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1 Introduction  
This article presents a number of complementary algorithms for detecting faults on-board operating 

robots, where we define a fault as a deviation from expected behavior. Experience has shown that even 
carefully designed and tested robots may encounter faults [3]. One of the reasons for this is that 
components degrade over time; another is that the operators of the robot rarely have complete knowledge 
of the environment in which it operates and hence may not have accounted for certain situations.   

In a number of application domains, such as planetary exploration, search and rescue, mine mapping, 
nuclear waste cleanup, and demining, robots operate in environments where human intervention is 
expensive, slow, unreliable, or impossible. It is therefore essential for the robots to monitor their behavior 
so that faults may be addressed before they result in catastrophic failures. This monitoring needs to be 
efficient since there is limited computational power available on robots. Not only are robots venturing into 
areas inaccessible or dangerous for humans, but they are also increasingly becoming a part of day to day 
life. It is also important for these robots to detect faults in a timely manner, since failure to do so may result 
in expensive consequences, both monetary and in terms of consumer trust that may be hard to regain. If 
faults go undetected, autonomous robots in real-world environments may behave in an unpredictable or 
dangerous manner. On the other hand, detecting and recovering from faults can considerably improve the 
performance of the robots [2].  

Fault Detection and Identification (FDI) for robots is a complex problem. This is because the space of 
possible faults is very large, robot sensors, actuators, and environment models are uncertain, and there is 
limited computation time and power. Probability theory provides a natural representation of the uncertainty 
in the rover domain, but an exact Bayesian solution to FDI is intractable. Traditional methods address this 
intractability by approximating the problem using linear approximations of rover dynamics and/or by 
ignoring uncertainty. Often these approximations are unrealistic, and either faults go undetected, or an 
unreasonable number of false positives are triggered.  

We instead prefer to approximate the solution using Monte Carlo methods. The rationale behind this 
is that the two stages of this problem, building models and online monitoring, have very different 
computational constraints. Theoretically there is little restriction on the time and computation available for 
building models, since this may be done offline, but monitoring these models must be done in real time 
with the limited computation available on a robot. We consider approximate inference using complex 
models a better trade-off than exact inference with simple models. Classical Monte Carlo methods for 
dynamic systems, such as particle filters, are capable of tracking complex nonlinear systems with noisy 
measurements. The problem is that estimates from a particle filter tend to have a high variance for small 
sample sets. Using large sample sets is computationally expensive and defeats the purpose.  

In this article, we present a number of complementary algorithms for improving the accuracy of FDI 
with a computationally tractable set of samples in a particle filter. Experimental results in the rover domain 
show significant improvement in accuracy over the classical approach. 

The algorithms described in this article enable detection of a wider range and larger number of faults 
during robot operation than has hitherto been possible. Furthermore, these algorithms provide the 
probability of the robot being in each of the fault and operational states given the sensor data. They can 
handle noisy sensors, non-linear, non-Gaussian models of behavior, and are computationally efficient.   

Estimating faults in terms of a probability distribution over all fault states captures the uncertainty in 
fault identification that results from noisy and insufficient data. In addition, it allows a lot of flexibility in 
the types of planners/controllers that may be used for controlling the robot and for recovering from faults. 
For example, such distributions are compatible with classical conditional planners or Markov Decision 
Processes (MDPs), which may use the most likely state to determine which action to take, and also Partially 



 

 2 

Observable Markov Decision Processes (POMDPs) [67], which use the distribution over the entire state 
space.   

2 Particle Filters for Monitoring Faults 
Our formulation of the fault detection problem requires estimating robot and environmental state, as it 

changes over time, from a sequence of sensor measurements that provide noisy, partial information about the 
state. The Bayesian approach to dynamic state estimation addresses this problem. Particle filters have been 
extensively used for Bayesian state estimation in nonlinear systems with noisy measurements [35][22][15]. 
They approximate the probability distribution with a set of samples or particles. The algorithms presented in 
this article all use particle filters. 

Particle filters have a number of characteristics that make them attractive for fault detection on robots: 
they are non-parametric (can represent arbitrary distributions), can handle hybrid state spaces, can handle 
noisy sensing and motion, and can easily be extended to an anytime approach where the number of particles 
(and hence the estimation accuracy) can be adjusted to match available computation. 

2.1 Fault Detection and Identification (FDI) for Robots 
A fault is defined as a deviation from the expected behavior of the system. Fault detection is defined 

as the process of determining that a fault has occurred.  Fault identification is the process of determining 
exactly which exception or fault occurred [36]. Fault detection and identification are typically passive, i.e. 
they do not alter control actions.  

This paper concentrates on a class of faults that are relatively difficult to detect because they cannot 
be inferred from sensor values at a given instance, but require a sequence of time-varying sensor values. In 
addition, the expected behavior of the robot may be different in different operating conditions. For 
example, high power draw on flat ground may be cause for concern, but high power draw on a slope might 
be perfectly acceptable.   

The faults addressed here include mechanical component failures, such as broken motors and gears; 
faults due to environmental interactions, such as a wheel stuck against a rock; and sensor failures, such as 
broken encoders.  

2.2 FDI as recursive state estimation 
State estimation is the process of determining the state of a system from a sequence of data. FDI has a 

natural representation as a state estimation problem. We represent the possible fault and operational modes 
of the systems as explicit states. The sequence of measurements is then used to determine the state of the 
system. There are two main classes of state estimation methods: batch estimation methods and recursive 
estimation methods. 

Batch methods treat all the data with equal importance and find an optimal estimate of the state given 
the entire sequence. However, full batch estimation is computationally expensive and gets slower as the 
robot accumulates increasing volumes of data. It is therefore not suitable for FDI.  

Recursive state estimation methods make a Markov assumption, i.e., the past and future are 
conditionally independent given the current state. These methods incorporate the data as it becomes 
available and replace the data with a statistic. Estimates at subsequent timesteps use this statistic instead of 
the history of data for state estimation.  

2.3 Classical particle filter 
For FDI we concentrate on a discrete time, first order Markov formulation of the state estimation 

problem. The state being estimated is hybrid, i.e., it consists of both discrete and continuous components. 
Let }dd{D K1 �=  represent K hidden discrete fault and operational states of the robot, Ddt ∈  the 

discrete state of the robot at time t  and }d,,d{d t1
t �=  the discrete, first order Markov chain 

representing the evolution of the state over time. In addition to the discrete states there are also continuous 
states that track the dynamic behavior of the robot. Let xn

tx ℜ∈ denote the multivariate continuous state 

at time t . The state of the robot is observed through a sequence of measurements, zn
tt

t zzzz ℜ∈= } ,{ 1� .  

Probabilistic models of the change in state over time (state transition model) and the relationship between 
the measurements and the state (measurement model) capture the inherent noise. State transitions depend 
on prior state, observation, and (in some cases) the control action. These models are assumed to be 
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stationary, i.e., the models do not change with time.  Bayesian filtering, represented by [Equation 1], 
provides a recursive estimate of the posterior (newly updated) probability distribution over the states. Here, 
control is omitted in equations for brevity. We consider the following factored representation, where the 
discrete state transition is conditionally independent of the continuous state transitions given the previous 
discrete state1:  

1t1ttt
d

1ttttttt1tt dx)dd(p)d,xx(p)d,xz(p)zd,x(p
1t

−−−� �
−

= η�  

where �
t  is a normalizing constant.  

The discrete state of the robot determines the dynamic behavior of the robot. The continuous state 
transitions, denoted by ( )t1tt d,xxp − , that model this dynamic behavior are therefore conditioned on the 

discrete state transitions. A sequence of sensor measurements provides information about the continuous 
state based on the conditional measurement model ( )ttt d,xzp .  The fault detection problem is to provide a 

distribution over the discrete state set D at each time step. This is a marginal distribution of the posterior 
distribution in equation [Equation 1]. There is no closed form solution to this equation, hence we use a 
particle filter approximation. A particle filter is a Monte Carlo approximation of the posterior distribution 
in a Bayes filter. Particle filters approximate the posterior with a set of N fully instantiated state samples, or 
particles, { })x,d()x,d( N

t
N
t

1
t

1
t �  and importance weights{ }]i[

tw :  

( ) �
=

∂=
N

1i
tt[ i]

t,d[ i]
tx

]i[
tt1ttN ),d(xwz,dxp̂ �  

where )(•∂  denotes the Dirac delta function. It can be shown that as ∞→N  the approximation in 
[Equation 2] approaches the true posterior density [70].  

In order to create the updated particle set, particles must be drawn from the posterior distribution. 
However, it is difficult to draw particles from the true posterior. Instead we draw them from a more 
tractable approximation to this distribution distribution, )(q • , called the proposal (or importance) 
distribution. The importance weights are used to account for the discrepancy between the proposal 
distribution )(q •  and the true distribution ( )t1tt zd,xp � , and for a given particle ]i[

t
]i[

t d,x the importance 

weight is: 

)d,x(q

)z,d,xd,x(p
w

]i[
t

]i[
t

t
]i[
1t

]i[
1t

]i[
t

]i[
t]i[

t
−−

=  

The simplest choice, and the most widely used, for the proposal distribution is the transition probability 
[1][27][40], which makes the importance weight equal to the likelihood of the observation. This 
formulation is used in the Classical particle filter (CPF) algorithm shown in Figure 1. 
 

 
Figure 1: Classical particle filter algorithm. 

                                                 
1 This is not an exact factorization, but is reasonable in most cases. 

Figure 1: Classical particle filter algorithm. 

[Equation 1]  

[Equation 2]  

[Equation 3]  

Draw initial set of particles { } N1i
]i[

0
]i[

00 x,dB
�== , from the prior distribution.  

The particle set Bt  is then recursively drawn from Bt - 1 as follows:  
1. Draw N particles { } N1i

]i[
t

]i[
t x,d

�=  based on the previous posterior 

{ }
N1i

]i[
1t

]i[
1t1t x,dB

�=−−− = , as follows: 

 
 
 
 

2. Assign an importance weight to each particle:  
 
 

3. Resample, i.e., draw N particles from the weighted particle set with a probability 
proportional to the weights [Equation 6]. Assign the particle set to Bt  with wt

[ i]=1. 
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[Equation 4 ]  

[Equation 6]  

[Equation 5]  
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As mentioned previously, particle filters have computational and representational advantages over 
other Bayesian techniques. The main problem is that a large number of particles are often needed to 
maintain a reasonable approximation of the state probability distribution and to enable detection of rare 
events. Reliably tracking multiple low-probability fault states, which requires maintaining and updating 
large numbers of particles, is typically not practical due to limited computation. Small particle sets do not 
provide reasonable approximations because: (1) they are unlikely to represent low probability fault states, 
and (2) their estimates are likely to have a high variance. 

Below we describe algorithms that address these issues.  First, the Risk Sensitive Particle Filter 
(RSPF) reduces the number of particles required to track unlikely but important states by including risk 
estimates when updating the particles. Second, the Variable Resolution Particle Filter (VRPF) reduces the 
number of particles required by dynamically grouping multiple low-probability states based on similarity.  
Third, looking at the expected sensor measurement one step ahead in time can improve the state estimate 
provided by a limited number of particles. 

2.4 Risk Sensitive Particle Filter 
RSPFs [75][71] incorporate a model of cost when generating particles. This approach is motivated by 

the observation that the cost of not tracking hypotheses is related to risk.  Not tracking a rare but risky state 
may have a high cost, whereas not tracking a rare but benign state may be irrelevant. Incorporating a cost 
model into particle filtering improves the tracking of states that are most critical to the performance of the 
robot. 

Faults are low-probability, high-cost events. The classical particle filter generates particles 
proportional only to the posterior probability of an event. Monitoring a system to detect and identify faults 
based on a CPF therefore requires a very large number of particles and is computationally expensive. 
RSPFs generate particles by factoring in the cost. Since faults have a high cost, even though they have a 
low probability, the RSPF ensures that particles will be generated to represent them.  Therefore, a smaller 
number of particles than the CPF may be used to monitor these events. The approximate nature of the 
particle representation may result in sub-optimal control and hence increased cost. The goal of risk-
sensitive sampling is to generate particles that minimize the cumulative increase in cost due to the 
approximate particle representation 

In more detail, risk-sensitive sampling uses a positive risk function r ( d)  to generate more particles 
in high-risk regions of the state space.  Fault states will have high r ( d)  values and so will get 
proportionally more particles.  The normal operational mode will have a smaller r ( d)  value and therefore 
proportionally fewer particles.  Instead of tracking the posterior distribution, the RSPF tracks a product of 
the posterior and the risk: 

( )t
tttt zx,dp)d(rγ  

where, � t  is a normalization constant that ensures that [Equation 7] is a probability distribution. The choice 
of risk function is important. Thrun et al. in [71] present a method for obtaining this risk function via a 
Markov decision process (MDP) that calculates the approximate future risk of decisions made in a 
particular state. 

2.5 Variable Resolution Particle Filter 
Consider the problem of diagnosing locomotion faults on a robot. Motors on any of the wheels may 

stall at any time, but the probability of a stalled motor at any time is low. Failures in wheels on the same 
side of the robot generate similar observations (drift toward the side with the stuck wheel). Under these 
conditions, a classical particle filter with small number of particles is likely to produce an estimate with 
high variance and identify some arbitrary wheel fault on the same side rather than the correct fault. 

The VRPF [76] introduces the notion of abstract particles, in which a particle may represent an 
individual state or a set of similar states. With this method, a single abstract particle simultaneously tracks 
multiple similar states. A limited number of particles are therefore sufficient for representing large portions 
of the state space when likelihood of occupying this part of the state space is low. When the likelihood of 
the grouped states increases and it is important to determine the relative importance of these states, particles 
are specialized to represent individual states. We show that tracking multiple states by grouping them 
together may at times reduce the state estimation error. This is because the variance of the state estimate 
can often be dramatically reduced by abstraction, with only a minor increase in bias. We provide a 
quantitative decomposition of the error in terms of bias and variance.  A bias-variance trade-off is made to 
dynamically refine and abstract states to change the resolution to minimize the state estimation error. As a 

[Equation 7]  



 

 5 

result, reasonably low variance posterior estimates can be obtained with a relatively small number of 
particles. 

 
 

 
 

(a) (b) (c) 

Figure 2: (a) General Markov model representing physical states. (b) Abstract model with similar states 
grouped. Circles that enclose other circles represent abstract states. (c) Multiple levels of abstraction of 
the physical model in (a). 

The VRPF requires a variable resolution state space model. We use a multi-layered hierarchy: each 
physical (non-abstract) state corresponds to a leaf of the hierarchy. Sets of states with similar state 
transition and observation models are aggregated together at each non-leaf node in the hierarchy to form 
abstract states (see Figure 2). In addition to the physical state set D, the variable resolution model consists 
of a set of M abstract states { })()1( MaaA �=  that represent sets of states and/or other abstract states: 

	


�=

)i(i

)k(
j a

d
a

�
 

A (somewhat simplified) algorithm for abstracting and refining states in the VRPF is shown in Figure 3. 
 
 

Figure 3: Variable resolution particle filter algorithm. 

[Equation 8]  

The initial set of particles { } N1i
]i[

0
]i[

00 x,aB
�==  are drawn from the prior distribution. R0 is set to the set 

of unique states (physical or abstract) represented in B0. The particle set, Bt   is then recursively drawn from 
Bt - 1 as follows:  

1. Project all the particles to physical states to use the physical transition and measurement models. If 
a particle, 1t)j(

]i[
1t Bda −− ∈= , is in an abstract state, one of its descendant physical states }d{ )j( , 

is selected proportional to the prior probability of the physical states as follows: 

                    ]i[
1tkj

kd
)k(

)j(]i[
1t ad,d;

)d(

)d(
~)d(p −− ∈

π
π

�
 

               Here )d(π  represents the prior probability of state d. 
2. Update, weight, and resample the projected particles as in steps 1, 2 and 3 from the CFP algorithm 

in section 2.3. 
3. Re-assign particles to the appropriate abstractions of these physical states to reflect the current 

resolution of the state space (represented by Rt-1). 
               If 1t

]i[
t Rd −∈ , set ]i[

t
]i[

t da =   

                  else find   ( )]i[
tdpar entp = ,where 1tRp −∈  and set pa ]i[

t =  
4. Vary the resolution of the abstraction to trade bias against variance and obtain a new set of states 

Rt .  Steps 1-3 estimate a probability distribution over the state at a fixed resolution, represented by 
Rt - 1. If the loss for representing using the parent is lower than that for the current state, the state is 
abstracted to the parent state. If the loss for using a child is lower than that for the current state, the 
state is refined to the child states. Details may be found in [76]. 
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Steps 4 in Figure 3 above require a computation of loss. The loss of an abstract state a(j) is computed as the 
weighted sum of the loss of the physical states. Omitting details, which may be found in [76], we calculate 
loss as the sum of bias and variance. The generalization to abstract states biases the distribution over the 
physical states to the prior distribution. In other words, the abstract state has no information about the 
difference in probability given the data, of the states that it represents in abstraction. Instead it uses the 
prior distribution to project its posterior into the physical layer.  Depending on the deviation from the prior, 
tracking in abstraction may increase the loss from bias. But the variance of this estimate can be high, 
especially with small particle sizes. Hence we trade off bias and variance to minimize loss. 

2.6 One-step Look-ahead using an Unscented Kalman Filter 
The approach described in this section is based on the observation that looking ahead at the 

measurements that result as a consequence of a fault can dramatically improve diagnosis. In this section we 
describe a particle filter that generates particles at time t  using a proposal distribution that takes into 
account the measurement at time t, in addition to the state at time t - 1. Doucet et al.[16] show that this 

proposal distribution ( )t
]i[
1t

]i[
1ttt z,d,xd,xp −−  is the “optimal”  proposal distribution, that is, the distribution 

that minimizes the variance of the importance weights conditioned on ]i[
1t

]i[
1t d,x −−  and z t . Unfortunately, it 

is difficult to sample from this proposal distribution exactly, so we approximate it using Unscented Kalman 
Filters (UKFs) [37]. This approximation is similar to an unscented particle filter [74] but it takes into 
account the fact that some of our state variables are discrete while others are continuous. From [77] we 
have:  

( ) ( ) ( )]i[
1tttt

]i[
1tt

]i[
d

]i[
t

]i[
1t

]i[
1ttt ddpz,d,xxpz,d,xd,xp

t −−−− = ηη  

where, ]i[η  and ( )t]i[
1tt

]i[
d d,xzp
t −=η  are normalizing constants.  We can ignore ]i[η  since it doesn't 

depend on x t  or dt . The discrete transition probability ( )]i[
1tt ddp −  is known.  So, we will use UKFs to 

approximate ]i[
dt

η  and �
�
��

�
�

− tt
]i[
1tt z,d,xxp  for each particle i  and possible discrete transition dt . 

To compute these approximations we need to examine each possible pair of i  and dt  separately; this 
process can be computationally expensive, a complaint which we will return to in the last paragraph of this 
section. 

The UKF is a recursive minimum mean square error estimator that often provides an improvement 
over the Extended Kalman Filter (EKF) for nonlinear models. The EKF linearizes the nonlinear process 
and measurement models using the first-order terms of a Taylor series expansion.  The UKF, on the other 
hand, does not approximate the nonlinear process and measurement models.  It uses the actual models and 
instead approximates the distribution of the state variable as a Gaussian.  The Gaussian approximation is 
specified using a minimal set of deterministically chosen samples called sigma points.  Each sigma point is 
independently propagated through the process and measurement models, and the set of propagated sigma 
points is analyzed to provide a posterior Gaussian approximation.   

In our case, we use the UKF to approximate ( )tt
]i[
1tt z,d,xxp −  as a Gaussian.  This approximation 

will usually be excellent because we are conditioning on a single previous state and a single possible fault. 
Given this approximation, we can compute analytically the values for ]i[

dt
µ (the mean of x t ), ]i[

dt
P  (the 

covariance of x t ), and ]i[
dt

η (the observation likelihood). Once we have finished our UKFs, we can sample 

from our proposal distribution by first drawing d t  and then x t  according to [Equation10]-[Equation 11], 
then computing importance weights via [Equation 3] .  

( ) ( ) ]i[
d

]i[
1tt

]i[
1tt t

ddp~ddp̂ η−−  

( ) �
�
��

�
�

−
]i[

d
]i[

t
]i[
1tt ttd

P,~d,xxp̂ µN  

In order to find ]i[
dt

η  for every dt  and i , we must compute an UKF for each particle and every possible next 

discrete state transition. Given that there are potentially a large number of faults to transition to at any step, 
this may be inefficient. We use the VRPF to address this problem. The VRPF reduces the number of next 
state transitions and hence UKF computations. This one-step look-ahead algorithm with VRPF is called 
VUF. 

[Equation 9]  

[Equation10]  

[Equation 11]  
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3 Results 

3.1 Risk-sensitive particle filter 

(a) (b) (c) 

Figure 4: (a) Hyperion robot. (b) Results with a simple particle filter. The state numbers represent different 
fault modes, with state 1 corresponding to normal operation. (c) Results with a RSPF. 

In a simulation of the Hyperion robot [63], we explicitly introduced faults and recorded a sequence of 
controls and measurements that were then tracked by a RSPF and a CPF. In the experiment the robot was 
driven with a variety of different control inputs in the normal operation mode. For this experiment, the 
measurements were the rover pose ( x, y, � )  and steering angle. At the 17t h timestep, wheel #3 becomes 
stuck and locked against a rock. The wheel is then driven in the backward direction, fixing the problem. 
The robot returns to the normal operation mode and continues to operate normally until the gear on wheel 
#4 breaks at the 30t h time step. Figure 4(b) and Figure 4(c) show that RSPF yields superior results to 
CPF. Even though failures are very unlikely, the RSPF successfully identifies them due to the high risk 
associated with such failures; the CPF essentially fails to do so. The estimation error is shown in the bottom 
row of Figure 4(b) and Figure 4(c).  It is practically zero for the RSPF when 1, 000 or more particles are 
used. CPF exhibits non-zero error even with 100, 000 particles.  

 

   
(a) (b) (c) 

Figure 5: Comparison of error in terms of KL-divergence between CPF and RSPF: (a) Improvement over 
CPF for small number of faults, (b) performance with numerous high risk fault states, (c) extended version 
of graph in (b). 2 
 
The second domain we use in our experiments is diagnosing locomotion faults in a physics-based 
simulation of a six-wheel robot. Figure 6(a) shows a snapshot of the robot in the Darwin2K [43] simulator. 
In simulation we modeled stuck wheel faults at each wheel. Each of these faults causes a change in the 
robot dynamics as shown in Figure 6(b). Note that faults on each side (right and left) have similar 
dynamics. The Markov model representing the discrete state transitions consists of 7 physical states. As 
shown in Figure 6(c) the normal driving (ND) state may transition back to the normal driving state or to 
any one of six fault states: right front (RF), right middle (RM), right rear (RR), left front (LF), left middle 

                                                 
2 In all the figures above the CPF only tracked the normal state. The reason the KL-divergence increases slightly is because we use a 
Dirichlet 1 prior and the effect of the prior decreases with increasing sample sizes. 
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(LM) and left rear (LR) wheel stuck. For this experiment, the measurements are changes in robot position 
and orientation.  
In the first experiment in this domain we represented (and induced) only two of the six faults in our state 
space: one on a wheel on the right and the second on a wheel on the left. Figure 5 (a) shows the 
improvement in performance with the RSPF.  
When there are numerous similar fault states with high risk, the performance of the RSPF degrades. To 
demonstrate this we represented and tracked all six faults shown in Figure 6(b). The degradation in 
performance is shown in Figure 5(b-c). This degradation occurs because the RSPF works by trying to 
populate all of the fault states with particles; when there are too many fault states compared to the number 
of particles there is no way to populate all of them.  The VRPF is designed to address this difficulty; the 
next section describes our experimental results with the VRPF. 

3.2 Variable Resolution Particle Filter 
Given that the three wheels on each side of the robot have similar dynamics, the VRPF uses a 

hierarchy that clusters the fault states on each side together. Figure 6(d) shows this hierarchical model, 
where the abstract states right side fault (RS), and left side fault (LS) represent sets of states { RF, RM, RR}  
and { LF, LM, LR}  respectively. The highest level of abstraction therefore consists of nodes { ND, RS, LS} . 
Figure 6(e) shows how the state space in Figure 6(d) would be refined if the loss in abstract state RS given 
the number of particles is greater than the combined loss of the physical states RF, RM and RR. 
 

  

ND

RF RR
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LF LM

LR
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ND

RF RR
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LM

RM
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(a) (b) (c) (d) (e) 

 

Figure 6: (a) Robot in simulation. (b) Example of normal trajectory (ND) and the change in the same 
trajectory with a fault at each wheel.  (c) Original discrete state transition model.  (d) Abstract discrete 
state transition model. (e) State space model where RS has been refined.  Self transitions have been 
excluded for clarity.  

When particle filtering is performed with the variable resolution particle filter, the particles are 
initialized at the highest level in the abstraction hierarchy. When an RF fault occurs, this should result in a 
high likelihood of particles in RS. These particles should multiply, which should result in the bias in RS 
exceeding the reduction in variance in RS over RF, RM and RR, thus favoring tracking at the finer 
resolution. Additional observations should then assign a high likelihood to RF. 

Figure 7 shows a comparison of the error from monitoring the state using a CPF that tracks the full 
state space, and the VRPF that varies the resolution of the state space. The X axis shows the number of 
particles used; the Y axis shows the error in terms of KL divergence from an approximation of the true 
posterior computed using a large number of particles. 1,000,000 particles were used to compute an 
approximation to the true distribution. The KL divergence is computed over the entire length of the data 
sequence and is averaged over multiple runs (varying from 50 to 5 as particle size was increased) over the 
same data set. The data set includes normal operation and each of the six faults. Figure 7 (a) demonstrates 
that the performance of the VRPF is superior to that of the classical filter for small particle sizes. In 
addition Figure 7 (b) shows the KL-divergence along the Y axis and wall clock time along the X axis. 

3.3 One-step look-ahead 
The faults and the abstraction hierarchy considered in this experiment are the same as in the 

experiment of section 3.2. The measurements in this experiment were noisy estimates of the robot position 
and orientation. The particle set representing the state consists of N particles, where each particle 
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[ ]]i[
t

]i[
t x,a  is a hypothesis about the current state of the system.  ]i[

ta  is the discrete fault or normal state 
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tx  is the multi-dimensional continuous state representing the change in position and orientation of 

the robot.  
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Figure 7: Comparisons of the KL divergence from the true distribution: (a) CPF vs. VRPF, number of 
particles used, (b) CPF vs. VRPF, wall clock time. 

Figure 8(a) and Figure 8(b) show a comparison of the performance of the CPF, UPF and a VRPF 
with one step look-ahead (VUF). The X axis shows the number of particles used; the Y axis shows the KL 
divergence from an approximation of the true posterior computed using a large number of particles. For the 
experiment in Figure 8(a), the continuous measurements were the absolute robot position. 1000000 
particles were used to compute an approximation to the true distribution. The KL divergence is computed 
over the entire length of the data sequence and is averaged over multiple runs over the same data set. The 
data set included normal operation and each of the six faults.  
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Figure 8: Comparisons of the KL divergence from the true distribution: (a) UPF vs. VUF, number of 
particles used, (b) UPF vs. VUF, wall clock time. 

The improvement in performance of the VUF over UPF is expected to be even greater when the 
variable resolution state space model is larger and results in a larger reduction in the size of the state space 
than the simple experiment we present. This is because a UKF needs to be computed for every possible 
discrete state transition. The discrete state transitions between the abstract states in the VUF are smaller 
than the discrete state transitions between the physical states used in UPF. 
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4 Related Work 

4.1 Other Particle Filter Based Approaches 
Several other researchers have investigated the use of particle filters for robot fault diagnosis.  

Dearden and Clancy [13] address the issue of low probability faults by using an “oracle”  to provide a set of 
candidate states that the system might end up in, given the current distribution over the state space. On 
resampling they ensure that there are always some particles in the states provided by the oracle. For sparse 
discrete state transitions, they do a one step look-ahead to determine these states, but this can be expensive 
in large state spaces.  [41] uses a similar approach to diagnose a rocket propulsion system. 

de Freitas [10] presents an approach based on Rao-Blackwellised particle filters (RBPFs) [15]. RBPFs 
factor the state space, so that a subset of the variables may be computed analytically given the values of the 
rest of variables, which are obtained from particle filtering. The approach presented in [10] combines a 
particle filter to compute the distribution of the discrete states with a bank of Kalman filters to compute the 
distribution of the continuous states. [49] extends this approach to include one-step look-ahead, which 
significantly improves performance. Funiak and Williams [23] combine this approach with Probabilistic 
Hybrid Automata [32] to allow continuous variables to affect discrete state transitions. All these approaches 
are restricted to linear, Gaussian models for each fault state. Hutter and Dearden [34] further extend this 
approach to moderately non-linear models by using UKFs instead of Kalman filters. Each fault still has a 
Gaussian posterior. 

4.2 Other Approaches to Fault Diagnosis 
Most researchers in fault diagnosis have used techniques other than particle filtering. Some of these 

approaches are based on very different assumptions and may not be entirely applicable to our domain, but 
provide valuable insights. Historically autonomous diagnosis has been a central theme in AI, although these 
methods addressed very different problems, involving static environments (that do not evolve over time) 
and/or qualitative inputs. 

Some methods classify based only on current sensor readings. Geometric classifiers divide the space 
of sensor measurements into different nominal and fault states [9]. These methods typically do not take 
temporal information into account, making them unsuitable for robot diagnosis. 

Rule-based systems like MYCIN [65] and a number of expert systems [31] have been extensively 
used in diagnosis. These systems do not model uncertainty in the sensed values, although they may include 
hypotheses about sensor failure. Murphy and Hershberger in [56] present an approach that uses information 
from other sensors to test hypothesis about sensor failure. 

Model-based reasoning, developed by Brown et al. in [64], inspired an entire field of research in 
diagnosis [11][48][24]. What defines model-based approaches is that they reason about explicit models of 
the system. Model-based diagnosis systems have been extended to handle temporal constraints in dynamic 
systems, e.g. XDE [30], SIDA [29], GMODS [33], SHERLOCK [12] and DIANA [8]. To address 
continuous dynamic systems, these systems use qualitative models, e.g. TEXSYS [25], MIMIC [18] and 
the Livingstone system [80]. State estimation in Livingstone is a search over the transitions of the hardware 
model to find a state that is consistent with the sensor measurements. The state constraints are formalized 
as logic formulae defined over the space of discretized variables representing the state of the system. 
Livingstone assumes that there is no uncertainty in the discretized sensor measurements and uses them as 
hard constraints.  This results in an empty hypothesis space or incorrect identification if the true trajectory 
is not the most likely given only the current sensor measurements. Later enhancements made in 
Livingstone II [42] regenerate past hypotheses based on saved history.  Livingstone was successfully tested 
on the Deep Space I spacecraft, but when tested on a rover it triggered numerous false positives in the 
presence of noise [78]. 

Bayesian belief networks have also been used for diagnosis [68][69]. Most applications of belief nets 
did not include temporal dependencies. Recently, dynamic Bayesian networks have been used to address 
temporal dependencies [44]. Other probabilistic approaches such as [65][28] use Dempster-Shafer. 

Kalman filters [38] are a popular method for tracking the state of a dynamic system and are optimal if 
the process and measurement equations are linear and the noise is Gaussian. There are various approaches 
that use a mixture of Kalman filters [60][44][10] for tracking multiple hypotheses about the state of the 
system. In some cases, where the number of faults and nominal states being tracked is small, all the filters 
may be run simultaneously. A probabilistic combination of the residual from the bank of Kalman filters can 
be used to determine the correct fault state, as in [60]. In a later extension, a backpropagation Neural 
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Network was used to process these residuals and identify the fault [26]. But in general this is not very 
scalable. There is a family of algorithms which propagate the exact posterior for one step, giving a large 
Gaussian mixture, and then reduce the mixture as needed. Methods for reducing the mixture include: 
pruning to discard filters with very high residual [79], sampling mixture components according to weight 
[10], and repeatedly merging the most similar pair of mixture components [44]. Washington [79] uses a 
POMDP to represent the discrete state model; Haufbaur in [32] uses Probabilistic Hybrid Automata, which 
extends hidden Markov Models (HMMs) with continuous dynamic models.  The common shortcoming of 
all these methods is that they are typically restricted to linear models and Gaussian posterior for the 
dynamics. Another approach that addresses uncertainty and uses a POMDP representation is [21].  The 
focus of this approach was on recovery from faults and it operates on a discrete state space. 

5 Conclusions 
This article presents algorithms for efficiently detecting faults while a robot is operating. It uses 

particle filters, which have a number of desirable characteristics for fault diagnosis (section 2.3). The 
algorithms presented focus on faults that cannot directly be detected from current sensor values, but require 
inference from a sequence of time-varying sensor values. Each algorithm provides an independent 
improvement over the basic approach. These improvements are not mutually exclusive and the algorithms 
may be combined to suit the application domain. 

All of the approaches presented here require dynamic models representing the behavior of each of the 
fault and operational states. These models can be built from analytical models of the robot dynamics, data 
from simulation or from the real robot. All the approaches presented detect faults from a finite number of 
known fault conditions, although there may potentially be a very large number of these faults.  
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