Fast approximate planning in POMDPs

Geoff Gordon ggordon@cs.cmu.edu

Joelle Pineau, Geoff Gordon, Sebastian Thrun. *Point-based value iteration: an anytime algorithm for POMDPs*

•

POMDPs are too slow

•

POMDPs are too slow

Overview

Review of POMDPs Review of POMDP value iteration algorithms Point-based value iteration Theoretical results Actual results

POMDP overview

Planning in an uncertain world Actions have random effects Don't observe full world state

POMDP definition

State $x \in X$, actions $a \in A$, observations $z \in Z$ Rewards r_a (column vectors), discount $\gamma \in [0, 1)$ Belief $b \in P(X)$ (row vectors) Starting belief b_0

Fast approximate planningin POMDPs - p.6/3

POMDP definition cont'd

Transitions $b \rightarrow bT_a$ (T_a stochastic) Observation likelihoods w_z (row vectors)

$$\sum_{z} w_{z} = \mathbf{1}$$

Observation update:

$$b \leftarrow w_z \times b \cdot \eta$$

where \times is pointwise multiplication

Value functions

Just like MDP value function (but bigger)

V(b) = expected total discounted future reward starting from b

Knowing *V* means planning is 1-step lookahead If we discretize belief simplex, we are "done" From *b* get to b_{z_1}, b_{z_2}, \ldots according to $P(z \mid b, a)$

Value functions

Additional structure: convexity

Consider beliefs $b_1, b_2, b_3 = \frac{b_1+b_2}{2}$

 b_3 : flip a coin, then start in b_1 if heads, b_2 if tails b_3 is always worse than average of b_1, b_2

Representation

Represent V as the upper surface of a (possibly infinite) set of hyperplanes

 $\ensuremath{\mathcal{V}}$ is set of hyperplanes

Hyperplanes represented by normals v (column vectors)

$$V(b) = \max_{v \in \mathcal{V}} b \cdot v$$

Value iteration

•

Bellman's equation:

$$V(b) = \max_{a} Q(b, a)$$
$$Q(b, a) = r_a + \gamma \sum_{z} P(z \mid b, a) V(b_{az})$$

where $b_{az} = \eta(bT_a) \times w_z$

•

Convergence

Backup operator $T: V \leftarrow TV$ *T* is a contraction on $P(X) \mapsto \mathbb{R}$

$$||b - b'|| = \max_x |b(x) - b'(x)|$$

Sondik's algorithm (1972)

•

Rearrange Bellman equation to make it linear: $\eta^{-1} = P(z \mid b, a)$, and $V(\eta b) = \eta V(b)$, so $Q(b,a) = r_a + \gamma \sum V((bT_a) \times w_z)$ $= r_a + \gamma \sum_{v \in \mathcal{V}} \max((bT_a) \times w_z) \cdot v$ $= r_a + \gamma \sum \max_{v \in \mathcal{V}} b \cdot T_a(w_z \times v)$

Fast approximate planningin POMDPs - p.13/3

• • •

Evaluate from inside out

Suppose
$$V_t(b) = b \cdot v$$

 $v_z = w_z \times v$
 $v_{az} = \gamma T_a v_z$
 $v_a = v_{az_1} + v_{az_2} + \dots$
 $\mathcal{V}' = \{v_{a_1}, v_{a_2}, \dots\}$
Now $V_{t+1}(b) = \max_{v \in \mathcal{V}'} b \cdot v$

•

Fast approximate planningin POMDPs - p.14/3

More than 1 hyperplane

•

Suppose
$$V_t(b) = \max_{v \in \mathcal{V}} b \cdot v$$

 $\mathcal{V}_z = w_z \times \mathcal{V}$ set ops are elementwise
 $\mathcal{V}_{az} = \gamma T_a \mathcal{V}_z$
 $\mathcal{V}_a = r_a + \mathcal{V}_{az_1} \oplus \mathcal{V}_{az_2} \oplus \dots$ expensive!
 $\mathcal{V}' = \mathcal{V}_{a_1} \cup \mathcal{V}_{a_2} \cup \dots$
Now $V_{t+1}(b) = \max_{v \in \mathcal{V}'} b \cdot v$

above representation due to [Cassandra et al]

Fast approximate planningin POMDPs - p.15/3

A note on complexity

Or, some very large numbers

For example, w/ 5 actions, 5 observations:

1, 5, 15625, 4.6566 × 10^{21} , 1.0948 × 10^{109} , ...

Witnesses (Littman 1994)

Don't need all elements of $\ensuremath{\mathcal{V}}$

Just those which are $\arg \max b \cdot v$ for some b

If we have the *b* (a *witness*), fast to check that *v* is indeed $\arg \max$

Witness details

Linear feasibility problem (size about $|\mathcal{V}| \times |X|$)

$$\begin{array}{rcl} b \cdot v & \geq & b \cdot v_i & & \forall i \\ b \cdot \mathbf{1} & = & 1 \\ & b & \geq & 0 \end{array}$$

Solve one LF per element of \mathcal{V} —expensive, but well worth it

Can add margin $\epsilon > 0$ for approximate solution

don't have to have all witnesses

Incremental pruning

(Cassandra, Littman, Zhang 1997) Prune V_z , V_{az} , and V_a as they are constructed Another big win in runtime We are now up to 16-state POMDPs

Summary so far

Solve POMDPs by repeatedly applying backup TRepresent V with set of hyperplanes \mathcal{V}

 $\mathcal V$ grows fast

Can prune $\ensuremath{\mathcal{V}}$ using witnesses

Plan for rest of talk

Better use of witnesses: point backups Better way to find witnesses: exploration PBVI = point backups + exploration for witnesses PBVI examples

Backups at a point

- Computing witnesses is expensive What if we knew a witness *b* already? Fast to compute both V(b) and $\frac{d}{db}V(b)$
- Intuitive, then formal derivation

Point backup—intuition

V(b') depends on $P(z \mid b, a)b_{az}$ for all a, z $P(z \mid b, a)b_{az}$ are linear functions of b $V(P(z \mid b, a)b_{az})$ is scaled/shifted copy of VAdding these copies: hard over P(X), easy at b

Fast approximate planningin POMDPs - p.23/3

Point backup—math

When $\mathcal{V} \to \mathcal{V}'$, we want $\max_{v \in \mathcal{V}'} b \cdot v$ That's $\max_a \max_{v \in \mathcal{V}_a} b \cdot v$, since $\mathcal{V}' = \mathcal{V}_{a_1} \cup \mathcal{V}_{a_2} \dots$ But $\max_{v \in \mathcal{V}_a} b \cdot v$ is $\max_{v_1 \in \mathcal{V}_{az_1}} b \cdot v_1 + \max_{v_2 \in \mathcal{V}_{az_2}} b \cdot v_2 + \dots$

since any $v \in \mathcal{V}_a$ is $v_1 + v_2 + \ldots$

... and \mathcal{V}_{az} is quick to compute.

• • •

Advantage of point-based backups

Suppose we have a set B of witnesses and ${\cal V}$ of hyperplanes

- Pruning \mathcal{V} takes time $O(|B| |\mathcal{V}| |X|)$ (w/ small constant)
- Without knowing witnesses, solve $|\mathcal{V}|$ LFs, each $|\mathcal{V}| \times |X|$

Higher order, worse constants

Where do witnesses come from?

- Grids (note difference to discretizing belief simplex)
- Random (Poon 2001)
- Interleave point-based with incremental pruning (Zhang & Zhang 2000)
- We are now up to 90-state POMDPs

New theorem

Bound error of the point-based backup operator

Bound depends on how densely we sample reachable beliefs

Probably exists an extension to "easily reachable" beliefs

Error bound on one step + contraction of value iteration = overall error bound

First result of this sort for POMDP VI

Definitions

•

Let Δ be the set of reachable beliefs Let *B* be a set of witnesses Let $\epsilon(B)$ be the worst-case density of *B* in Δ : $\epsilon(B) = \max \min ||b - b'||_1$

$$\epsilon(B) = \max_{b' \in \Delta} \min_{b \in B} \|b - b'\|_1$$

Theorem

•

A single point-based backup's error is

$$\frac{\epsilon(B)(R_{\max} - R_{\min})}{1 - \gamma}$$

That means the error after value iteration is

$$\frac{\epsilon(B)(R_{\max} - R_{\min})}{(1 - \gamma)^2}$$

plus a bit for stopping at finite horizon

• •

Policy error

•

We therefore have that policy error is:

$$\frac{\epsilon(B)(R_{\max} - R_{\min})}{(1 - \gamma)^3}$$

 $(1-\gamma)^3$, ouch! But it does go to 0 as $\epsilon(B) \to 0$

• •

Exploration

Theorem tells us we want to sample reachable beliefs with high worst-case 1-norm density We can do this by simulating forward from b_0 Generate a set of candidate witnesses Accept those which are farthest (1-norm) from current set

Selecting new witnesses

Summary of algorithm

- $B \leftarrow \{b_0\}$
- $\mathcal{V} = \{0\}$ (or whatever—e.g., use QMDP)
- Do some point-based backups on ${\mathcal V}$ using B
 - we backup k times, where γ^k is small

Add more beliefs to B

• we double the size of *B* each time Repeat

Tag problem

]	28	27	26					
		25	24	23					
		22	21	20					
19	18	17	16	5	14	13	12	11	10
9	8	7	6	5	4	3	2	1	R

870 states, 2×29 observations, 5 actions fixed opponent policy

Results

•

•

Fast approximate planningin POMDPs - p.35/3

Results

Catches opponent 60% of time

Don't know of another value iteration algorithm which could do this well

On smaller problems, gets policies as good as other algorithms

But uses a small fraction of the compute time

Contributions and Conclusion

Others have used point-based backups

 mostly in combination with other, more expensive ops

Others have tried to select witnesses quickly

 on small problems, random & grid are good heuristics

Pushed to $10 \times$ larger problems with efficient algorithm and intelligent search for witnesses

Our theorem is the strongest of its type