# Simplifying rational functions 

Geoff Gordon

June 3, 2005

This document describes how to use synthetic division and partial fraction expansion to reduce a rational function to its canonical form. Synthetic division and partial fraction expansion are implemented in Matlab's residue function, which is a good way to experiment with them.

## 1 Partial fractions

Suppose we have a rational function

$$
\frac{B(s)}{A(s)}=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{0}}{a_{m} s^{m}+a_{m-1} s^{m-1}+\ldots+a_{0}}
$$

We would like to represent it in a simpler form. It turns out that any rational function can be decomposed in the partial fraction expansion

$$
\frac{B(s)}{A(s)}=K(s)+\frac{C_{1}(s)}{P_{1}(s)}+\frac{C_{2}(s)}{P_{2}(s)}+\ldots
$$

Here $K(s)$ is a polynomial, and $C_{i}(s)$ and $P_{i}(s)$ are "simple" polynomials. $K(s)$ is called the direct term; it is necessary only if $n \geq m$, and if it exists it has degree $(n-m)$.

The denominator polynomials $P_{i}$ depend on the roots of $A$, which are also called poles of the rational function. (Roots of $B$ are called zeros of the rational function.) Each isolated root $x_{i}$ of $A$ results in a denominator polynomial of the form $P_{i}(s)=s-x_{i}$; each complex conjugate pair of roots $x_{i} \pm y_{i} \mathbf{i}$ gives a denominator of the form $P_{i}(s)=s^{2}+2 x_{i} s+x_{i}^{2}-y_{i}^{2}$. Multiple roots result in terms of higher degree; for example a real root $x_{i}$ with multiplicity $k$ gives a denominator $P_{i}(s)=\left(s-x_{i}\right)^{k}$.

To determine the direct term we can use synthetic division (see below). So for now let us assume $n<m$. In this case we can use the Heaviside method (also called the cover-up method) to determine the coefficient polynomials $C_{i}$.

The simplest case is an isolated root $x_{i}$ of $A(s)$. In this case, $C_{i}$ is a constant, and we have

$$
\left(s-x_{i}\right) \frac{B(S)}{A(S)}=\left(s-x_{i}\right)\left(K(s)+\frac{C_{1}(s)}{P_{1}(s)}+\frac{C_{2}(s)}{P_{2}(s)}+\ldots\right)
$$

$$
\left[\left(s-x_{i}\right) \frac{B(S)}{A(S)}\right]_{s=x_{i}}=C_{i}
$$

where the second equation holds because every term on the right-hand side contains a factor $\left(s-x_{i}\right)$ except for the term $\left(s-x_{i}\right) C_{i} /\left(s-x_{i}\right)$. So, we can determine $C_{i}$ by deleting one of the factors $\left(s-x_{i}\right)$ of $A_{i}$ from our rational function, and evaluating the result at $x_{i}$.

For example, suppose we have

$$
\frac{A(s)}{B(s)}=\frac{1}{\left(s^{2}+1\right)(s-2)}
$$

We will then have a term in our expansion

$$
\frac{a}{s-2}
$$

To determine $a$, we evaluate $1 /\left(s^{2}+1\right)$ at $s=2$. This tells us that $a=1 / 5$, so our term is

$$
\frac{1 / 5}{s-2}
$$

This way of determining coefficients gives the method its name: we "covered up" the factor $1 /(s-2)$ of $B(s) / A(s)$ and evaluated the remaining expression at $s=2$.

If our denominator has a repeated root or a complex conjugate pair of roots (or even a repeated conjugate pair), then we will have a factor $P_{i}(s)$ in the denominator which has degree $d>1$. This factor will result in a term $C_{i}(s) / P_{i}(s)$ in our expansion, where degree $\left(C_{i}\right)<d$. In this case we can determine the coefficients of $C_{i}$ by evaluating $P_{i}(s) B(s) / A(s)$ at the $d$ points where $P_{i}$ is zero; this will result in $d$ equations in the $d$ unknown coefficients.

For example, consider again the rational function

$$
\frac{A(s)}{B(s)}=\frac{1}{\left(s^{2}+1\right)(s-2)}
$$

The factor $\left(s^{2}+1\right)$ leads to a term in our expansion

$$
\frac{a s+b}{s^{2}+1}
$$

To determine $a$ and $b$, we evaluate $1 /(s-2)$ at the two points at which $\left(s^{2}+1\right)$ is 0 , namely $\pm \mathbf{i}$. This gets us two equations,

$$
a \mathbf{i}+b=\frac{1}{\mathbf{i}-2}=-\frac{\mathbf{i}+2}{5} \quad-a \mathbf{i}+b=\frac{1}{-\mathbf{i}-2}=\frac{\mathbf{i}-2}{5}
$$

Solving these equations gives $a=-1 / 5$ and $b=-2 / 5$; combining the new term with our previous result tells us that our final expansion is

$$
\frac{B(s)}{A(s)}=\frac{1 / 5}{s-2}-\frac{s / 5+2 / 5}{s^{2}+1}
$$

## 2 Synthetic division

We are given a rational function $B(s) / A(s)$ with numerator degree $n$ and denominator degree $m$. If $n \geq m$, we can pull out a quotient term $K(s)$, leaving a remainder term $R(s)$ with degree $(R)<m$, so that

$$
\frac{B(s)}{A(s)}=K(s)+\frac{R(s)}{A(s)}
$$

The process is analogous to long division, and is called synthetic division. We will illustrate it by example: suppose we start with

$$
\frac{B(s)}{A(s)}=\frac{s^{3}-s^{2}+s+1}{s^{2}-4 s+3}
$$

We are looking for $K(s)$ and $R(s)$, with degree $(R)<2$, so that

$$
B(s)=K(s) A(s)+R(s)
$$

To get the highest-order term of $B(s)$ (namely $s^{3}$ ) right, we can see that we have to multiply $A(s)$ by $s$. If we set $K_{1}(s)=s$, we have
$R_{1}(s)=B(s)-K_{1}(s) A(s)=\left(s^{3}-s^{2}+s+1\right)-\left(s^{3}-4 s^{2}+3 s\right)=3 s^{2}-2 s+1$
This gets us partway to our goal: $R_{1}(s)$ has a smaller degree than $B(s)$ did, but not small enough. But, we can repeat the process: to get rid of the leading term of $R_{1}(s)$ (namely $3 s^{2}$ ), we can multiply $A(s)$ by 3 . Setting $K_{2}(s)=s+3$, we have
$R_{2}(s)=B(s)-K_{2}(s) A(s)=\left(s^{3}-s^{2}+s+1\right)-\left(s^{3}-4 s^{2}+3 s\right)-\left(3 s^{2}-12 s+9\right)$
Cancelling terms gives $R_{2}(s)=10 s-8$, which has sufficiently low degree, so we can take $R=R_{2}$ and $K=K_{2}$.

