
Fast approximate planning
in POMDPs

Geoff Gordon

ggordon@cs.cmu.edu

Joelle Pineau, Geoff Gordon, Sebastian Thrun. Point-based

value iteration: an anytime algorithm for POMDPs

Fast approximate planningin POMDPs – p.1/37

Overview

POMDPs are too slow

Fast approximate planningin POMDPs – p.2/37

Overview

POMDPs are too slow

Fast approximate planningin POMDPs – p.3/37

Overview

Review of POMDPs

Review of POMDP value iteration algorithms

Point-based value iteration

Theoretical results

Actual results

Fast approximate planningin POMDPs – p.4/37

POMDP overview

Planning in an uncertain world

Actions have random effects

Don’t observe full world state

Fast approximate planningin POMDPs – p.5/37

POMDP definition

State x ∈ X, actions a ∈ A, observations z ∈ Z

Rewards ra (column vectors), discount γ ∈ [0, 1)

Belief b ∈ P (X) (row vectors)

Starting belief b0

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Fast approximate planningin POMDPs – p.6/37

POMDP definition cont’d

Transitions b→ bTa (Ta stochastic)

Observation likelihoods wz (row vectors)
∑

z

wz = 1

Observation update:

b← wz × b · η

where × is pointwise multiplication

Fast approximate planningin POMDPs – p.7/37

Value functions

Just like MDP value function (but bigger)

V (b) = expected total discounted future reward
starting from b

Knowing V means planning is 1-step lookahead

If we discretize belief simplex, we are “done”

From b get to bz1
, bz2

, . . . according to P (z | b, a)

Fast approximate planningin POMDPs – p.8/37

Value functions

Additional structure: convexity

Consider beliefs b1, b2, b3 = b1+b2

2

b3: flip a coin, then start in b1 if heads, b2 if tails

b3 is always worse than average of b1, b2

Fast approximate planningin POMDPs – p.9/37

Representation

Represent V as the upper surface of a (possibly
infinite) set of hyperplanes

V is set of hyperplanes

Hyperplanes represented
by normals v (column
vectors)

V (b) = maxv∈V b · v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fast approximate planningin POMDPs – p.10/37

Value iteration

Bellman’s equation:

V (b) = max
a

Q(b, a)

Q(b, a) = ra + γ
∑

z

P (z | b, a)V (baz)

where baz = η(bTa)× wz

Fast approximate planningin POMDPs – p.11/37

Convergence

Backup operator T : V ← TV

T is a contraction on P (X) 7→ R

‖b− b′‖ = maxx |b(x)− b′(x)|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

7→

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Fast approximate planningin POMDPs – p.12/37

Sondik’s algorithm (1972)

Rearrange Bellman equation to make it linear:

η−1 = P (z | b, a), and V (ηb) = ηV (b), so

Q(b, a) = ra + γ
∑

z

V ((bTa)× wz)

= ra + γ
∑

z

max
v∈V

((bTa)× wz) · v

= ra + γ
∑

z

max
v∈V

b · Ta(wz × v)

Fast approximate planningin POMDPs – p.13/37

Evaluate from inside out

Suppose Vt(b) = b · v

vz = wz × v

vaz = γTavz

va = vaz1
+ vaz2

+ . . .

V ′ = {va1
, va2

, . . .}

Now Vt+1(b) = maxv∈V ′ b · v

Fast approximate planningin POMDPs – p.14/37

More than 1 hyperplane

Suppose Vt(b) = maxv∈V b · v

Vz = wz × V set ops are elementwise

Vaz = γTaVz

Va = ra + Vaz1
⊕ Vaz2

⊕ . . . expensive!

V ′ = Va1
∪ Va2

∪ . . .

Now Vt+1(b) = maxv∈V ′ b · v

above representation due to [Cassandra et al]

Fast approximate planningin POMDPs – p.15/37

A note on complexity

Or, some very large numbers

Set Comment Total size Time/element
Vz same size as V |Z| |V| O(|X|)

Vaz still same size |A| |Z| |V| O(|X|2)

Va big! |A| |V||Z| O(|X|)

For example, w/ 5 actions, 5 observations:

1, 5, 15625, 4.6566× 1021, 1.0948× 10109, . . .

Fast approximate planningin POMDPs – p.16/37

Witnesses (Littman 1994)

Don’t need all elements of V

Just those which are arg max b · v for some b

If we have the b (a
witness), fast to check
that v is indeed arg max

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Fast approximate planningin POMDPs – p.17/37

Witness details

Linear feasibility problem (size about |V| × |X|)

b · v ≥ b · vi ∀i

b · 1 = 1

b ≥ 0

Solve one LF per element of V—expensive, but
well worth it

Can add margin ε > 0 for approximate solution
• don’t have to have all witnesses

Fast approximate planningin POMDPs – p.18/37

Incremental pruning

(Cassandra, Littman, Zhang 1997)

Prune Vz, Vaz, and Va as they are constructed

Another big win in runtime

We are now up to 16-state POMDPs

Fast approximate planningin POMDPs – p.19/37

Summary so far

Solve POMDPs by repeatedly applying backup T

Represent V with set of hyperplanes V

V grows fast

Can prune V using witnesses

Fast approximate planningin POMDPs – p.20/37

Plan for rest of talk

Better use of witnesses: point backups

Better way to find witnesses: exploration

PBVI = point backups + exploration for witnesses

PBVI examples

Fast approximate planningin POMDPs – p.21/37

Backups at a point

Computing witnesses is expensive

What if we knew a witness b already?

Fast to compute both V (b) and d

db
V (b)

Intuitive, then formal derivation

Fast approximate planningin POMDPs – p.22/37

Point backup—intuition

V (b′) depends on P (z | b, a)baz for all a, z

P (z | b, a)baz are linear functions of b

V (P (z | b, a)baz) is scaled/shifted copy of V

Adding these copies: hard over P (X), easy at b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Fast approximate planningin POMDPs – p.23/37

Point backup—math

When V → V ′, we want maxv∈V ′ b · v

That’s maxa maxv∈Va
b · v, since V ′ = Va1

∪ Va2
. . .

But maxv∈Va
b · v is

max
v1∈Vaz1

b · v1 + max
v2∈Vaz2

b · v2 + . . .

since any v ∈ Va is v1 + v2 + . . .

. . . and Vaz is quick to compute.

Fast approximate planningin POMDPs – p.24/37

Advantage of point-based backups

Suppose we have a set B of witnesses and V of
hyperplanes

Pruning V takes time O(|B| |V| |X|) (w/ small
constant)

Without knowing witnesses, solve |V| LFs, each
|V| × |X|

Higher order, worse constants

Fast approximate planningin POMDPs – p.25/37

Where do witnesses come from?

Grids (note difference to discretizing belief
simplex)

Random (Poon 2001)

Interleave point-based with incremental pruning
(Zhang & Zhang 2000)

We are now up to 90-state POMDPs

Fast approximate planningin POMDPs – p.26/37

New theorem

Bound error of the point-based backup operator

Bound depends on how densely we sample
reachable beliefs

Probably exists an extension to “easily
reachable” beliefs

Error bound on one step + contraction of value
iteration = overall error bound

First result of this sort for POMDP VI

Fast approximate planningin POMDPs – p.27/37

Definitions

Let ∆ be the set of reachable beliefs

Let B be a set of witnesses

Let ε(B) be the worst-case density of B in ∆:

ε(B) = max
b′∈∆

min
b∈B
‖b− b′‖1

Fast approximate planningin POMDPs – p.28/37

Theorem

A single point-based backup’s error is

ε(B)(Rmax −Rmin)

1− γ

That means the error after value iteration is

ε(B)(Rmax −Rmin)

(1− γ)2

plus a bit for stopping at finite horizon

Fast approximate planningin POMDPs – p.29/37

Policy error

We therefore have that policy error is:

ε(B)(Rmax −Rmin)

(1− γ)3

(1− γ)3, ouch! But it does go to 0 as ε(B)→ 0

Fast approximate planningin POMDPs – p.30/37

Exploration

Theorem tells us we want to sample reachable
beliefs with high worst-case 1-norm density

We can do this by simulating forward from b0

Generate a set of candidate witnesses

Accept those which are farthest (1-norm) from
current set

Fast approximate planningin POMDPs – p.31/37

Selecting new witnesses

.

.

.

.

.

*

.

.

Fast approximate planningin POMDPs – p.32/37

Summary of algorithm

B ← {b0}

V = {0} (or whatever—e.g., use QMDP)

Do some point-based backups on V using B

• we backup k times, where γk is small

Add more beliefs to B

• we double the size of B each time

Repeat

Fast approximate planningin POMDPs – p.33/37

Tag problem

870 states, 2×29 observations, 5 actions

fixed opponent policy

Fast approximate planningin POMDPs – p.34/37

Results

Fast approximate planningin POMDPs – p.35/37

Results

Catches opponent 60% of time

Don’t know of another value iteration algorithm
which could do this well

On smaller problems, gets policies as good as
other algorithms

But uses a small fraction of the compute time

Fast approximate planningin POMDPs – p.36/37

Contributions and Conclusion

Others have used point-based backups
• mostly in combination with other, more

expensive ops

Others have tried to select witnesses quickly
• on small problems, random & grid are good

heuristics

Pushed to 10× larger problems with efficient
algorithm and intelligent search for witnesses

Our theorem is the strongest of its type
Fast approximate planningin POMDPs – p.37/37

	Overview
	Overview
	Overview
	POMDP overview
	POMDP definition
	POMDP definition cont'd
	Value functions
	Value functions
	Representation
	Value iteration
	Convergence
	Sondik's algorithm (1972)
	Evaluate from inside out
	More than 1 hyperplane
	A note on complexity
	Witnesses (Littman 1994)
	Witness details
	Incremental pruning
	Summary so far
	Plan for rest of talk
	Backups at a point
	Point backup---intuition
	Point backup---math
	Advantage of point-based backups
	Where do witnesses come from?
	New theorem
	Definitions
	Theorem
	Policy error
	Exploration
	Selecting new witnesses
	Summary of algorithm
	Tag problem
	Results
	Results
	Contributions and Conclusion

