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Abstract

Complementary problems play a central role in equilibrium finding, physical sim-
ulation, and optimization. As a consequence, we are interested in understanding
how to solve these problems quickly, and this often involves approximation. In
this paper we present a method for approximately solving strictly monotone linear
complementarity problems with a Galerkin approximation. We also give bounds
for the approximate error, and prove novel bounds on perturbation error. These
perturbation bounds suggest that a Galerkin approximation may be much less sen-
sitive to noise than the original LCP.

1 Introduction

Complementarity problems arise in a wide variety of areas, including machine learning, planning,
game theory, and physical simulation. In particular, both the problem of planning in a belief-space
Markov decision processes (MDPs) and training support vector machines (SVMs) are (large) mono-
tone linear complementarity problems (LCPs). In all of the above areas, to handle large-scale prob-
lem instances, we need fast approximate solution methods. For example, for belief-space MDPs,
this requirement translates to fast approximate planners.

One promising idea for fast computation is Galerkin approximation, in which we search for the best
answer within the span of a given set of basis functions. Solutions are known for a number of special
cases of this problem with restricted basis sets, but the general-basis problem (even just for MDPs)
has been open for at least 50 years, since the work of Richard Bellman in the late 1950s.

We have made four concrete steps toward a solution to the problem of Galerkin approximation for
LCPs and variational inequalities: a new solution concept, perturbation bounds for this concept, and
two new algorithms which compute solutions according to this concept. These algorithms are only
proven to have low approximation error for strictly monotone LCPs (a class which does not include
MDPs, although for many MDPs we can easily “regularize” into this class). One of the algorithms
is guaranteed to converge for any (strict or non-strict) monotone LCP, although we do not yet have
error bounds. We are currently working to extend both the algorithms and proofs.

The first algorithm is similar to projected gradient descent. It is related to recent work by Bert-
sekas [1], who proposed one possible Galerkin method for variational inequalities. However, the
Bertsekas method can exhibit two problems in practice: its approximation error is worse than might
be expected based on the ability of the basis to represent the desired solution, and each iteration
requires a projection step that is not always easy to implement efficiently.

∗This material is based upon work supported by the Army Research Office under Award No. W911NF-
09-1-0273 and by ONR MURI grant number N00014-09-1-1052. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the
views of the Army Research Office.
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To resolve these problems, we present a new Galerkin method with improved behavior: the new
error bounds depend directly on the distance from the true solution to the subspace spanned by a
basis, and the only projections required are onto the feasible region or onto the span of a basis. The
new Galerkin method also gives us a way to analyze how perturbation affects the solution of an LCP.
We prove that the Galerkin approximation makes the Galerkin LCP solution less sensitive to noise.

The new solution concept can be defined as the fixed point of the above algorithm. One can interpret
the new solution concept as a modified LCP, which has a particular special structure: the LCP matrix
M ∈ Rn×n can be decomposed as M = ΦU + Π0, where the rank of Φ is k < n, and Π0 denotes
Euclidean projection onto the nullspace of Φ>. Such LCPs are called projective.

Given this solution concept, we can ask if there are other algorithms to achieve it, with different
or better convergence properties. It turns out that an interior-point method can be highly effective:
its convergence is exponentially faster than gradient descent, but each iteration requires solving a
system of linear equations, so it is limited to problems whose size or structure lets us solve this
system efficiently. In addition, the method provably solves (strict or non-strict) monotone projective
LCPs.

In particular, our paper [5] gives an algorithm that solves a monotone projective LCP to relative
accuracy ε inO(

√
n ln(1/ε)) iterations, with each iteration requiringO(nk2) flops. This complexity

compares favorably with interior-point algorithms for general monotone LCPs: these algorithms
also require O(

√
n ln(1/ε)) iterations, but each iteration needs to solve an n × n system of linear

equations, a much higher cost than our algorithm when k � n. This algorithm works even though
the solution to a projective LCP is not restricted to lie in the low-rank subspace spanned by Φ.

2 Complementarity problems

A complementarity problem (CP) (see, e.g., [4]) is defined by a function F :Rn → Rn and a coneK.
A solution to a CP is any vector x such that K 3 x⊥F (x) ∈ K∗, where ⊥ denotes orthogonality
and K∗ is the dual cone of K—K∗ = {y ∈ Rn | ∀x ∈ K, y>x ≥ 0}.
A linear CP (LCP) is a restriction of the more general CP to affine functions F (x) = Mx + q
and K = [0,∞)n ≡ Rn+ (see, e.g.,[3]). Since the cone is fixed, we can unambiguously describe
an LCP instance with the pair (M, q). LCPs can express the Karush-Kuhn-Tucker (KKT) system
(see, e.g., [2]) for any quadratic program (QP), including non-convex QPs. This is a broad class of
problems—SAT can be reduced in polynomial time to an LCP. We restrict our attention to a class of
LCPs with unique solutions that can be solved in polynomial time: strictly monotone LCPs.
Def. 1. A function F : Rn → Rn is β-monotone for β ≥ 0 on a set C ⊆ Rn if

∀x, y ∈ C, (x− y)T (F (x)− F (y)) ≥ β‖x− y‖2. (1)

A CP is monotone if F is β-monotone on K for β ≥ 0. We say that the CP is strictly monotone if
F is β-monotone for β > 0. Strictly monotone CPs always have a unique solution x∗ [3]. An LCP
(M, q) is monotone iffM is positive semidefinite, and is strictly monotone iffM is positive definite.

A strictly monotone CP can be solved in polynomial time with an iterative projection method:

x(t+1) = ΠK

[
x(t) + αF

(
x(t)
)]
. (2)

Here, ΠK is the orthogonal projection onto K. For LCPs this is component-wise thresholding
ΠRn

+
(x) ≡ x+ = max(0, x). α > 0 is the ‘step size’ or ‘learning rate’.

This projection operator T is a contraction with a Lipschitz constant based on the strong monotonic-
ity constant β and Lipschitz constant L for F . For a strictly monotone LCPs and the Euclidian norm,
L = σmax(M) ≥ β = σmin(M) > 0.
Lem. 1 (Lemma 1.1 and 2.2 in [6]). If F is strictly monotone with coefficient β and Lipschitz with
constant L and if α = β/L2, then T is a contraction with Lipschitz constant γ =

√
1− β2/L2 < 1.

For proofs of these results, see our tech report [6]. Consequently, to ensure that an iteration x(t) is
within an ε > 0 ball of the true solution x∗—i.e. ‖x(t) − x∗‖ ≤ ε—we can repeat the projection
procedure (2) until t ≥ ln(ε)/ ln(γ).
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2.1 Galerkin methods

If n is large, then we must use an appropriate approximate solver. One way to approximate the above
projection algorithm is to look for approximate solution within the span of a basis matrix Φ. We do
this by adding a step to (2) that projects onto span(Φ) with the orthogonal projection operator ΠΦ:

z(t) = ΠΦ

[
x(t) − αF (x(t)

]
, x(t+1) = ΠK(z(t)) (3)

More details of this methods can be found in our tech report [6].

By contrast, Bertsekas’ Galerkin projection method [1] projects onto K̂ = span(Φ) ∩K which has
two disadvantages. First, it is harder to project onto K̂ than to project onto span(Φ) first, and then
onto K. For LCPs, projection onto the span is a rank k linear operator that may be precomputed via
the QR decomposition, and projection onto Rn+ is component-wise thresholding; denoted by [·]+.
Second, the distance between the fixed point for Bertsekas-Galerkin and the true solution depends
on ‖x∗−ΠK̂x

∗‖ (see, e.g., Lemma 3.2 in [6]). Our algorithm depends only on ‖x∗−ΠΦx
∗‖, which

is no larger than ‖x∗−ΠK̂x
∗‖ and may be much smaller. This is because K̂ ⊆ span(Φ) so for any

arbitrary point x, the points in span(Φ) are no further than the points in K̂.

The Galerkin update (3), viewed from either x and z’s perspective, is a contraction for any strongly
monotone LCP.
Lem. 2 (Lemma 4.1 in [6]). If (I − αF ) is γ-Lipschitz, then the Galerkin update (3) is γ-Lipschitz
for both x and z.

This follows from projections being 1-Lipschitz; composing projection with a contraction yields a
contraction. As a consequence the Galerkin update has a unique fixed point (x̄, z̄) that it will be
within ‖x(t) − x̄‖ ≤ ε‖x(0) − x̄‖ after t ≥ ln ε/ ln γ iterations.

This fixed point (x̄, z̄) is not that far from the true solution x∗.
Lem. 3 (Lemma 4.2 in [6]). The error bound between the Galerkin solution from (3) and x∗ is
bounded:

‖x̄− x∗‖ ≤ ‖x∗ −ΠΦ(x∗)‖/(1− γ). (4)
Similarly:

‖z̄ − x∗‖ ≤ ‖x∗ −ΠΦ(x∗)‖/(1− γ). (5)

This lemma follows from the representation error being contracted by γ after every iteration.

The Galerkin update can be implemented efficiently for LCPs since the projection onto a subspace
spanned by Φ can be done efficiently via the standard ‘thin’ QR decomposition. If Φ = QR, where
Q is an orthonormal n× k matrix, then Πφ = QQ>. Therefore:

x(t+1) =
[
QQ>x(t) − α(QQ>Mx(t) +QQ>q)

]
+

(6)

Q>M (and QQ>q) can be precomputed, and so each iteration only takes O(kn) operations rather
than O(n2)—a big reduction if k � m.

The Galerkin approximated LCP is an exact fixed point iteration for a different LCP (N, r) where
N = I − ΠΦ + αΠΦM = αΠΦM + Π0 (Π0 denotes projection onto the nullspace of Φ) and
r = αΠΦq. This is a special kind of additive decomposition; N is a projective matrix and the LCP
(N, r) is strictly monotone iff (M, q) was (Lemma 5.1 in [6]).

Projective monotone LCPs—a more general class than strictly monotone projective LCPs—can be
solved efficiently with a variant of the unified interior point (UIP) method [7] that requires only
O(nk2) operations per UIP iteration [5]. UIP requires only a polynomial number of iteration to get
within ε of the solution. Without knowledge of this projective structure then each iteration of UIP
might be much more expensive.

2.2 Perturbations of Galerkin LCPs

The projection algorithm also helps us analyze how perturbing F affect the solution of strictly mono-
tone LCPs. This occurs wheneverF is estimated from data, such as when the LCP is the KKT system
for either an MDP planning problem or SVM training problem.
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Lem. 4. Suppose a strictly monotone LCP (M, q) with solution x∗ has been perturbed to form
another strictly monotone LCP (M + Ξ, q + ξ) = (M̃, q̃). Let x̃ be the Galerkin fixed point for the
perturbed LCP with respect to basis Φ. Then for any monotonic norm ‖·‖

‖x̃− x∗‖ ≤ α2‖ΠΦΞ‖‖ΠΦq‖
(1− γ)2

+
α‖ΠΦξ‖

1− γ
+
‖x∗ −ΠΦx

∗‖
1− γ

. (7)

Recall that α is the step size of the update operator and γ is its contraction factor. A monotonic norm
‖ · ‖ is one where if |x| ≤ |y| on a component-by-component basis, then ‖x‖ ≤ ‖y‖. This lemma
follows from the fact that update (3) is a contraction, so both the representation error (projection
onto span(Φ)) and perturbation error (Ξ and ξ) are contracted by γ after every iteration.

Proof. Let T̃ (x) = [ΠΦ(x − α(M̃x + q̃))]+ be the perturbed Galerkin operator with fixed point
x̃ and let T̄ (x) = [ΠΦ(x− α(Mx+ q))]+ be the unperturbed Galerkin operator with fixed point
x̄. Consider the distance between the unperturbed Galerkin fixed point x̄ and a point x(t+1) on
perturbed update path x(0) = 0, x(i) = T̃ x(i−1):

‖x(t+1) − x̄‖ = ‖T̃ x(t) − T̄ x̄‖ (8)

=

∥∥∥∥[ΠΦ(x(t) − α(Mx(t) + q))−ΠΦα(Ξx(t) + ξ)
]

+
− T̄ x̄

∥∥∥∥ (9)

≤ ‖T̄ x(t−1) − T̄ x̄‖+ α‖ΠΦΞx(t) + ΠΦξ‖ (10)

≤ γ‖x(t−1) − x̄‖+ α‖ΠΦΞx(t) + ΠΦξ‖ (11)

The transition between (9) and its sequel follows from [·]+ being convex and 1-Lipschitz. Recur-
sively applying (11) and allowing t→∞:

‖x̃− x̄‖ ≤ (α(‖ΠΦΞ‖‖x̄‖+ ‖ΠΦξ‖))/(1− γ). (12)

Using this inequality with Ξ = 0, ξ = −q (hence x̃ = 0) yields ‖x̄‖ ≤ α‖ΠΦq‖/(1−γ). Combining
(12) and the bound on ‖x̄− x∗‖ from Lemma 3 with the triangle inequality yields (7).

Lemma 4 only holds when both the original LCP and the perturbed one are strictly monotone. This
is a reasonable assumption in settings where a class of problems is strictly monotone, and the class
is closed under some perturbation model. For example, if a class of regularized MDP planning
problems has strictly monotone LCPs, then any perturbation to an instance’s costs or transition
matrix could be analyzed with the above result.

Lemma 4 is appealing because we bound using only the projection of the measurement error onto
span(Φ), which allows us to ignore any error orthogonal to Φ. The Galerkin approximation may
have nice statistical properties when x∗ is well approximated by a low rank basis, but F perturbed
by full dimensional noise.

Lemma 4 can be used with ΠΦ = I to get perturbation results for arbitrary strictly monotone
LCP. These bounds can be compared to the monotone LCP error bounds found in [8]. Our results
currently only apply to strictly monotone LCPs, but our bound has the virtue of being concrete and
computable, rather than the non-constructive bounds provided in said paper.

3 Conclusions

In this paper we presented a number of results about a Galerkin method for strictly monotone LCPs.
We first presented a basic projective fixed point algorithm, before modifying it to work for a Galerkin
approximation of an LCP. Not only can this Galerkin approximation be solved more efficiently
than the original system, but this paper proves that the Galerkin approximation may also have nice
statistical properties—the approximation is more robust to perturbations than the original system.

Future directions of research include expanding the class of LCPs that we are able to solve and
analyze. Broader classes of LCPs that are still polynomial include monotone LCPs (i.e. positive
semidefinite M ) and a generalization of monotone LCPs based on a type of matrix called P∗(κ) [7].
We are also working on stochastic Galerkin methods to reduce the cost of each iteration fromO(kn)
to O(km) for k,m� n.
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