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Overview

POMDPs are too slow
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POMDP overview

Planning in an uncertain world
Actions have random effects

Don’t observe full world state
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POMDP definition

State x € X, actions a € A, observations z € 7

Rewards r, (column vectors), discount v € [0, 1)
Belief b € P(X) (row vectors)
Starting belief b,
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POMDP definition cont’d

Transitions b — bT,, (1, stochastic)

Observation likelihoods w. (row vectors)
w1

Observation update:
b+— w, xb-n

where x Is pointwise multiplication

Fast approximate planningin POMDPs — p.7/3



Value functions

Just like MDP value function (but bigger)

V(b) = expected total discounted future reward
starting from b

Knowing V. means planning is 1-step lookahead
If we discretize belief simplex, we are “done”
From bgettob,,,b.,,...according to P(z | b, a)
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Value functions

Additional structure: convexity

Consider beliefs by, by, by = 25

bs. flip a coin, then start in b, If heads, b, If tails

b3 Is always worse than average of by, bs
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Representation

Represent V' as the upper surface of a (possibly

Infinite) set of hyperplanes
Y Is set of hyperplanes

Hyperplanes represented
by normals v (column
vectors)

V(b) = maxyep b v
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Value 1teration

Bellman’s equation:

V(b) = max Q(b, a)

Qb,a) =ra+7 Y Pz |ba)V(b:)

where b,, = n(b1,) X w,




Convergence

Backup operator 7. V «— TV
T is a contractionon P(X) — R
16 = V|| = max, [b(z) — b'(2)]




Sondik’s algorithm (1972)

Rearrange Bellman equation to make it linear:
n~' = P(z|b,a),and V(nb) = nV(b), SO

Q(b,a) = ro+7y Yy V((T,) x w.)
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Evaluate from inside out

Suppose V;(b) =b-v

UV, = W, X U

Vaz = VL av:

Vg = VUgzy T Vgzy T -+
Vi={v4,,Vay, - .}

Now V;.1(b) = maxy,ey b - v




More than 1 hyperplane

Suppose V;(b) = maxyep b - v

V,=w, XV set ops are elementwise
Vaz — /YTaVz
V=744V, V0, B ... expensive!

V=Y, uy,u...

Now V;.1(b) = maxy,ey b - v

above representation due to [Cassandra et al]
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A note on complexity

Or, some very large numbers

Set Comment Total size Time/element
Y, samesizeas)V |Z||V O(|X])
V,. stillsamesize |A||Z]||V] O(]X]?)
YV, big! Al V|14 O( X)

For example, w/ 5 actions, 5 observations:

1, 5, 15625, 4.6566 x 10*!, 1.0948 x 1019, ...
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Witnesses (Littman 1994)

Don’t need all elements of V

Just those which are argmaxb - v for some b

If we have the b (a
witness), fast to check
that v Is Indeed arg max
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Witnhess detalils

Linear feasibility problem (size about |V| x | X])

b-v > b-v \4)
b-1 = 1
b > 0

Solve one LF per element of V—expensive, but
well worth it

Can add margin ¢ > 0 for approximate solution
e don’'t have to have all withesses
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Incremental pruning

(Cassandra, Littman, Zhang 1997)

Prune V., V,., and V, as they are constructed
Another big win in runtime

We are now up to 16-state POMDPs
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Summary so far

Solve POMDPs by repeatedly applying backup 7'
Represent V' with set of hyperplanes V
) grows fast

Can prune V using witnesses




Plan for rest of talk

Better use of withesses: point backups
Better way to find witnesses: exploration

PBVI = point backups + exploration for withesses

PBVI examples
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Backups at a point

Computing withesses IS expensive

What If we knew a witness b already?

-ast to compute both V(b) and <4V (b)

ntuitive, then formal derivation
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Point backup—intuition

V (V') depends on P(z | b,a)b,, for all a, z

P(z | b,a)b,, are linear functions of b

V(P(z | b,a)b,,) is scaled/shifted copy of V
Adding these copies: hard over P(X), easy at b




Point backup—math

When V — V', we want max,cy b - v
That’'s max, max,cy b-v, since)V' =V, UV,, ...

But max,cy b-v IS

max b-v;+ max b-ve + ...

sinceanyv € V,ISv; + vy + ...

...and YV, Is quick to compute.

Fast approximate planningin POMDPs — p.24/3



Advantage of point-based backups

Suppose we have a set B of withesses and V of
hyperplanes

Pruning V takes time O(|B| [V||X]) (w/ small
constant)

Without knowing witnesses, solve |V| LFs, each
V| x| X]

Higher order, worse constants




Where do withesses come from?

Grids (note difference to discretizing belief
simplex)

Random (Poon 2001)

Interleave point-based with incremental pruning
(Zhang & Zhang 2000)

We are now up to 90-state POMDPs




Bound error of the point-based backup operator

Bound depends on how densely we sample
reachable beliefs

Probably exists an extension to “easily
reachable” beliefs

Error bound on one step + contraction of value
iteration = overall error bound

First result of this sort for POMDP VI
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Let A be the set of reachable beliefs
Let B be a set of withesses

Let ¢(B) be the worst-case density of B in A:

€(B) = maxmin |[b — b'[|,
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A single point-based backup’s error is
G(B)(Rmax _ Rmin)
1 —~
That means the error after value iteration is

e(B)(Rmax — Rmin)
(1—=7)°

plus a bit for stopping at finite horizon
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Policy error

We therefore have that policy error Is:

e(B)(Rmax — Rumin)
(1—=7)°

(1 — )3, ouch! But it does go to 0 as ¢(B) — 0
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Exploration

Theorem tells us we want to sample reachable
beliefs with high worst-case 1-norm density

We can do this by simulating forward from b,

Generate a set of candidate withesses

Accept those which are farthest (1-norm) from
current set
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Selecting new witnesses




Summary of algorithm

B < {bo}
V = {0} (or whatever—e.g., use QMDP)

Do some point-based backups on V using B
e we backup k times, where ~* is small

Add more beliefs to B
e We double the size of B each time

Repeat




Tag problem
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Catches opponent 60% of time

Don’t know of another value iteration algorithm
which could do this well

On smaller problems, gets policies as good as
other algorithms

But uses a small fraction of the compute time
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Contributions and Conclusion

Others have used point-based backups
e mostly in combination with other, more
expensive ops
Others have tried to select withesses quickly
e on small problems, random & grid are good
heuristics

Pushed to 10x larger problems with efficient
algorithm and intelligent search for withesses

Our theorem Is the strongest of Its type
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