Rank-Based Tests

Geoff Gordon

ggordon@cs.cmu.edu

December 6, 1995



The problem

Given two sets of samples, do they come from
the same distribution?

E.g., does the new drug change the expected
lifetime of the patients, does the new EBL al-
gorithm change the performance of our theo-
rem prover?

Assume all samples are independent.



T he framework

Given:
e sample X1...Xn

e indicators Y7 ...Y, (0O if sample ¢ from first
set, 1 if from second)

Wish to check a null hypothesis such as

Hgy: The X;s all come from Gaussian
distributions with the same mean and
variance: X; ~ N(u, o)

Evidence against Hp strong = reject Hg
Evidence weak = provisionally accept Hg

Allow probability « (the significance level) of
rejecting Hg if it is true

NoO need to specify alternate hypothesis yet
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Power

Suppose some alternate hypothesis, Hq, IS true
instead — e.g. the Gaussian location shift

Hy: (X; —Yi0) ~ N(p,0)

Probability of rejecting Hg if Hy is true is the
power of our test against Hq

If we choose a specific H; (e.g. § = 1.8), can
look for most powerful test of Hy v. that H;

Or, could look for a good test against many
different alternates — e.g., all 8 > 0, all 6 # 0

Such a test may not be most powerful against
any one alternate



Power Graphs

Power curves for one- and two-tailed t-tests, variance 1,

5% significance level, 50 samples in each group.

If alternates are parameterized by 6, can dgraph
power vsS. § — provides a concise summary

For example, the point (.277,.5) means that
the two-tailed t-test with this many samples
can detect a difference of +.277 standard de-
viations half the time

Want graph as high as possible at Hq1, but no
higher than a at Hg



Testing v. Estimation

Related problem: estimate E(S(X,Y))

S iIs a statistic — some function of the data
Can choose S so null h. is E(S) =0

This S is called the test statistic

Observed value of S is evidence against null h.



Designing a parametric test

For a parametric test, assume we know how
every sample depends on parameter of interest

That is, write X; ~ g;, where g; are known
densities, each depending on parameter 6

Want to estimate 6 or test Hy: 6 =0



Maximum likelihood

To estimate 8 by maximum likelihood:

% N L(X, (9) = —1In ng(azz)

Lgi(2;) .
We say &; = dz,éx,; is the score for X;

Can estimate 6 by setting sum of scores to O



ML example

If X; ~ N(Y;0,1), then

—(r — y; 2
gi(z) = \/12—7Te><p 2~ vif)
“ai) = @)~y

& (@i — yif)y;
So if Y; is O, ¢th score is O, while if Y; is 1, ith
score is (z; — 6)

Suppose first m samples have Y, = 1. Then
sum of scores is (3.7 X; —m#), and setting to
0 gives 8y, = Y™ X,



Score statistic

Get ML estimate by setting total score to O

How good an estimate is 68 #= 6,7, Of 67

Sum scores for g, compare to O

Called the score statistic



Score tests — 1

Fact: locally most powerful test for § = 6 can
be based on the score statistic (consequence
of Neyman-Pearson lemma)

LLocally most powerful: nearly most powerful
for alternates A1 near 6g

Form of score test for 81 > 6p:
e compute null distribution of score statistic
e pick cutoff C so Py(score > C) = «

e reject if score > C

N-P doesn’t tell us null distribution
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Score test example

Suppose X; ~ N(Y;0,1) and Hy: 0 =0

Score statistic at 0 =0 is £ = Y " X

Each X, ~ N(0,1) under Hg so & ~ N(O,+/m)
For a = .05, 6; +ve, reject if 37 X; > 1.65¢/m

Simple version of Student’s t-test
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Parametric null hypotheses

t-test specifies a parametric null h.: statement
about parameters of an assumed distribution

If it rejects Hg, know either
o X LY, or
o X o4 N(u,o), or

o Y # N(u,0)

If we're not sure that X and Y are Gaussian,
above conclusion is useless
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Nonparametric null hypotheses

Nonparametric h. assumes no distribution: e.g.

Hqp: X; ~ Xj

To assess power, can use any alternate h.,
parametric or nonparametric

Often choose a parametric alternate, to see

whether our nonparametric test is less powerful
than corresponding parametric test
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Designing nonparametric tests

Test must not reject a true Hp too often, no
matter what distribution X;s have

One way to ensure this: base test on a statis-
tic whose null distribution doesn’t depend on
distribution of X;s

Fact: can transform any distribution with con-
tinuous c.d.f. to any other via a monotone
transformation (if c.d.f.s are F,G then trans-
form is G~ L1(F(X)))

= test statistic must be invariant under mono-
tone transforms
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Rank tests

Define (1) to be index of smallest X, (2) next
smallest, etc.

Rank vector R = ((1),(2),...,(IN)) is maximal
invariant statistic under monotone transforms

That is, any statistic unaffected by monotone
transforms is a function of rank vector

= test statistic must be a function of R

15



Rank scores

Suppose z; has density g;

Let A be the region where z(1y < zp) < ...,

i.e., where R is correct rank vector

Score for R is then

L0 L(R.§) dln/ﬁ (;)dX
da _ 4 (o

o ’ g Ja LI

1

~ L(R.6)Jado HQZ(”‘MX

— d@gi(%) HNgz(xz)
=/, (Z <x@>> n(r.0)

_ %EQ (degi(%)>

g:(x;)
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Properties of rank scores

d
. Jg9:(z;)
Score for X; is & = Ej (dzi(xi) )

That is, rank-based scores are the expectation
(over observations consistent with the rank vec-
tor) of the original scores

Above is true in general of partly-observed data

Even though we computed scores from assumed
g;S, £ 1s a function of ranks only and so does
not depend on distribution of X;s

= test IS nonparametric
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Normal scores test

In the t-test, scores were 0 or X,
For rank-based test, want O or E(X;|R) = E(X(j))
Call latter quantity z;, (a normal score)

E.g., z317 1S expectation of 3rd largest of 17
samples from a standard normal
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Permutation distribution

What is distribution of &7

Under Hg, X; ~ X; — so interchanging X; and
X; leaves likelihood unchanged

So all 2" permutations of X;s are equally likely

So ¢ is the sum of m numbers chosen w/o
replacement from the set z1,,...2nn

So £ is asymptotically normal with

1 mn
~> %in=0
n =

(/

1

n—1

E(¢)

n

V()

1
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Normal scores example

Suppose X =(5,1,3,2,6)andY = (0,0,1,0,1)
Normal scores forn =5 are —1.16,—-.5,0,.5,1.16
¢E=0+41.16

V(¢) = 2(1.35 4 .25 + 0 + .25 4 1.35)(.36 +
364+ .164 .36 +.16) = 1.12

So ¢ is 115 = 1.09 devs above mean, and

V112
p = 14%, not enough to reject Hy
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Wilcoxon test

————————————

Normal and logistic density functions

1

Logistic distribution has c.d.f. TFexp(—2)

Similar to normal, but heavier tails (in graph,
13% higher std. dev.)

Logistic scores are w;, = -2 — 1

Corresponding test is Wilcoxon (also Kruskal-
Wallis, Mann-Whitney, rank sum)
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Comparison

Hp 1 X; ~ X] v. location Hy : (Xz — Y;(g) ~ g

If g is Gaussian:
e t-test is fully efficient
e normal scores asymptotically efficient

e \Wilcoxon has asymptotic relative efficiency
0.955, j.e., about 5% more samples for
same power

If g is not Gaussian:
e t-test is invalid

e normal scores and Wilcoxon are still valid,
but may be less than 100% efficient

e Wilcoxon has ARE 1 for g logistic

Gaussian location-scale alternate: t is best
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Paired tests

Two samples, Xq1... X, and Y7 ...Y),

X; and Y; are more similar to each other than
to Xj or Y]

E.g., drug v. placebo on each of n patients,
two types of fertilizer on each of n fields

We will discuss:

e weak pairing: null h. is X; ~Y; (but distri-
bution of X; and X, not related)

e strong pairing: assume all samples have
same distribution up to location, null h. is
that 2th pair has same location
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Weak pairing

How nonparametric do we want to be? (le.,
invariant under which transformations?)

Completely nonparametric:

e Invariant to monotone transform of each
pair separately

e Max invariant statistic is count of X; > Y

e Thisis sign test — asymptotically N (5, @)
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Weak pairing, cont’'d

“Mostly” nonparametric:

e Invariant to monotone transform of all data
simultaneously

e Max invariant stat is combined rank vector
e Can compute scores as before
e Condition on observed score pairing

e Permuation distribution: :th score equally
likely to come from X, or Y]

o (& — &)~ N(0,5;(& — €D)2)
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Strong pairing

(X; —Y; —0;) ~ g for some symmetric g
Split into sign(X; —Y; — 6;), | X; = Y; — 6;]
Invariant to monotone transform of | X, —Y;—6,|

Max invariant stat: signs, ranks for | X; —Y; —0;|
(under Hg, ranks for |X; —Y;|)

Compute scores as before, except we now want
expected abs values of scores — examples:

e double-exponential: sign test
e logistic: signed ranks (paired Wilcoxon)

e normal: signed normal scores

Permutation distribution: ¥; s;& ~ N(0,%; £7)
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