
A Constraint Generation Approach to
Learning Stable Linear Dynamical Systems

Sajid M. Siddiqi
Robotics Institute

Carnegie-Mellon University
Pittsburgh, PA 15213

siddiqi@cs.cmu.edu

Byron Boots
Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213
beb@cs.cmu.edu

Geoffrey J. Gordon
Machine Learning Department
Carnegie-Mellon University

Pittsburgh, PA 15213
ggordon@cs.cmu.edu

Abstract

Stability is a desirable characteristic for linear dynamical systems, but it is often
ignored by algorithms that learn these systems from data. We propose a novel
method for learning stable linear dynamical systems: we formulate an approxima-
tion of the problem as a convex program, start with a solution to a relaxed version
of the program, and incrementally add constraints to improve stability. Rather
than continuing to generate constraints until we reach a feasible solution, we test
stability at each step; because the convex program is only an approximation of the
desired problem, this early stopping rule can yield a higher-quality solution. We
apply our algorithm to the task of learning dynamic textures from image sequences
as well as to modeling biosurveillance drug-sales data. The constraint generation
approach leads to noticeable improvement in the quality of simulated sequences.
We compare our method to those of Lacy and Bernstein [1, 2], with positive results
in terms of accuracy, quality of simulated sequences, and efficiency.

1 Introduction
Many problems in machine learning involve sequences of real-valued multivariate observations.
To model the statistical properties of such data, it is often sensible to assume each observation to be
correlated to the value of an underlying latent variable, orstate, that is evolving over the course of the
sequence. In the case where the state is real-valued and the noise terms are assumed to be Gaussian,
the resulting model is called alinear dynamical system(LDS), also known as a Kalman Filter [3].
LDSs are an important tool for modeling time series in engineering, controls and economics as well
as the physical and social sciences.

Let {λi(M)}n
i=1 denote the eigenvalues of ann × n matrix M in decreasing order of mag-

nitude, {νi(M)}n
i=1 the corresponding unit-length eigenvectors, and define itsspectral radius

ρ(M) ≡ |λ1(M)|. An LDS with dynamics matrixA is stableif all of A’s eigenvalues have mag-
nitude at most1, i.e.,ρ(A) ≤ 1. Standard algorithms for learning LDS parameters do not enforce
this stability criterion, learning locally optimal values for LDS parameters by gradient descent [4],
Expectation Maximization (EM) [5] or least squares on a state sequence estimate obtained by sub-
space identification methods, as described in Section 3.1. However, when learning from finite data
samples, the least squares solution may be unstable even if the system is stable [6]. The drawback
of ignoring stability is most apparent when simulating long sequences from the system in order to
generate representative data or infer stretches of missing values.

We propose a convex optimization algorithm for learning the dynamics matrix while guaranteeing
stability. An estimate of the underlying state sequence is first obtained using subspace identifica-
tion. We then formulate the least-squares problem for the dynamics matrix as a quadratic program
(QP) [7], initially without constraints. When this QP is solved, the estimateÂ obtained may be
unstable. However, any unstable solution allows us to derive a linear constraint which we then add

to our original QP and re-solve. The above two steps are iterated until we reach a stable solution,
which is then refined by a simple interpolation to obtain the best possible stable estimate.

Our method can be viewed asconstraint generationfor an underlying convex program with a feasi-
ble set of all matrices with singular values at most1, similar to work in control systems [1]. However,
we terminatebeforereaching feasibility in the convex program, by checking for matrix stability after
each new constraint. This makes our algorithm less conservative than previous methods for enforc-
ing stability since it chooses the best of a larger set of stable dynamics matrices. The difference in
the resulting stable systems is noticeable when simulating data. The constraint generation approach
also achieves much greater efficiency than previous methods in our experiments.

One application of LDSs in computer vision is learningdynamic texturesfrom video data [8]. An
advantage of learning dynamic textures is the ability to play back a realistic-looking generated se-
quence of any desired duration. In practice, however, videos synthesized from dynamic texture
models can quickly degenerate because of instability in the underlying LDS. In contrast, sequences
generated from dynamic textures learned by our method remain “sane” even after arbitrarily long
durations. We also apply our algorithm to learning baseline dynamic models of over-the-counter
(OTC) drug sales for biosurveillance, and sunspot numbers from the UCR archive [9]. Comparison
to the best alternative methods [1, 2] on these problems yields positive results.

2 Related Work
Linear system identification is a well-studied subject [4]. Within this area,subspace identification
methods[10] have been very successful. These techniques first estimate the model dimensionality
and the underlying state sequence, and then derive parameter estimates using least squares. Within
subspace methods, techniques have been developed to enforce stability by augmenting the extended
observability matrix with zeros [6] or adding a regularization term to the least squares objective [11].

All previous methods were outperformed by Lacy and Bernstein [1], henceforth referred to as LB-1.
They formulate the problem as a semidefinite program (SDP) whose objective minimizes the state
sequence reconstruction error, and whose constraint bounds the largest singular value by1. This
convex constraint is obtained by rewriting the nonlinear matrix inequalityIn−AAT º 0 as a linear
matrix inequality [12], whereIn is then × n identity matrix. Here,Â 0 (º 0) denotes positive
(semi-) definiteness. The existence of this constraint also proves the convexity of theσ1 ≤ 1 region.

A follow-up to this work by the same authors [2], which we will call LB-2, attempts to overcome the
conservativeness of LB-1 by approximating the Lyapunov inequalitiesP −APAT Â 0, P Â 0 with
the inequalitiesP −APAT − δIn º 0, P − δIn º 0, δ > 0. These inequalities hold iff the spectral
radius is less than1. However, the approximation is achieved only at the cost of inducing a nonlinear
distortion of the objective function by a problem-dependent reweighting matrix involvingP , which
is a variable to be optimized. In our experiments, this causes LB-2 to perform worse than LB-1 (for
any δ) in terms of the state sequence reconstruction error, even while obtaining solutions outside
the feasible region of LB-1. Consequently, we focus on LB-1 in our conceptual and qualitative
comparisons as it is the strongest baseline available. However, LB-2 is more scalable than LB-1, so
quantitative results are presented for both.

To summarize the distinction between constraint generation, LB-1 and LB-2: it is hard to have both
the right objective function (reconstruction error) and the right feasible region (the set of stable
matrices). LB-1 optimizes the right objective but over the wrong feasible region (the set of matrices
with σ1 ≤ 1). LB-2 has a feasible region close to the right one, but at the cost of distorting its
objective function to an extent that it fares worse than LB-1 in nearly all cases. In contrast, our
method optimizes the right objective over a less conservative feasible region than that of any previous
algorithm with the right objective, and this combination is shown to work the best in practice.

3 Linear Dynamical Systems
The evolution of a linear dynamical system can be described by the following two equations:

xt+1 = Axt + wt

yt = Cxt + vt (1)

Time is indexed by the discrete variablet. Herext denotes the hidden states inRn, yt the observa-
tions inRm, andwt andvt are zero-mean normally distributed state and observation noise variables.

1000 200

Sunspot numbersA. B. C.

0

300

Figure 1: A. Sunspot data, sampled monthly for200 years. Each curve is a month, thex-axis is over
years. B. First two principal components of a1-observation Hankel matrix. C. First two principal
components of a12-observation Hankel matrix, which better reflect temporal patterns in the data.

Assume some initial statex0. The parameters of the system are the dynamics matrixA ∈ Rn×n, the
observation modelC ∈ Rm×n, and the noise covariance matricesQ andR. Note that we are learn-
ing uncontrolledlinear dynamical systems, though, as in previous work, control inputs can easily be
incorporated into the objective function and convex program.

Linear dynamical systems can also be viewed as probabilistic graphical models. The standard LDS
filtering and smoothing inference algorithms [3, 13] are instantiations of the junction tree algorithm
for Bayesian Networks (see, for example, [14]).

We follow the subspace identification literature in estimating all parameters other than the dynamics
matrix. A clear and concise exposition of the required techniques is presented in Soatto et al. [8],
which we summarize below. We use subspace identification methods in our experiments for unifor-
mity with previous work we are building on (in the control systems literature) and with work we are
comparing to ([8] on the dynamic textures data).

3.1 Learning Model Parameters by Subspace Methods
Subspace methods calculate LDS parameters by first decomposing a matrix of observations to yield
an estimate of the underlying state sequence. The most straightforward such technique is used here,
which relies on thesingular value decomposition(SVD) [15]. See [10] for variations.

Let Y1:τ = [y1 y2 . . . yτ] ∈ Rm×τ andX1:τ = [x1 x2 . . . xτ] ∈ Rn×τ . D denotes the matrix of
observations which is the input to SVD. One typical choice forD isD = Y1:τ ; we will discuss others
below. SVD yieldsD ≈ UΣV T whereU ∈ Rm×n andV ∈ Rτ×n have orthonormal columns{ui}
and {vi}, andΣ = diag{σ1, . . . , σn} contains the singular values. The model dimensionn is
determined by keeping all singular values ofD above a threshold. We obtain estimates ofC andX:

Ĉ = U X̂ = ΣV T (2)

See [8] for an explanation of why these estimates satisfy certaincanonical modelassumptions.X̂
is referred to as theextended observability matrixin the control systems literature; thetth column
of X̂ represents an estimate of the state of our LDS at timet. The least squares estimate ofA is:

Â = arg min
A

J2(A) = arg min
A

∥∥AX0:τ−1 −X1:τ

∥∥2

F
= X1:τX†

0:τ−1 (3)

where‖ · ‖F denotes the Frobenius norm and† denotes the Moore-Penrose inverse. Eq. (3) asksÂ
to minimize the error in predicting the state at timet + 1 from the state at timet. Given the above
estimatesÂ andĈ, the covariance matriceŝQ andR̂ can be estimated directly from residuals.

3.2 Designing the Observation Matrix
In the decomposition above, we chose each column ofD to be the observation vector for a single
time step. Suppose that instead we setD to be a matrix of the form

D =

y1 y2 y3 · · · yτ

...
...

...
. . .

...
yd yd+1 yd+2 · · · yd+τ−1

md×τ

A matrix of this form, with each block of rows equal to the previous block but shifted by a con-
stant number of columns, is called ablock Hankelmatrix [4]. We say “d-observation Hankel matrix
of sizeτ ” to mean the data matrixD ∈ Rmd×τ with d length-m observation vectors per column.
Stacking observations causes each state to incorporate more information about the future, sincex̂t

Afinal

LB-1A

generated

constraint

A

S
A
^

S

unstable

matrices

stable

matrices
R
n 2

*

*

λ

σ

α
−10 0 10

10

0

10

unstable

matrices

(stable

matrices)

-

S

S

λ

σ
β

A. B.

Figure 2: (A): Conceptual depiction of the space ofn × n matrices. The region of stability (Sλ) is
non-convex while the smaller region of matrices withσ1 ≤ 1 (Sσ) is convex. The elliptical contours
indicate level sets of the quadratic objective function of the QP.Â is the unconstrained least-squares
solution to this objective.ALB-1 is the solution found by LB-1 [1]. One iteration of constraint
generation yields the constraint indicated by the line labeled ‘generated constraint’, and (in this
case) leads to a stable solutionA∗. The final step of our algorithm improves on this solution by
interpolatingA∗ with the previous solution (in this case,Â) to obtainA∗final. (B): The actual stable
and unstable regions for the space of2×2 matricesEα,β = [0.3 α ; β 0.3], with α, β ∈ [−10, 10].
Constraint generation is able to learn a nearly optimal model from a noisy state sequence of length
7 simulated fromE0,10, with better state reconstruction error than either LB-1 or LB-2.

now represents coefficients reconstructingyt as well asother observations in the future. However
the observation model estimate must now beĈ = U(: , 1 :m), i.e., the submatrix consisting of the
first m columns ofU , becauseU(: , 1:m)x̂t = ŷt for anyt, whereŷt denotes a reconstructed obser-
vation. Having multiple observations per column inD is particularly helpful when the underlying
dynamical system is known to have periodicity. For example, see Figure 1(A). See [12] for details.

4 The Algorithm
The estimation procedure in Section 3.1 does not enforce stability inÂ. To account for stability, we
first formulate the dynamics matrix learning problem as a quadratic program with a feasible set that
includes the set of stable dynamics matrices. Then we demonstrate how instability in its solutions
can be used to generate constraints that restrict this feasible set appropriately. As a final step, the
solution is refined to be as close as possible to the least-squares estimate while remaining stable.
The overall algorithm is illustrated in Figure 2(A). We now explain the algorithm in more detail.

4.1 Formulating the Objective
The least squares problem in Eq. (3) can be written as follows (see [12] for the derivation):

Â = arg minA

∥∥AX0:τ−1 −X1:τ

∥∥2

F

= arg mina

{
aTPa− 2 qTa + r

}
(4)

wherea ∈ Rn2×1, q ∈ Rn2×1, P ∈ Rn2×n2
andr ∈ R are defined as:

a = vec(A) = [A11 A21 A31 · · · Ann]T P = In ⊗
(
X0:τ−1X

T
0:τ−1

)

q = vec(X0:τ−1X
T
1:τ) r = tr

(
XT

1:τX1:τ

)
(5)

In is then × n identity matrix and⊗ denotes the Kronecker product. Note thatP is a symmetric
nonnegative-definite matrix. The objective function in (4) is a quadratic function ofa.

4.2 Generating Constraints
The quadratic objective function above is equivalent to the least squares problem of Eq. (3). Its
feasible set is the space of alln × n matrices, regardless of their stability. When its solution yields
an unstable matrix, the spectral radius ofÂ (i.e. |λ1(Â)|) is greater than1. Ideally we would like to
useÂ to calculate a convex constraint on the spectral radius. However, consider the class of2 × 2
matrices [16]:Eα,β = [0.3 α ;β 0.3]. The matricesE10,0 andE0,10 are stable withλ1 = 0.3, but

their convex combinationγE10,0 + (1 − γ)E0,10 is unstable for (e.g.)γ = 0.5 (Figure 2(B)). This
shows that the set of stable matrices is non-convex forn = 2, and in fact this is true for alln > 1.
We turn instead to the largestsingular value, which is a closely related quantity since

σmin(Â) ≤ |λi(Â)| ≤ σmax(Â) ∀i = 1, . . . , n [15]

Therefore every unstable matrix has a singular value greater than one, but the converse is not neces-
sarily true. Moreover, the set of matrices withσ1 ≤ 1 is convex. Figure 2(A) conceptually depicts
the non-convex region of stabilitySλ and the convex regionSσ with σ1 ≤ 1 in the space of all
n× n matrices for some fixedn. The difference betweenSσ andSλ can be significant. Figure 2(B)
depicts these regions forEα,β with α, β ∈ [−10, 10]. The stable matricesE10,0 andE0,10 reside
at the edges of the figure. While results for this class of matrices vary, the constraint generation
algorithm described below is able to learn a nearly optimal model from a noisy state sequence of
τ = 7 simulated fromE0,10, with better state reconstruction error than LB-1 and LB-2.

Let Â = Ũ Σ̃Ṽ T by SVD, whereŨ = [ũi]ni=1 andṼ = [ṽi]ni=1 andΣ̃ = diag{σ̃1, . . . , σ̃n}. Then:

Â = Ũ Σ̃Ṽ T ⇒ Σ̃ = ŨT ÂṼ ⇒ σ̃1(Â) = ũT
1 Âṽ1 = tr(ũT

1 Âṽ1) (6)

Therefore, instability ofÂ implies that:

σ̃1 > 1 ⇒ tr
(
ũT

1 Âṽ1

)
> 1 ⇒ tr

(
ṽ1ũ

T
1 Â

)
> 1 ⇒ gT â > 1 (7)

Hereg = vec(ũ1ṽ
T
1). Since Eq. (7) arose from an unstable solution of Eq. (4),g is a hyperplane

separatinĝa from the space of matrices withσ1 ≤ 1. We use the negation of Eq. (7) as a constraint:

gT â ≤ 1 (8)
4.3 Computing the Solution
The overall quadratic program can be stated as:

minimize aTPa− 2 qTa + r
subject to Ga ≤ h

(9)

with a, P , q and r as defined in Eqs. (5).{G,h} define the set of constraints, and are initially
empty. The QP is invoked repeatedly until the stable region, i.e.Sλ, is reached. At each iteration,
we calculate a linear constraint of the form in Eq. (8), add the correspondinggT as a row inG,
and augmenth with 1. Note that we will almost always stopbeforereaching the feasible regionSσ.
Once a stable matrix is obtained, it is possible to refine this solution. We know that the last constraint
caused our solution to cross the boundary ofSλ, so we interpolate between the last solution and the
previous iteration’s solution using binary search to look for a boundary of the stable region, in
order to obtain a better objective value while remaining stable. An interpolation could be attempted
between the least squares solution and any stable solution. However, the stable region can be highly
complex, and there may be several folds and boundaries of the stable region in the interpolated area.
In our experiments (not shown), interpolating from the LB-1 solution yielded worse results.

5 Experiments
For learning the dynamics matrix, we implemented1 least squares, constraint generation (using
quadprog), LB-1 [1] and LB-2 [2] (usingCVXwith SeDuMi) in Matlab on a3.2 GHz Pen-
tium with 2 GB RAM. Note that these algorithms give a different result from the basic least-squares
system identification algorithm only in situations where the least-squares model is unstable. How-
ever, least-squares LDSs trained in scarce-data scenarios are unstable for almost any domain, and
some domains lead to unstable models up to the limit of available data (e.g. thesteam dynamic
textures in Section 5.1). The goals of our experiments are to: (1) examine the state evolution and
simulated observations of models learned using our method, and compare them to previous work;
and (2) compare the algorithms in terms of reconstruction error and efficiency. The error metric used
for the quantitative experiments when evaluating matrixA∗ is

ex(A∗) = 100×
(
J2(A∗)− J2(Â)

)
/J2(Â) (10)

i.e. percent increase in squared reconstruction error compared to least squares, withJ(·) as defined
in Eq. (4). We apply these algorithms to learning dynamic textures from the vision domain (Sec-
tion 5.1), as well as OTC drug sales counts and sunspot numbers (Section 5.2).

1Source code is available at http://www.select.cs.cmu.edu/projects/stableLDS

Least Squares LB-1 Constraint Generation

A.

B.

C.

−2

0

2

x 10
4

0 500 1000 0 500 1000

t =100 t =200 t =400 t =800

0 500 1000

t =100 t =200 t =400 t =800

t t t

−1

0

1

st
at

e
ev

o
lu

ti
o
n

Figure 3: Dynamic textures. A. Samples from the originalsteam sequence and thefountain
sequence. B. State evolution of synthesized sequences over1000 frames (steam top, fountain
bottom). The least squares solutions display instability as time progresses. The solutions obtained
using LB-1 remain stable for the full1000 frame image sequence. The constraint generation solu-
tions, however, yield state sequences that are stable over the full1000 frame image sequence without
significant damping. C. Samples drawn from a least squares synthesized sequences (top), and sam-
ples drawn from a constraint generation synthesized sequence (bottom). Images for LB-1 are not
shown. The constraint generation synthesizedsteam sequence is qualitatively better looking than
thesteam sequence generated by LB-1, although there is little qualitative difference between the
two synthesizedfountain sequences.

CG LB-1 LB-1∗ LB-2 CG LB-1 LB-1∗ LB-2
steam (n = 10) fountain (n = 10)

|λ1| 1.000 0.993 0.993 1.000 0.999 0.987 0.987 0.997
σ1 1.036 1.000 1.000 1.034 1.051 1.000 1.000 1.054

ex(%) 45.2 103.3 103.3 546.9 0.1 4.1 4.1 3.0
time 0.45 95.87 3.77 0.50 0.15 15.43 1.09 0.49

steam (n = 20) fountain (n = 20)
|λ1| 0.999 — 0.990 0.999 0.999 — 0.988 0.996
σ1 1.037 — 1.000 1.062 1.054 — 1.000 1.056

ex(%) 58.4 — 154.7 294.8 1.2 — 5.0 22.3
time 2.37 — 1259.6 33.55 1.63 — 159.85 5.13

steam (n = 40) fountain (n = 40)
|λ1| 1.000 — 0.989 1.000 1.000 — 0.991 1.000
σ1 1.120 — 1.000 1.128 1.034 — 1.000 1.172

ex(%) 20.24 — 282.7 768.5 3.3 — 4.8 21.5
time 5.85 — 79516.98 289.79 61.9 — 43457.77 239.53

Table 1: Quantitative results on the dynamic textures data for different numbers of statesn. CG is our
algorithm, LB-1and LB-2 are competing algorithms, and LB-1∗ is a simulation of LB-1 using our
algorithm by generating constraints until we reachSσ, since LB-1 failed forn > 10 due to memory
limits. ex is percent difference in squared reconstruction error as defined in Eq. (10). Constraint
generation, in all cases, has lower error and faster runtime.

5.1 Stable Dynamic Textures
Dynamic textures in vision can intuitively be described as models for sequences of images that
exhibit some form of low-dimensional structure and recurrent (though not necessarily repeating)
characteristics, e.g. fixed-background videos of rising smoke or flowing water. Treating each frame
of a video as an observation vector of pixel valuesyt, we learned dynamic texture models of two
video sequences: thesteam sequence, composed of120 × 170 pixel images, and thefountain
sequence, composed of150 × 90 pixel images, both of which originated from the MIT temporal
texture database (Figure 3(A)). We use parametersτ = 80, n = 15, andd = 10. Note that the state
sequence we learn has noa priori interpretation.

An LDS model of a dynamic texture maysynthesizean “infinitely” long sequence of images by
driving the model with zero mean Gaussian noise. Each of our two models uses an80 frame training
sequence to generate1000 sequential images in this way. To better visualize the difference between
image sequences generated by least-squares, LB-1, and constraint generation, the evolution of each
method’s state is plotted over the course of the synthesized sequences (Figure 3(B)). Sequences
generated by the least squares models appear to be unstable, and this was in fact the case; both
thesteam and thefountain sequences resulted in unstable dynamics matrices. Conversely, the
constrained subspace identification algorithms all produced well-behaved sequences of states and
stable dynamics matrices (Table 1), although constraint generation demonstrates the fastest runtime,
best scalability, and lowest error of any stability-enforcing approach.

A qualitative comparison of images generated by constraint generation and least squares (Fig-
ure 3(C)) indicates the effect of instability in synthesized sequences generated from dynamic texture
models. While the unstable least-squares model demonstrates a dramatic increase in image contrast
over time, the constraint generation model continues to generate qualitatively reasonable images.
Qualitative comparisons between constraint generation and LB-1 indicate that constraint generation
learns models that generate more natural-looking video sequences2 than LB-1.

Table 1 demonstrates that constraint generation always has the lowest error as well as the fastest
runtime. The running time of constraint generation depends on the number of constraints needed to
reach a stable solution. Note that LB-1 is more efficient and scalable when simulated using constraint
generation (by adding constraints untilSσ is reached) than it is in its original SDP formulation.

5.2 Stable Baseline Models for Biosurveillance
We examine daily counts of OTC drug sales in pharmacies, obtained from the National Data Retail
Monitor (NDRM) collection [17]. The counts are divided into23 different categories and are tracked
separately for each zipcode in the country. We focus on zipcodes from a particular American city.
The data exhibits7-day periodicity due to differential buying patterns during the week. We isolate a
60-day subsequence where the data dynamics remain relatively stationary, and attempt to learn LDS
parameters to be able to simulate sequences of baseline values for use in detecting anomalies.

We perform two experiments on different aggregations of the OTC data, with parameter valuesn =
7, d = 7 andτ = 14. Figure 4(A) plots22 different drug categories aggregated over all zipcodes,
and Figure 4(B) plots a single drug category (cough/cold) in29 different zipcodes separately. In both
cases, constraint generation is able to use very little training data to learn a stable model that captures
the periodicity in the data, while the least squares model is unstable and its predictions diverge over
time. LB-1 learns a model that is stable but overconstrained, and the simulated observations quickly
drift from the correct magnitudes. We also tested the algorithms on the sunspots data (Figure 2(C))
with parametersn = 7, d = 18 andτ = 50, with similar results. Quantitative results on both these
domains exhibit similar trends as those in Table 1.

6 Discussion
We have introduced a novel method for learning stable linear dynamical systems. Our constraint
generation algorithm is more powerful than previous methods in the sense of optimizing over a
larger set of stable matrices with a suitable objective function. The constraint generation approach
also has the benefit of being faster than previous methods in nearly all of our experiments. One
possible extension is to modify the EM algorithm for LDSs to incorporate constraint generation
into the M-step in order to learn stable systems that locally maximize the observed data likelihood.
Stability could also be of advantage in planning applications.

2See videos at http://www.select.cs.cmu.edu/projects/stableLDS

0

300

Multi-drug sales counts

30 600

Multi-zipcode sales counts

30 600

Sunspot numbers

100 2000

0

300

0

300

0

300

0

400

0

400

0

400

0

400

0

1500

0

1500

0

1500

0

1500

A. B. C.

T
ra

in
in

g
D

at
a

C
o
n
st

ra
in

t
G

en
er

at
io

n
L

ea
st

S
q
u
ar

es
L

B
-1

Figure 4: (A):60 days of data for22 drug categories aggregated over all zipcodes in the city. (B):
60 days of data for a single drug category (cough/cold) for all29 zipcodes in the city. (C): Sunspot
numbers for200 years separately for each of the12 months. The training data (top), simulated
output from constraint generation, output from the unstable least squares model, and output from
the over-damped LB-1 model (bottom).

Acknowledgements

This paper is based on work supported by DARPA under the Computer Science Study Panel program
(authors GJG and BEB), the NSF under Grant Nos. EEC-0540865 (author BEB) and IIS-0325581
(author SMS), and the CDC under award 8-R01-HK000020-02, ”Efficient, scalable multisource
surveillance algorithms for Biosense” (author SMS).
References

[1] Seth L. Lacy and Dennis S. Bernstein. Subspace identification with guaranteed stability using constrained
optimization. InProc. American Control Conference, 2002.

[2] Seth L. Lacy and Dennis S. Bernstein. Subspace identification with guaranteed stability using constrained
optimization.IEEE Transactions on Automatic Control, 48(7):1259–1263, July 2003.

[3] R.E. Kalman. A new approach to linear filtering and prediction problems.Trans. ASME–JBE, 1960.

[4] L. Ljung. System Identification: Theory for the user. Prentice Hall, 2nd edition, 1999.

[5] Zoubin Ghahramani and Geoffrey E. Hinton. Parameter estimation for Linear Dynamical Systems. Tech-
nical Report CRG-TR-96-2, U. of Toronto, Department of Comp. Sci., 1996.

[6] N. L. C. Chui and J. M. Maciejowski. Realization of stable models with subspace methods.Automatica,
32(100):1587–1595, 1996.

[7] Stephen Boyd and Lieven Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

[8] S. Soatto, G. Doretto, and Y. Wu. Dynamic Textures.Intl. Conf. on Computer Vision, 2001.

[9] E. Keogh and T. Folias. The UCR Time Series Data Mining Archive, 2002.

[10] P. Van Overschee and B. De Moor.Subspace Identification for Linear Systems: Theory, Implementation,
Applications. Kluwer, 1996.

[11] T. Van Gestel, J. A. K. Suykens, P. Van Dooren, and B. De Moor. Identification of stable models in
subspace identification by using regularization.IEEE Transactions on Automatic Control, 2001.

[12] Sajid M. Siddiqi, Byron Boots, and Geoffrey J. Gordon. A Constraint Generation Approach to Learning
Stable Linear Dynamical Systems. Technical Report CMU-ML-08-101, CMU, 2008.

[13] H. Rauch. Solutions to the linear smoothing problem. InIEEE Transactions on Automatic Control, 1963.

[14] Kevin Murphy. Dynamic Bayesian Networks. PhD thesis, UC Berkeley, 2002.

[15] Roger Horn and Charles R. Johnson.Matrix Analysis. Cambridge University Press, 1985.

[16] Andrew Y. Ng and H. Jin Kim. Stable adaptive control with online learning. InProc. NIPS, 2004.

[17] M. Wagner. A national retail data monitor for public health surveillance.Morbidity and Mortality Weekly
Report, 53:40–42, 2004.

