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The problem

Given two sets of samples� do they come from

the same distribution�

E�g�� does the new drug change the expected

lifetime of the patients� does the new EBL al�

gorithm change the performance of our theo�

rem prover�

Assume all samples are independent�

�



The framework

Given	

� sample X� � � � Xn

� indicators Y� � � � Yn 
� if sample i from �rst

set� � if from second


Wish to check a null hypothesis such as

H�	 The Xis all come from Gaussian

distributions with the same mean and

variance	 Xi � N
�� �


Evidence against H� strong � reject H�

Evidence weak � provisionally accept H�

Allow probability � 
the signi�cance level
 of

rejecting H� if it is true

No need to specify alternate hypothesis yet

�



Power

Suppose some alternate hypothesis� H�� is true

instead � e�g� the Gaussian location shift

H�	 
Xi � Yi�
 � N
�� �


Probability of rejecting H� if H� is true is the

power of our test against H�

If we choose a speci�c H� 
e�g� � � ���
� can

look for most powerful test of H� v� that H�

Or� could look for a good test against many

di�erent alternates � e�g�� all � � �� all � �� �

Such a test may not be most powerful against

any one alternate

�



Power Graphs
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Power curves for one� and two�tailed t�tests� variance ��

�� signi�cance level� �� samples in each group�

If alternates are parameterized by �� can graph

power vs� � � provides a concise summary

For example� the point 
����� ��
 means that

the two�tailed t�test with this many samples

can detect a di�erence of ����� standard de�

viations half the time

Want graph as high as possible at H�� but no

higher than � at H�

�



Testing v� Estimation

Related problem	 estimate E
S
X�Y



S is a statistic � some function of the data

Can choose S so null h� is E
S
 � �

This S is called the test statistic

Observed value of S is evidence against null h�

�



Designing a parametric test

For a parametric test� assume we know how

every sample depends on parameter of interest

That is� write Xi � gi� where gi are known

densities� each depending on parameter �

Want to estimate � or test H� 	 � � �

�



Maximum likelihood

To estimate � by maximum likelihood	

d

d�
lnL
X� �
 �

d

d�
ln

nY
i

gi
xi


�
nX
i

d

d�
ln gi
xi


�
nX
i

d
d�
gi
xi


gi
xi


We say �i �
d

d�
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gi�xi�
is the score for Xi

Can estimate � by setting sum of scores to �
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ML example

If Xi � N
Yi���
� then

gi
x
 �
�p
��

exp
�
x � yi�


�
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So if Yi is �� ith score is �� while if Yi is �� ith

score is 
xi � �


Suppose �rst m samples have Yi � �� Then

sum of scores is 

Pm
i Xi �m�
� and setting to

� gives �ML �
�
m

Pm
i Xi

�



Score statistic

Get ML estimate by setting total score to �

How good an estimate is �� �� �ML of ��

Sum scores for ��� compare to �

Called the score statistic

�



Score tests � I

Fact	 locally most powerful test for � � �� can

be based on the score statistic 
consequence

of Neyman�Pearson lemma


Locally most powerful	 nearly most powerful

for alternates �� near ��

Form of score test for �� � ��	

� compute null distribution of score statistic

� pick cuto� C so P�
score � C
 � �

� reject if score � C

N�P doesn�t tell us null distribution

�	



Score test example

Suppose Xi � N
Yi�� �
 and H� 	 � � �

Score statistic at � � � is � �
Pm
i Xi

Each Xi � N
���
 under H� so � � N
��
p
m


For � � ���� �� �ve� reject if
Pm
i Xi � ����

p
m

Simple version of Student�s t�test

��



Parametric null hypotheses

t�test speci�es a parametric null h�	 statement

about parameters of an assumed distribution

If it rejects H�� know either

� X �� Y � or

� X �� N
�� �
� or

� Y �� N
�� �


If we�re not sure that X and Y are Gaussian�

above conclusion is useless

��



Nonparametric null hypotheses

Nonparametric h� assumes no distribution	 e�g�

H�	 Xi � Xj

To assess power� can use any alternate h��

parametric or nonparametric

Often choose a parametric alternate� to see

whether our nonparametric test is less powerful

than corresponding parametric test

��



Designing nonparametric tests

Test must not reject a true H� too often� no

matter what distribution Xis have

One way to ensure this	 base test on a statis�

tic whose null distribution doesn�t depend on

distribution of Xis

Fact	 can transform any distribution with con�

tinuous c�d�f� to any other via a monotone

transformation 
if c�d�f�s are F�G then trans�

form is G��
F 
X




� test statistic must be invariant under mono�

tone transforms

��



Rank tests

De�ne 
�
 to be index of smallest X� 
�
 next

smallest� etc�

Rank vector R � 

�
� 
�
� � � � � 
N

 is maximal

invariant statistic under monotone transforms

That is� any statistic una�ected by monotone

transforms is a function of rank vector

� test statistic must be a function of R

��



Rank scores

Suppose xi has density gi

Let A be the region where x��� 	 x��� 	 � � ��

i�e�� where R is correct rank vector

Score for R is then
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Properties of rank scores

Score for Xi is �i � E�

�
d

d�
gi�xi�

gi�xi�

�

That is� rank�based scores are the expectation


over observations consistent with the rank vec�

tor
 of the original scores

Above is true in general of partly�observed data

Even though we computed scores from assumed

gis� � is a function of ranks only and so does

not depend on distribution of Xis

� test is nonparametric

��



Normal scores test

In the t�test� scores were � or Xi

For rank�based test� want � or E
XijR
 � E
X�j�


Call latter quantity zjn 
a normal score


E�g�� z���� is expectation of �rd largest of ��

samples from a standard normal

��



Permutation distribution

What is distribution of ��

Under H�� Xi � Xj � so interchanging Xi and

Xj leaves likelihood unchanged

So all �n permutations of Xis are equally likely

So � is the sum of m numbers chosen w�o

replacement from the set z�n � � � znn

So � is asymptotically normal with

E
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i
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i


Yi � �Y 
�
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Normal scores example

SupposeX� 
���������
 and Y � 
���������


Normal scores for n � � are ������������ �������

� � �� ����

V 
�
 � �
�
���� � ��� � � � ��� � ����

��� �

���� ���� ���� ���
 � ����

So � is ����p
����

� ���� devs above mean� and

p� ���� not enough to reject H�

�	



Wilcoxon test

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-4 -3 -2 -1 0 1 2 3 4

Normal
Logistic

Normal and logistic density functions

Logistic distribution has c�d�f� �
�	exp��x�

Similar to normal� but heavier tails 
in graph�

��� higher std� dev�


Logistic scores are win �
�i

n	� � �

Corresponding test is Wilcoxon 
also Kruskal�

Wallis� Mann�Whitney� rank sum
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Comparison

H� 	 Xi � Xj v� location H� 	 
Xi � Yi�
 � g

If g is Gaussian	

� t�test is fully e�cient

� normal scores asymptotically e�cient

� Wilcoxon has asymptotic relative e�ciency

������ i�e�� about �� more samples for

same power

If g is not Gaussian	

� t�test is invalid

� normal scores and Wilcoxon are still valid�

but may be less than ���� e�cient

� Wilcoxon has ARE � for g logistic

Gaussian location�scale alternate	 t is best

��



Paired tests

Two samples� X� � � � Xn and Y� � � � Yn

Xi and Yi are more similar to each other than

to Xj or Yj

E�g�� drug v� placebo on each of n patients�

two types of fertilizer on each of n �elds

We will discuss	

� weak pairing	 null h� is Xi � Yi 
but distri�

bution of Xi and Xj not related


� strong pairing	 assume all samples have

same distribution up to location� null h� is

that ith pair has same location

��



Weak pairing

How nonparametric do we want to be� 
I�e��

invariant under which transformations�


Completely nonparametric	

� Invariant to monotone transform of each

pair separately

� Max invariant statistic is count of Xi � Yi

� This is sign test� asymptotically N
n��
p
n
� 


��



Weak pairing� cont�d

�Mostly� nonparametric	

� Invariant to monotone transform of all data

simultaneously

� Max invariant stat is combined rank vector

� Can compute scores as before

� Condition on observed score pairing

� Permuation distribution	 ith score equally

likely to come from Xi or Yi

� Pi
�i � ��i
� N
��
P
i
�i � ��i


�
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Strong pairing


Xi � Yi � �i
 � g for some symmetric g

Split into sign
Xi � Yi � �i
� jXi � Yi � �ij

Invariant to monotone transform of jXi�Yi��ij

Max invariant stat	 signs� ranks for jXi�Yi��ij

under H�� ranks for jXi � Yij


Compute scores as before� except we now want

expected abs values of scores � examples	

� double�exponential	 sign test

� logistic	 signed ranks 
paired Wilcoxon


� normal	 signed normal scores

Permutation distribution	
P
i si�i � N
��

P
i �
�
i 
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