnSatLeaf
check this is a safe operation [Sang et al., 2004].

Thm. 4. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-
count κ, mDPLL/C returns κ.

Proof omitted for brevity. See [Zawadzki et al., 2013].

Algorithm 2
1: function POPS(φ,UΣ, U∃)
2: 〈φ′, U ′Σ〉 ← Rewrite(φ,UΣ)
3: return POPS helper(〈φ′, ∅, U ′Σ, U∃〉)
4: function POPS helper(S = 〈φ,AΣ, UΣ, U∃〉)
5: if SatSolve(Pess(S)) then return 2|UΣ|

6: if ¬SatSolve(Opt(S)) then return 0
7: x← Branch(S)
8: Sx ← 〈φ,AΣ ∪ {px,¬nx}, UΣ \ {px, nx}, U∃〉
9: S¬x ← 〈φ,AΣ ∪ {¬px, nx}, UΣ \ {px, nx}, U∃〉

10: return POPS helper(Sx) + POPS helper(S¬x)

POPS: pessimistic and optimistic pruning search. The
final algorithm, POPS, is based on being agnostic about val-
ues of Σ-variables whenever possible. If, during a SAT solve,
we notice a subproblem can be satisfied with just the ∃-
variables then we can declare the problem to be a SAT leaf.
On the other hand, if we notice that a subproblem cannot be
satisfied regardless of how the Σ-variables are assigned we
can declare it to be a UNSAT leaf.

This pruning is done by SAT-solving two modified formula
per subproblem (mDPLL and mDPLL/C solved one formula
per subproblem). The first is the pessimistic problem, which

3We built a BDD with a special stratified variable ordering and
eliminated any ∃-variable from the diagram. This solver was dra-
matically slower than any of our other algorithms on every problem
instance—the first step of constructing the BDD with a restricted
variable order was exceptionally time consuming. This approach,
however, may still be useful if one has a particularly quick method
of constructing BDDs for a particular application.

4Fully counted components are cached in a hash table with LRU
eviction. Components are represented as UΣ ∪ U∃ and the set of
active clauses (not already SAT) that involve these variables.

is SAT only if every way of extending AΣ with Σ-variables is
SAT. The second is the optimistic problem, which is UNSAT
only if every way of extending AΣ with Σ-variables is SAT.
We prune if the pessimist is SAT, or the optimist is UNSAT,
and branch otherwise.

Both problems use the same black box solver instance by
rewriting the original CNF formula. This allows activity in-
formation and learned clauses to be shared, and saves mem-
ory allocations. We rewrite the formula to essentially allow
any Σ-variable to take one of four values—true (T ), false (F ),
unknown but optimistic (O), or unknown but pessimistic (P ).
If a Σ-variable is O a clause can be satisfied by either the
positive or the negative literal of that variable; if it is P , a
clause cannot be satisfied by either literal. T and F behave as
usual—only the appropriate literal satisfies clauses.

This four-valued logic is encoded through the literal split-
ting rule. It replaces every negative literal of a Σ-variable x
with a fresh ∃-variable nx and every positive literal with a ∃-
variable px. A Σ-variable x may be set to any of four values
by making different assertions about nx and px:

x O T F P
px T T F F
nx T F T F

This encoding yields a simple formulation of the opti-
mistic and pessimistic problems: for some rewritten prob-
lem S the purely ∃-variable optimistic problem is Opt(S) =
〈φ,AΣ ∪ {u | u ∈ UΣ}, ∅, U∃〉 and the pessimistic problem
is Pess(S) = 〈φ,AΣ ∪ {¬u | u ∈ UΣ}, ∅, U∃〉. For exam-
ple, Σx∃y [x ∨ y] ∧ [−x ∨ y] is rewritten as ∃y,nx,np [px ∨
y]∧[nx∨y]. The pessimistic problem (i.e., [px = F, nx = F ])
is SAT so we return 2 at the root without any branching.
POPS initially Rewrites the problem by literal splitting.

A subproblem is pruned if the overly constrained pessimistic
problem is SAT (SatSolve(Pess(S)); SatSolve is the black
box solver) or if the relaxed optimistic problem is UNSAT
(¬SatSolve(Opt(S))). Otherwise POPS chooses to Branch
on one of the Σ-variables x and solves the child subproblems
Sx and S¬x(see Alg 2).

Thm. 5. For any #∃SAT formula Σx∃y φ(x, y) with Σ∃-
count κ, POPS returns κ.

Proof omitted for brevity. See [Zawadzki et al., 2013].

3.1 Problem distributions
We explore the empirical characteristics of the these algo-
rithms by running them on a number of instances drawn from
four problem distributions—job shop scheduling, graph 3-
coloring, a logistics problem, and random 3#∃SAT. The dis-
tributions touch a number of properties: job shop scheduling
is a packing problem that uses binary-encoded uncertainty,
the 3-coloring problems are posed on dense graphs, the lo-
gistics problem is a bounded-length deterministic planning
problem, and random 3#∃SAT is unstructured.

Job shop scheduling. Schedule J jobs of varying length
onM machines with time bound T . Job lengths are described
by P bits of uncertainty per job, encoded by Σ-variables.

Graph 3-coloring. Color an undirected graph where we
have uncertainty about which edges are present: for every
edge there is a Σ-variable to disable the edge iff true. Param-
eters are number of vertices V and proportion of edges PE .



# Solvers Dist. Parameters Insts per param
1 cachet, mDPLL/C Pure # Jobs J ∈ {1, . . . , 12},M ∈ {2, 3}, T ∈ {3, 4, 5}, P = 2 1
2 mDPLL, mDPLL/C, POPS Jobs J ∈ {2, . . . , 16},M ∈ {2, 3, 4}, T ∈ {6, 8, 10}, P ∈ {2, 3} 1
3 mDPLL, mDPLL/C, POPS Color V ∈ {3, . . . , 24}, PE ∈ {0.7, 0.8, 0.9} 10
4 mDPLL, mDPLL/C, POPS Logistics C ∈ {3, . . . , 10}, R ∈ {1.0, 1.1}, V ∈ {2, 3, 4}, B ∈ {2, 3, 4}, T ∈ {6, 8} 5
5 mDPLL, mDPLL/C, POPS Random V ∈ {10, 15, . . . , 150}, PP ∈ {0.1, 0.2, 0.3}, RC ∈ {2.5, 3, 3.5, 4} 10

Table 1: Parameter settings for the five experiments.

Logistics. Similar to the problem in §1, except the deliv-
ery requests are deterministic. Parameters are the number of
cities C, the ratio of roads to cities R, the number of vehicles
V , the number of delivery requests B, and the time bound
T . The undirected road network is generated by uniformly
scattering cities about a unit square and selecting the bC ·Rc
shortest edges. The roads are disabled iff a particular Σ-
variable is true. Initial positions for the trucks and boxes, and
goal positions for the boxes, are selected uniformly. Trucks
break down independently at random.

Random 3#∃SAT. Out of V variables, bV · PP c are de-
clared to be Σ-variables. Then we build bRC · V c clauses,
each with three non-conflicting literals chosen uniformly at
random without replacement.

3.2 Experiments
Our experiments ran on a 32-core AMD Opteron 6135 ma-
chine with 32×4GiB of RAM, on Ubuntu 12.04. Each run
was capped at 4GiB of RAM and cut off after two hours. The
experiments ran for roughly 160 CPU days.5 Table 1 shows
the parameter settings. Each instance and solver pair was run
only once because the solvers are deterministic.6

We hypothesize that POPS exploits a type of structure rem-
iniscent of conditional independence in probability theory or
backdoors in SAT (e.g., [Kilby et al., 2005]). By solving
the pessimistic problem POPS can demonstrate that—given
some small partial assignment to the Σ-variables and full as-
signment to the ∃-variables—the remaining Σ-variables are
unconstrained and can take on any value. We call this Σ-
independence, and expect it to occur more frequently in
lightly constrained formulas, and in formulas close to being
either VALID or UNSAT.7 mDPLL and mDPLL/C are gener-
ally unable to exploit this type of structure.

Experiment 1, checking mDPLL/C implementation. In
this experiment we demonstrate that we have a reasonable im-
plementation of component caching by comparing mDPLL/C
and cachet to each other on a 72 instances of purely #SAT
job shop scheduling (see Table 1 for details). We capped both
programs at 2.1× 107 cache entries.

A clear trend emerged. For each machine (M ∈ {2, 3})
and time-step (T ∈ {3, 4, 5}) the graph is similar to Fig 1:

5We attempted to compare our solvers to DC-SSAT [Majercik
and Boots, 2005], a SSAT-based planner. We determined—after per-
sonal communication with the authors—that we are unable to faith-
fully represent a number of our problem instances in their slightly
restricted COPP-SSAT language. The restrictions are reasonable
for planning, but make representation of some #∃SAT formulas
impossible—e.g., no purely #SAT problem can be directly encoded.
Consequently, performing a valid comparison with DC-SSAT is still
interesting, but unfortunately out-of-scope for this paper.

6Randomizing might be beneficial, e.g., in branching heuristics.
7There are exceptions. Parity formulas like Σ~x∃y [

⊕
~x] ↔ y

are difficult because while they are VALID, proving this requires
reasoning about cases that are difficult to summarize.

Figure 1: #SAT job shop scheduling problems with 2 machines, 2
bits of uncertainty and 4 times steps with varying numbers of jobs.

mDPLL/C is an order of magnitude slower than cachet on
small problems, but eventually becomes somewhat faster. We
suspect that this scaling behavior has to do with our differ-
ent way of handling UNSAT components. Problems from
this distribution have an increasingly small ratio of SAT Σ-
assignments to Σ-assignments as jobs are added, so the effect
of this difference becomes more pronounced. However, since
many of our problem distributions have this ‘larger problems
have a smaller ratio’ property, we believe that Fig 1 argues
strongly that our solver specializes to be a reasonable #SAT
solver for the instances that we examine.

Figure 2: Log runtimes for #∃SAT job shop scheduling instances
with 2 machines, 2 bits of uncertainty and 8 times steps.

Experiment 2, job scheduling scaling. The job schedul-
ing instances exhibited a pattern that repeats in most of our
experiments: the POPS solver tended to outperform the other
two, especially when instances were close to being either
VALID or UNSAT. Additionally, augmenting the mDPLL
solver with component caching did not help—mDPLL/C was
the slowest solver on every job scheduling instance. These
results are summarized in Table 2 (left). Fig 2 is typical of
the scaling curves on this distribution. We see that POPS is



dramatically faster than the other two solvers until 6 jobs.
Jobs 3-color

mDPLL mDPLL/C POPS mDPLL mDPLL/C POPS
mDPLL - 135 2 - 190 27
mDPLL/C 0 - 0 0 - 2
POPS 136 138 - 173 198 -

Table 2: Number of instances where the row solver beats the col-
umn solver. Left: based on 270 job scheduling instances. Right:
based on 880 3-coloring instances.

Experiment 3, 3-color scaling. The trends in 3-coloring
are similar to those found in the job shop experiments—POPS
is the fastest solver on almost every instance (see Table 2
right). Unlike in the jobs setting, the performance gap be-
tween POPS and the other solvers does not close. Fig 3 illus-
trates this phenomenon for graphs with 70% edge density, but
denser graphs are similar. These trends may indicate that only
a small number of the edges are important to reason about.

Figure 3: Log runtime for 3-Coloring instances on graphs with 70%
of the possible edges. Medians are plotted as a trend line, and indi-
vidual instances are plotted as points.

Experiment 4, logistics scaling. The logistics experi-
ments are more difficult to summarize than previous exper-
iments, but the left of Table 3 shows that POPS is again the
fastest solver for most instances. mDPLL, however, is faster
than POPS for a relatively large number of the instances—
especially compared to previous experiments. Instances
where mDPLL is superior might have common properties—
they might lack Σ-independence, or perhaps independence is
present but POPS fails to exploit it with our current heuristics.

Logistics Random
mDPLL mDPLL/C POPS mDPLL mDPLL/C POPS

mDPLL - 813 222 - 3038 1359
mDPLL/C 124 - 176 77 - 447
POPS 737 783 - 1849 2761 -

Table 3: Number of instances where the row solver beats the col-
umn solver. Left: based on 960 logistics instances. Right: based on
3360 random 3#∃SAT instances.

Experiment 5, random 3#∃SAT scaling. The right of Ta-
ble 3 paints a different picture than the previous experiments:
here, neither POPS nor mDPLL seem to be the true victor.
Both beat the other on a number of different instances—
although, again, mDPLL/C seems to be the slowest solver.

Taking a look at the different clause ratios is informative,
and the different parameterizations have very dissimilar scal-
ing trends. The instances where the clause ratio is 2.5 paints a
rosy picture for POPS (e.g., Fig 4—it is the fastest algorithm

Figure 4: Log runtimes for random 3#∃SAT instances on graphs
with a clause ratio of 2.5 and 10% Σ-variables. Medians are plotted
as a trend line, and individual instances are plotted as points.

in 28% of such instances, and is only beaten by mDPLL in
2% of these instances). We note that the variance for POPS
grows quickly with the number of variables, indicating more
sensitivity to problem structure than mDPLL and mDPLL/C.
However, if we restrict our attention to more constrained in-
stances with a clause ratio of 4.0, then we get a much differ-
ent picture. Here, mDPLL emerges as the superior algorithm,
beating POPS in 29% of such instances while POPS beats
mDPLL only 3% of the time—a reversal of the previous trend.

4 Conclusions
In this paper we introduced #∃SAT, a problem with a num-
ber of interesting properties. #∃SAT can, for example, rep-
resent questions about the robustness of a policy space for a
simple type of planning under uncertainty. Not only did we
provide theoretical statements about the expressiveness and
worst-case difficulty of #∃SAT, but we also built the first
three dedicated #∃SAT solvers.

We ran these solvers through their paces on four differ-
ent distributions and many different instances. These experi-
ments led us to three conclusions. First, our algorithm POPS
shows promise on many of these instances, sometimes run-
ning many orders of magnitude faster than the next fastest
algorithm, due to its ability to exploit Σ-independence. Sec-
ond, the instances on which POPS solver was slower than
mDPLL should serve as focal instances for understanding
the exploitable structure that occurs in #∃SAT. Finally,
they suggest that #SAT-style component caching is detri-
mental to solving #∃SAT problems. This does not rule
out lighter-weight component detection tailored to #∃SAT’s
unique trade-offs.

There are a number of research directions: our theory about
the importance of Σ-independence should be tested on more
problem distributions. Further profiling should guide the de-
sign of better heuristics; POPS, in particular, will benefit from
a branching heuristic tuned to its style of reasoning. Profiling
data may inspire additional methods for exploiting indepen-
dence structures and symmetry in #∃SAT problems. A final
direction is to build approximate solvers that maintain bounds
on their approximation. These may be necessary for tackling
larger real-world applications.
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