Geoff Gordon
ggordon@s. crmu. edu

Joelle Pineau, Geoff Gordon, Sebastian Thrun. Point-based

value iteration: an anytime algorithm for POMDPs

Fast approximate planningin POMDPs — p.1/3

Overview

POMDPs are too slow

Overview

Fast approximate planningin POMDPs — p.3/3

Overview

Review of POMDPs
Review of POMDP value iteration algorithms

Point-based value iteration

Theoretical results

Actual results

Fast approximate planningin POMDPs — p.4/3

POMDP overview

Planning in an uncertain world
Actions have random effects

Don’t observe full world state

Fast approximate planningin POMDPs — p.5/3

POMDP definition

State x € X, actions a € A, observations z € 7

Rewards r, (column vectors), discount v € [0, 1)
Belief b € P(X) (row vectors)
Starting belief b,

1
,f
0.6 ;
0.4

Fast approximate planningin POMDPs — p.6/3

POMDP definition cont’d

Transitions b — bT,, (1, stochastic)

Observation likelihoods w. (row vectors)
w1

Observation update:
b+— w, xb-n

where x Is pointwise multiplication

Fast approximate planningin POMDPs — p.7/3

Value functions

Just like MDP value function (but bigger)

V(b) = expected total discounted future reward
starting from b

Knowing V. means planning is 1-step lookahead
If we discretize belief simplex, we are “done”
From bgettob,,,b.,,...according to P(z | b, a)

Fast approximate planningin POMDPs — p.8/3

Value functions

Additional structure: convexity

Consider beliefs by, by, by = 25

bs. flip a coin, then start in b, If heads, b, If tails

b3 Is always worse than average of by, bs

Fast approximate planningin POMDPs — p.9/3

Representation

Represent V' as the upper surface of a (possibly

Infinite) set of hyperplanes
Y Is set of hyperplanes

Hyperplanes represented
by normals v (column
vectors)

V(b) = maxyep b v

Fast approximate

planningin POMDPs 10/3

Value 1teration

Bellman’s equation:

V(b) = max Q(b, a)

Qb,a) =ra+7 Y Pz |ba)V(b:)

where b,, = n(b1,) X w,

Convergence

Backup operator 7. V «— TV
T is a contractionon P(X) — R
16 = V|| = max, [b(z) — b'(2)]

Sondik’s algorithm (1972)

Rearrange Bellman equation to make it linear:
n~' = P(z|b,a),and V(nb) = nV(b), SO

Q(b,a) = ro+7y Yy V((T,) x w.)

|
S
+
2
=
Qo
Jal
‘=
S
X
g
=

= ra+v2maxb-Ta(wz X V)

vey

Evaluate from inside out

Suppose V;(b) =b-v

UV, = W, X U

Vaz = VL av:

Vg = VUgzy T Vgzy T -+
Vi={v4,,Vay, - .}

Now V;.1(b) = maxy,ey b - v

More than 1 hyperplane

Suppose V;(b) = maxyep b - v

V,=w, XV set ops are elementwise
Vaz — /YTaVz
V=744V, V0, B ... expensive!

V=Y, uy,u...

Now V;.1(b) = maxy,ey b - v

above representation due to [Cassandra et al]

Fast approximate planningin POMDPs — p.15/3

A note on complexity

Or, some very large numbers

Set Comment Total size Time/element
Y, samesizeas)V |Z||V O(|X])
V,. stillsamesize |A||Z]||V] O(]X]?)
YV, big! Al V|14 O(X)

For example, w/ 5 actions, 5 observations:

1, 5, 15625, 4.6566 x 10*!, 1.0948 x 1019, ...

Fast approximate planningin POMDPs 16/3

Witnesses (Littman 1994)

Don’t need all elements of V

Just those which are argmaxb - v for some b

If we have the b (a
witness), fast to check
that v Is Indeed arg max

18}
16}
1.4 ="
12}
1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1

Fast approximate

planningin POMDPs 17/3

Witnhess detalils

Linear feasibility problem (size about |V| x | X])

b-v > b-v \4)
b-1 = 1
b > 0

Solve one LF per element of V—expensive, but
well worth it

Can add margin ¢ > 0 for approximate solution
e don’'t have to have all withesses

Fast approximate planningin POMDPs — p.18/3

Incremental pruning

(Cassandra, Littman, Zhang 1997)

Prune V., V,., and V, as they are constructed
Another big win in runtime

We are now up to 16-state POMDPs

Fast approximate planningin POMDPs — p.19/3

Summary so far

Solve POMDPs by repeatedly applying backup 7'
Represent V' with set of hyperplanes V
) grows fast

Can prune V using witnesses

Plan for rest of talk

Better use of withesses: point backups
Better way to find witnesses: exploration

PBVI = point backups + exploration for withesses

PBVI examples

Fast approximate planningin POMDPs — p.21/3

Backups at a point

Computing withesses IS expensive

What If we knew a witness b already?

-ast to compute both V(b) and <4V (b)

ntuitive, then formal derivation

Fast approximate planningin POMDPs — p.22/3

Point backup—intuition

V (V') depends on P(z | b,a)b,, for all a, z

P(z | b,a)b,, are linear functions of b

V(P(z | b,a)b,,) is scaled/shifted copy of V
Adding these copies: hard over P(X), easy at b

Point backup—math

When V — V', we want max,cy b - v
That’'s max, max,cy b-v, since)V' =V, UV,, ...

But max,cy b-v IS

max b-v;+ max b-ve + ...

sinceanyv € V,ISv; + vy + ...

...and YV, Is quick to compute.

Fast approximate planningin POMDPs — p.24/3

Advantage of point-based backups

Suppose we have a set B of withesses and V of
hyperplanes

Pruning V takes time O(|B| [V||X]) (w/ small
constant)

Without knowing witnesses, solve |V| LFs, each
V| x| X]

Higher order, worse constants

Where do withesses come from?

Grids (note difference to discretizing belief
simplex)

Random (Poon 2001)

Interleave point-based with incremental pruning
(Zhang & Zhang 2000)

We are now up to 90-state POMDPs

Bound error of the point-based backup operator

Bound depends on how densely we sample
reachable beliefs

Probably exists an extension to “easily
reachable” beliefs

Error bound on one step + contraction of value
iteration = overall error bound

First result of this sort for POMDP VI

Fast approximate planningin POMDPs — p.27/3

Let A be the set of reachable beliefs
Let B be a set of withesses

Let ¢(B) be the worst-case density of B in A:

€(B) = maxmin |[b — b'[|,

Fast approximate planningin POMDPs — p.28/3

A single point-based backup’s error is
G(B)(Rmax _ Rmin)
1 —~
That means the error after value iteration is

e(B)(Rmax — Rmin)
(1—=7)°

plus a bit for stopping at finite horizon

Fast approximate planningin POMDPs — p.29/3

Policy error

We therefore have that policy error Is:

e(B)(Rmax — Rumin)
(1—=7)°

(1 —)3, ouch! But it does go to 0 as ¢(B) — 0

Fast approximate planningin POMDPs — p.30/3

Exploration

Theorem tells us we want to sample reachable
beliefs with high worst-case 1-norm density

We can do this by simulating forward from b,

Generate a set of candidate withesses

Accept those which are farthest (1-norm) from
current set

Fast approximate planningin POMDPs — p.31/3

Selecting new witnesses

Summary of algorithm

B < {bo}
V = {0} (or whatever—e.g., use QMDP)

Do some point-based backups on V using B
e we backup k times, where ~* is small

Add more beliefs to B
e We double the size of B each time

Repeat

Tag problem

26

Gh

23 |2

20

m@*

o

fixed opponent policy

870 states, 2x29 observations, 5 actions

[[-

[

Fast approximate planningin POMDPs — p.34/3

I
Co

| = PBVI
| --- QMDP

REWARD
: I I I
s & % 3

2
o

|

s
o

TIME (secs)

Fast approximate planningin POMDPs — p.35/3

Catches opponent 60% of time

Don’t know of another value iteration algorithm
which could do this well

On smaller problems, gets policies as good as
other algorithms

But uses a small fraction of the compute time

Fast approximate planningin POMDPs — p.36/3

Contributions and Conclusion

Others have used point-based backups
e mostly in combination with other, more
expensive ops
Others have tried to select withesses quickly
e on small problems, random & grid are good
heuristics

Pushed to 10x larger problems with efficient
algorithm and intelligent search for withesses

Our theorem Is the strongest of Its type

	Overview
	Overview
	Overview
	POMDP overview
	POMDP definition
	POMDP definition cont'd
	Value functions
	Value functions
	Representation
	Value iteration
	Convergence
	Sondik's algorithm (1972)
	Evaluate from inside out
	More than 1 hyperplane
	A note on complexity
	Witnesses (Littman 1994)
	Witness details
	Incremental pruning
	Summary so far
	Plan for rest of talk
	Backups at a point
	Point backup---intuition
	Point backup---math
	Advantage of point-based backups
	Where do witnesses come from?
	New theorem
	Definitions
	Theorem
	Policy error
	Exploration
	Selecting new witnesses
	Summary of algorithm
	Tag problem
	Results
	Results
	Contributions and Conclusion

