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Dynamical Systems

• LTI Systems (Kalman Filter)

• (I-O) Hidden Markov Models

• Predictive State Representations
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Spectral Learning for Dynamical Systems

• LTI Systems (Kalman Filter)

• Hidden Markov Models

‣ Spectral learning of HMMs [Andersson, Ryden, 2008]
‣ Spectral learning of HMMs [Hsu, Kakade, Zhang, 2009]
‣ Spectral learning of RR-HMMs [Siddiqi, Boots, Gordon, 2009]

• Predictive State Representations 

‣ Spectral learning of PSRs [Boots, Siddiqi, Gordon, 2010]
‣ Online spectral learning of PSRs [Boots, Gordon, 2011]

SUBSPA CE
IDENTIFIC ATIO N

FOR LINEAR SYSTEMS

The or y - Im ple m e ntation - A p plic ations

Peter VAN OVERSCHEE
Bart DE M O OR

K a t h o li e k e Un iv e rsit e it L e u v e n
B e l g iu m

KLUWER ACADEMIC PUBLISHERS

Boston/London/Dordrecht

Tuesday, June 26, 2012



  sense
  learn
act

Byron Boots – Spectral Algorithms for Latent Variable Models: Dynamical Systems 8

Why Spectral Methods?

• Maximum Likelihood via Expectation Maximization, Gradient Descent, ...

• Bayesian inference via Gibbs, Metropolis Hastings, ...

There are many ways to learn a dynamical system
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Why Spectral Methods?

• Maximum Likelihood via Expectation Maximization, Gradient Descent, ...

• Bayesian inference via Gibbs, Metropolis Hastings, ...

There are many ways to learn a dynamical system

In contrast to these methods, spectral learning algorithms give

• No local optima:

‣ Huge gain in computational efficiency

• Slight loss in statistical efficiency
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The focus of this part of the tutorial

• A spectral learning algorithm for Kalman filters

• A spectral learning algorithm for HMMs

• Relation to PSRs
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Kalman Filters

xt+1 = Axt + noise

ot = Cxt + noise

x1 x2 x3 xτ. . .

o1 o3o2 oτ

C Am

n
n

n

transition matrix:observation matrix:

• Assume for simplicity that
  and that     and     are full rank

m ≥ n
A C

We can relax both assumptions in practice
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�
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T
t

�
= CAkPCT

Let    be the left    singular vectors of     , U n Σ1

�C := U(SAS−1)−1

= USA−1S−1

= U(U�CA)A−1S−1

= CS−1

�A := U�Σ2(U
�Σ1)

†

= U�CA2PC�(U�CAPC�)†

= (U�CA)APC�(U�CA)−1(U�CA)PC�(U�CAPC�)†

= (U�CA)APC�(U�CA)−1

= SAS−1

Kalman Filters
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linear transform of C
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Kalman Filters

Spectral Learning Algorithm:

• Estimate     and     from data

• Find    by SVD

• Plug in for    and 

Σ1 Σ2

�U
�A �C

Learning is Consistent:

• Law of Large numbers for     and 

• Continuity of formulas for    and

Σ1 Σ2

�A �C
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Variations on Spectral Learning for
Kalman Filters

• Use arbitrary features of past and future observations

‣ work from covariance of past, future features

‣ good features make a big difference in practice

• Use different spectral decompositions to find state space: CCA, RRR

• Impose constraints on learned model (e.g., stability)

• Learn Kalman filters with control inputs

Tuesday, June 26, 2012
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(40 dimensions) (40 dimensions)

works well for learning models of video textures
observations = raw pixels (vector of reals over time)

simulations from learned models
[Siddiqi, Boots, Gordon, 2007]

Example: Video Textures

Tuesday, June 26, 2012



  sense
  learn
act

Byron Boots – Spectral Algorithms for Latent Variable Models: Dynamical Systems 30

Additional Examples

• Glass oven modeling [Backx, 1987]

• Aircraft wing flutter [Peloubet et al., 1990]

• Control of air temperature and flow [Ljung, 1991]

• Mechanical construction of CD player arms [Van Den Hof et al., 1993]

• Heat flow through walls [Bloem, 1994]

• Chemical processes [Van Overschee, De Moor, 1996]

• Economic forecasting [Aoki, Havenner, 1997]

• ...

Tuesday, June 26, 2012
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Kalman Filter Spectral Learning: Failure

given a short video

Learn a model
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Simulations from models trained on clock data

HMM (Baum-Welch)
10 states

Something better...
10 dimensions

Kalman Filter (spectral)
10 dimensions

?

Kalman Filter Spectral Learning: Failure
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Can We Generalize Spectral Learning? 
HMMs

xt+1 = Axt + noise

ot = Cxt + noise

C

A

m

n

n

n

observation matrix:

transition matrix:

• Get rid of Gaussian noise assumption

• Hidden Markov Model: same form as Kalman 
Filter but,
‣ 
‣ noise ~ Multinomial Distribution
‣    and   are indicators: e.g. 

A ≥ 0, A1 = 1, C ≥ 0, C1 = 1

x o “4” = [ 0 0 0 1 0 ]T

x1 x2 x3 xτ. . .

o1 o3o2 oτ
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Spectral Learning: Gaussian vs. Multinomial
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�
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Kalman Filter Hidden Markov Model

• Assume for simplicity that             and that     and     are full rankm ≥ n A C
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�
E
�
ot+k | xt]E[oTt | xt

��

= E
��
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�
(Cxt)

T
�
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T
t ]C

T

= CAkPCT

exactly the same!
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• As before, recover     and     from      and       

• Does not satisfy 

‣ is this a problem?

A ≥ 0, A1 = 1, C ≥ 0, C1 = 1

Σ1 Σ2
�A �C

PAk

C
CT

=Σk

�A := U�Σ2

�
U�Σ1

�†

= (U�CA)A(U�CA)−1

= SAS−1

Spectral Learning for HMMs
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• As before, recover     and     from      and       

• Does not satisfy 

‣ is this a problem?

A ≥ 0, A1 = 1, C ≥ 0, C1 = 1

Σ1 Σ2
�A �C

PAk

C
CT

=Σk

�A := U�Σ2

�
U�Σ1

�†

= (U�CA)A(U�CA)−1

= SAS−1

Spectral Learning for HMMs

Yes. Inference is different in an HMM.
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Inference for HMMs

P [o1, o2, . . . , oτ ]
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Inference for HMMs

P [o1, o2, . . . , oτ ]

factor by chain rule
marginalizing out latent state

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]
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Inference for HMMs

P [o1, o2, . . . , oτ ]

transition probability observation likelihood

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]
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Inference for HMMs

P [o1, o2, . . . , oτ ]

1T
nA diag(Coτ,:) . . . A diag(Co2,:)A diag(Co1,:)P [x1]

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]

C

likelihood of 
o1o2...
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Inference for HMMs

P [o1, o2, . . . , oτ ]

1T
nA diag(Coτ,:) . . . A diag(Co2,:)A diag(Co1,:)P [x1]

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]

1�
nSAS

−1 Sdiag(Coτ,:)S
−1 . . . SAS−1 Sdiag(Co2,:)S

−1 SAS−1 Sdiag(Co1,:)S
−1SP[x1]

= 
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Inference for HMMs

P [o1, o2, . . . , oτ ]

1T
nA diag(Coτ,:) . . . A diag(Co2,:)A diag(Co1,:)P [x1]

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]

�A = SAS−1

We have access to:

No good way of finding the observation likelihoods
(e.g.                             )

1�
nSAS

−1 Sdiag(Coτ,:)S
−1 . . . SAS−1 Sdiag(Co2,:)S

−1 SAS−1 Sdiag(Co1,:)S
−1SP[x1]

Sdiag(Co1,:)S
−1

but
�C = CS−1
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Inference for HMMs
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Inference for HMMs

P [o1, o2, . . . , oτ ]

1T
nA diag(Coτ,:) . . . A diag(Co2,:)A diag(Co1,:)P [x1]

combine into a single observable operator, one for each observation

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]

C
Astandard HMM

parameterization

observable operator HMM
parameterization
[Jaeger, 1998] o1

o2
o3
o4

..
Ao
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Inference for HMMs

P [o1, o2, . . . , oτ ]

1T
nA diag(Coτ,:) . . . A diag(Co2,:)A diag(Co1,:)P [x1]

1T
nAoτ . . . Ao2Ao1P [x1]

�

xτ+1
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xτ
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�
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Inference for HMMs

P [o1, o2, . . . , oτ ]

1T
nA diag(Coτ,:) . . . A diag(Co2,:)A diag(Co1,:)P [x1]

1T
nAoτ . . . Ao2Ao1P [x1]

1S−1SAoτS
−1 . . . SAo2S

−1SAo1S
−1SP[x1]

In fact, only need to estimate similarity transforms of parametersSAoS
−1

the    s cancelS

�

xτ+1

�

xτ

P [xτ+1 | xτ ]P [oτ | xτ ] . . .
�

x2

P [x3 | x2]P [o2 | x2]
�

x1

P [x2 | x1]P [o1 | x1]P [x1]
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Spectral Learning for HMMs

Goal is to find similarity transforms of      sAo
o1
o2
o3
o4

..
Ao
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Spectral Learning for HMMs

Goal is to find similarity transforms of      sAo

Σ1

Σ1 := E
�
ot+1o

�
t

�

= CAPC�

Σ2 := E
�
ot+2o

�
t

�

= CA2PC�

Σ2

o1
o2
o3
o4

..
Ao
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Spectral Learning for HMMs

Goal is to find similarity transforms of      sAo

Σ1

Σ1 := E
�
ot+1o

�
t

�

= CAPC�

Σ2 := E
�
ot+2o

�
t

�

= CA2PC�

Σ2

o1
o2
o3
o4

..
Ao

Σo
2 := E[ot+2(δ

�
o ot+1)o

�
t ]

= CAAoPCT

a tensor
o1
o2
o3
o4

..
.

Σo
2
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Σo
2 := E[ot+2(δ

�
o ot+1)o

�
t ]

= E[E[ot+2(δ
�
o ot+1)o

�
t | xt]]

= E[E[ot+2(δ
�
o ot+1) | xt]E[o�t | xt]]

= E[E[ot+2 | xt, ot+1 = o]P[ot+1 = o | xt](Cxt)
�]

= E[E[ot+2 | xt, ot+1 = o](1�Aoxt)(Cxt)
�]

= E
�
CA

�
Aoxt

1�Aoxt

�
(1�Aoxt)(Cxt)

�
�

= E[CAAoxt(Cxt)
�]

= CAAoE[xtx
�
t ]C

�

= CAAoPC�

Spectral Learning for HMMs

a tensor
o1
o2
o3
o4

..
.

Σo
2
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Σo
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�
o ot+1)o
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t | xt]]
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o ot+1) | xt]E[o�t | xt]]

= E[E[ot+2 | xt, ot+1 = o]P[ot+1 = o | xt](Cxt)
�]

= E[E[ot+2 | xt, ot+1 = o](1�Aoxt)(Cxt)
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�
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Aoxt

1�Aoxt

�
(1�Aoxt)(Cxt)
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�

= E[CAAoxt(Cxt)
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= CAAoE[xtx
�
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�

= CAAoPC�

Spectral Learning for HMMs

a tensor
o1
o2
o3
o4

..
.

Σo
2

... and then a miracle occurs!
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Spectral Learning for HMMs

Goal is to find similarity transforms of      sAo

Σo
2 := E[ot+2(δ

�
o ot+1)o

�
t ]

= CAAoPCT

Σ1

Σ1 := E
�
ot+1o

�
t

�

= CAPC�

Σ2 := E
�
ot+2o

�
t

�

= CA2PC�

Σ2

a tensor
o1
o2
o3
o4

..
.

Σo
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o3
o4

..
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Âo := U�Σo
2(U

�Σ1)
†

= U�CAAoPC�(U�CAPC�)†

= (U�CA)Ao(U
�CA)−1(U�CA)PC�(U�CAPC�)†

= (U�CA)Ao(U
�CA)−1

= SAoS
−1

• Assume for simplicity that             and that     and     are full rank

• Let    be the left    singular vectors of     ,

m ≥ n A C

U n Σ1

Spectral Learning for HMMs
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= (U�CA)Ao(U
�CA)−1

= SAoS
−1
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U n Σ1

Spectral Learning for HMMs
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Spectral Learning for HMMs
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Âo := U�Σo
2(U

�Σ1)
†
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Spectral Learning for HMMs
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Âo := U�Σo
2(U

�Σ1)
†

= U�CAAoPC�(U�CAPC�)†

= (U�CA)Ao(U
�CA)−1(U�CA)PC�(U�CAPC�)†

= (U�CA)Ao(U
�CA)−1

= SAoS
−1

• Assume for simplicity that             and that     and     are full rank

• Let    be the left    singular vectors of     ,

m ≥ n A C

U n Σ1

Spectral Learning for HMMs

similarity transform of Ao
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• Assume for simplicity that             and that     and     are full rank

• Let    be the left    singular vectors of     ,

m ≥ n A C

• Additional parameters, like normalizer and initial state can be
  found in a similar manner

•    always cancels when predicting, filtering, simulating: e.g.

1S−1SAoτS
−1 . . . SAo2S

−1SAo1S
−1SP[x1]

U n Σ1

Âo := U�Σo
2(U

�Σ1)
†

= U�CAAoPC�(U�CAPC�)†

= (U�CA)Ao(U
�CA)−1(U�CA)PC�(U�CAPC�)†

= (U�CA)Ao(U
�CA)−1

= SAoS
−1

S

Spectral Learning for HMMs

similarity transform of Ao
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Learning is Consistent:

• Law of Large numbers for     and 

• Continuity of formulas for     s

Spectral Learning Algorithm:

• Estimate     and     from data

• Find    by SVD

• Plug in for     s     

55

Σ1

�U

Σ1

Σo
2

�Ao

�Ao

Σo
2

Spectral Learning for HMMs
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Example: Clock (Revisited)
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Example: Clock Pendulum

Simulations from models trained on clock data

HMM (Baum-Welch)
10 states

HMM? (spectral)
10 dimensions

Kalman Filter (spectral)
10 dimensions
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Example: Clock Pendulum

Simulations from models trained on clock data

HMM (Baum-Welch)
10 states

HMM? (spectral)
10 dimensions

Kalman Filter (spectral)
10 dimensions
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Can We Generalize? 
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Can We Generalize? 
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Lots of states: not a problem in itself, but means we need lots
                         of data to learn transition & observation models

Can We Generalize? 
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• HMMs had    
‣ intuition: number of discrete states = number of dimensions

• We now have
‣ essentially equally restrictive

• Can we allow a more general state space?
‣ e.g. # states > # dimensions
‣ discretize more finely while keeping dimensionality the same

x ∈ ∆

x ∈ S∆

HMM state space:

Generalizing HMMs 
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• PSR: defined by transition matrices     , and a normalization vector

‣ like HMM, but lift restriction of 

‣ lift restrictions on     s, top eigenvalue of            must be       

‣ instead of a set of discrete states, can think of state space as a possibly 
infinite-dimensional simplex projected onto a finite dimensional space

‣ includes HMMs (and POMDPs) as special case

Ao

X = S∆

Ao

�

o

Ao 1

Predictive State Representations
≈ OOMs, multiplicity automata, etc…
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SSID for PSRs
PSRs are more expressive than HMMs & POMDPs ... and as easy to learn!

HMMs & POMDPS

Predictive State Representations

for fixed latent dimension n
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Example: Clock Pendulum

Simulations from models trained on clock data

Kalman Filter (spectral)
10 states

PSR (spectral)
10 dimensions

HMM (Baum-Welch)
10 dimensions
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• Use arbitrary features of past and future observations

‣ work from covariance of past, future features

‣ good features make a big difference in practice

‣ but still need a discrete set of transition matrices  

• Use different spectral decompositions to find state space: CCA, RRR

• Can extend to learn models with actions

Variations on Spectral Learning for PSRs

Ao
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Can We Generalize? Features!

• So far: allowed finer discretization of state space

• Can we improve? Allow continuous observations?

• Yes: Featurize!
‣ let         be a feature functionφ(o)

store      for many different    , recover      as needed�Aφ φ �Ao

Σφ
2 := E[ot+2φ(ot+1)o

�
t ]

=
�

o

φ(o)E[ot+2(δ
�
o ot+1)o

�
t ]

=
�

o

φ(o)Σo
2

Âφ := U�Σφ
2 (U

�Σ1)
†

=
�

o

φ(o)Âo
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Can We Generalize? Infinite Features!

• If some features are good, more must be better!   
‣ Kernels

• Everything that we have seen is linear algebra
‣ works just fine in an arbitrary RKHS
‣ Can rewrite all of the formulas in terms of Gram matrices

Result: Hilbert Space Embeddings of Predictive State Representations

• handles near arbitrary observation distributions
• good prediction performance
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Example: Prediction (Slot Car Domain)

Hilbert Space Embeddings of Hidden Markov Models

A. B.
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at

different latent state space sizes.

11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The

Hilbert Space Embeddings of Hidden Markov Models
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at

different latent state space sizes.

11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The

joint work with Dieter Fox’s lab
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Example: Prediction (Slot Car Domain)
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at

different latent state space sizes.

11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log
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ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log
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ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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Figure 5. Accuracies and 95% confidence intervals for Hu-

man vs. Non-human audio event classification, comparing

embedded HMMs to other common sequential models at

different latent state space sizes.

11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.
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τ=1 log
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ϕ(xτ ), µ̂Xτ |x1:τ−1
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F
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.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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Example: Prediction (Slot Car Domain)

Hilbert Space Embeddings of Hidden Markov Models
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Figure 4. Slot car inertial measurement data. (A) The slot

car platform and the IMU (top) and the racetrack (bot-

tom). (B) Squared error for prediction with different esti-

mated models and baselines.

this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes

Latent Space Dimensionality

A
cc

u
ra

cy
 (

%
)

HMM

LDS

RR!HMM

Embedded

10 20 30 40 50
60

70

80

90

85

75

65
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.

�t
τ=1 log

��
ϕ(xτ ), µ̂Xτ |x1:τ−1

�
F

�
.

For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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this data while the slot car circled the track controlled
by a constant policy. The goal of this experiment was
to learn a model of the noisy IMU data, and, after
filtering, to predict future IMU readings.

We trained a 20-dimensional embedded HMM using
Algorithm 1 with sequences of 150 consecutive obser-
vations (Section 3.8). The bandwidth parameter of
the Gaussian RBF kernels is set with ‘median trick’.
The regularization parameter λ is set of 10−4. For
comparison, a 20-dimensional RR-HMM with Parzen
windows is learned also with sequences of 150 observa-
tions; a 20-dimensional LDS is learned using Subspace
ID with Hankel matrices of 150 time steps; and finally,
a 20-state discrete HMM (with 400 level of discretiza-
tion for observations) is learned using EM algorithm
run until convergence.

For each model, we performed filtering for different
extents t1 = 100, 101, . . . , 250, then predicted an im-
age which was a further t2 steps in the future, for
t2 = 1, 2..., 100. The squared error of this prediction
in the IMU’s measurement space was recorded, and
averaged over all the different filtering extents t1 to
obtain means which are plotted in Figure 4(B). Again
the embedded HMM learned by the kernel spectral al-
gorithm yields lower prediction error compared to each
of the alternatives consistently for the duration of the
prediction horizon.

4.3. Audio Event Classification
Our final experiment concerns an audio classification
task. The data, recently presented in (Ramos et al.,
2010), consisted of sequences of 13-dimensional Mel-
Frequency Cepstral Coefficients (MFCC) obtained
from short clips of raw audio data recorded using
a portable sensor device. Six classes of labeled au-
dio clips were present in the data, one being Human
Speech. For this experiment we grouped the latter five
classes into a single class of Non-human sounds to for-
mulate a binary Human vs. Non-human classification
task. Since the original data had a disproportionately
large amount of Human Speech samples, this grouping
resulted in a more balanced dataset with 40 minutes
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11 seconds of Human and 28 minutes 43 seconds of
Non-human audio data. To reduce noise and training
time we averaged the data every 100 timesteps (corre-
sponding to 1 second) and downsampled.

For each of the two classes, we trained embedded
HMMs with 10, 20, . . . , 50 latent dimensions using
spectral learning and Gaussian RBF kernels with
bandwidth set with the ‘median trick’. The regulariza-
tion parameter λ is set at 10−1. For efficiency we used
random features for approximating the kernel (Rahimi
& Recht, 2008). For comparison, regular HMMs with
axis-aligned Gaussian observation models, LDSs and
RR-HMMs were trained using multi-restart EM (to
avoid local minima), stable Subspace ID and the spec-
tral algorithm of (Siddiqi et al., 2009) respectively, also
with 10, . . . , 50 latent dimensions or states.

For RR-HMMs, regular HMMs and LDSs, the class-
conditional data sequence likelihood is the scoring
function for classification. For embedded HMMs, the
scoring function for a test sequence x1:t is the log of
the product of the compatibility scores for each obser-
vation, i.e.
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For each model size, we performed 50 random 2:1
partitions of data from each class and used the re-
sulting datasets for training and testing respectively.
The mean accuracy and 95% confidence intervals over
these 50 randomizations are reported in Figure 5. The
graph indicates that embedded HMMs have higher ac-
curacy and lower variance than other standard alter-
natives at every model size. Though other learning
algorithms for HMMs and LDSs exist, our experiment
shows this to be a non-trivial sequence classification
problem where embedded HMMs significantly outper-
form commonly used sequential models trained using
typical learning and model selection methods.

5. Conclusion

We proposed a Hilbert space embedding of HMMs
that extends traditional HMMs to structured and non-
Gaussian continuous observation distributions. The
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Gaussian Process Latent Variable Models
[Ko & Fox, 2010]

~1 day on 8-core i7 workstation 
in Matlab/C++

Kernel PSRs:
11.6 seconds to learn model 

on my laptop in Matlab

Nonparametric Models Win
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Making it All Fast:
Online Updates to Spectral Learning

• With each new observation, rank-1 update of:

‣ SVD (Brand)

‣ inverse (Sherman-Morrison)

• n features;  latent dimension d;  T steps

‣ space = O(nd): may fit in cache!

‣ time = O(nd2T): bounded time per example

• Small loss in statistical efficiency (estimated subspace 
rotates), but can deal with it

• Problem: no rank-1 update of k-SVD 

‣ can use random projections
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• Learn dynamical system models with no local optima, fast online computation

• In contrast with many other methods, learning and inference is extremely fast 
and robust

• Nonparametric (kernel-based) version handles near-arbitrary observation 
distributions

• One general principle yields algorithms for Kalman System ID, HMMs, PSRs

• Good results from a general-purpose algorithm on problems typically tackled 
by lots of engineering

Summary

Tuesday, June 26, 2012



  sense
  learn
act

Byron Boots – Spectral Algorithms for Latent Variable Models: Dynamical Systems 69

Thank You!
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