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This document describes how to use synthetic division and partial fraction
expansion to reduce a rational function to its canonical form. Synthetic division
and partial fraction expansion are implemented in Matlab’s residue function,
which is a good way to experiment with them.

1 Partial fractions

Suppose we have a rational function

B(s)

A(s)
=

bnsn + bn−1s
n−1 + . . . + b0

amsm + am−1sm−1 + . . . + a0

We would like to represent it in a simpler form. It turns out that any rational
function can be decomposed in the partial fraction expansion

B(s)

A(s)
= K(s) +

C1(s)

P1(s)
+

C2(s)

P2(s)
+ . . .

Here K(s) is a polynomial, and Ci(s) and Pi(s) are “simple” polynomials. K(s)
is called the direct term; it is necessary only if n ≥ m, and if it exists it has
degree (n − m).

The denominator polynomials Pi depend on the roots of A, which are also
called poles of the rational function. (Roots of B are called zeros of the rational
function.) Each isolated root xi of A results in a denominator polynomial of
the form Pi(s) = s − xi; each complex conjugate pair of roots xi ± yii gives a
denominator of the form Pi(s) = s2 + 2xis + x2

i
− y2

i
. Multiple roots result in

terms of higher degree; for example a real root xi with multiplicity k gives a
denominator Pi(s) = (s − xi)

k.
To determine the direct term we can use synthetic division (see below). So

for now let us assume n < m. In this case we can use the Heaviside method
(also called the cover-up method) to determine the coefficient polynomials Ci.

The simplest case is an isolated root xi of A(s). In this case, Ci is a constant,
and we have

(s − xi)
B(S)

A(S)
= (s − xi)

(

K(s) +
C1(s)

P1(s)
+

C2(s)

P2(s)
+ . . .

)
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[

(s − xi)
B(S)

A(S)

]

s=xi

= Ci

where the second equation holds because every term on the right-hand side
contains a factor (s − xi) except for the term (s − xi)Ci/(s − xi). So, we can
determine Ci by deleting one of the factors (s − xi) of Ai from our rational
function, and evaluating the result at xi.

For example, suppose we have

A(s)

B(s)
=

1

(s2 + 1)(s − 2)

We will then have a term in our expansion

a

s − 2

To determine a, we evaluate 1/(s2 + 1) at s = 2. This tells us that a = 1/5, so
our term is

1/5

s − 2

This way of determining coefficients gives the method its name: we “covered
up” the factor 1/(s − 2) of B(s)/A(s) and evaluated the remaining expression
at s = 2.

If our denominator has a repeated root or a complex conjugate pair of roots
(or even a repeated conjugate pair), then we will have a factor Pi(s) in the de-
nominator which has degree d > 1. This factor will result in a term Ci(s)/Pi(s)
in our expansion, where degree(Ci) < d. In this case we can determine the
coefficients of Ci by evaluating Pi(s)B(s)/A(s) at the d points where Pi is zero;
this will result in d equations in the d unknown coefficients.

For example, consider again the rational function

A(s)

B(s)
=

1

(s2 + 1)(s − 2)

The factor (s2 + 1) leads to a term in our expansion

as + b

s2 + 1

To determine a and b, we evaluate 1/(s− 2) at the two points at which (s2 + 1)
is 0, namely ±i. This gets us two equations,

ai + b =
1

i − 2
= −

i + 2

5
− ai + b =

1

−i − 2
=

i − 2

5

Solving these equations gives a = −1/5 and b = −2/5; combining the new term
with our previous result tells us that our final expansion is

B(s)

A(s)
=

1/5

s − 2
−

s/5 + 2/5

s2 + 1
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2 Synthetic division

We are given a rational function B(s)/A(s) with numerator degree n and de-
nominator degree m. If n ≥ m, we can pull out a quotient term K(s), leaving
a remainder term R(s) with degree(R) < m, so that

B(s)

A(s)
= K(s) +

R(s)

A(s)

The process is analogous to long division, and is called synthetic division. We
will illustrate it by example: suppose we start with

B(s)

A(s)
=

s3 − s2 + s + 1

s2 − 4s + 3

We are looking for K(s) and R(s), with degree(R) < 2, so that

B(s) = K(s)A(s) + R(s)

To get the highest-order term of B(s) (namely s3) right, we can see that we
have to multiply A(s) by s. If we set K1(s) = s, we have

R1(s) = B(s) − K1(s)A(s) = (s3
− s2 + s + 1) − (s3

− 4s2 + 3s) = 3s2
− 2s + 1

This gets us partway to our goal: R1(s) has a smaller degree than B(s) did,
but not small enough. But, we can repeat the process: to get rid of the leading
term of R1(s) (namely 3s2), we can multiply A(s) by 3. Setting K2(s) = s + 3,
we have

R2(s) = B(s)−K2(s)A(s) = (s3
− s2 + s+1)− (s3

− 4s2 +3s)− (3s2
− 12s+9)

Cancelling terms gives R2(s) = 10s− 8, which has sufficiently low degree, so we
can take R = R2 and K = K2.
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