Fast approximate planning in POMDPs

Geoff Gordon
ggordon@cs.cmu.edu

Joelle Pineau, Geoff Gordon, Sebastian Thrun. Point-based value iteration: an anytime algorithm for POMDPs

Overview

POMDPs are too slow

Overview

POMDPs are too slow

Overview

Review of POMDPs
Review of POMDP value iteration algorithms
Point-based value iteration
Theoretical results
Actual results

POMIDP overview

Planning in an uncertain world
Actions have random effects
Don't observe full world state

POMDP definition

State $x \in X$, actions $a \in A$, observations $z \in Z$ Rewards r_{a} (column vectors), discount $\gamma \in[0,1)$
Belief $b \in P(X)$ (row vectors)
Starting belief b_{0}

POMDP definition cont'd

Transitions $b \rightarrow b T_{a}$ (T_{a} stochastic)
Observation likelihoods w_{z} (row vectors)

$$
\sum_{z} w_{z}=1
$$

Observation update:

$$
b \leftarrow w_{z} \times b \cdot \eta
$$

where \times is pointwise multiplication

Value functions

Just like MDP value function (but bigger)
$V(b)=$ expected total discounted future reward starting from b

Knowing V means planning is 1-step lookahead If we discretize belief simplex, we are "done"

From b get to $b_{z_{1}}, b_{z_{2}}, \ldots$ according to $P(z \mid b, a)$

Value functions

Additional structure: convexity
Consider beliefs $b_{1}, b_{2}, b_{3}=\frac{b_{1}+b_{2}}{2}$
b_{3} : flip a coin, then start in b_{1} if heads, b_{2} if tails
b_{3} is always worse than average of b_{1}, b_{2}

Representation

Represent V as the upper surface of a (possibly infinite) set of hyperplanes
\mathcal{V} is set of hyperplanes
Hyperplanes represented by normals v (column vectors)
$V(b)=\max _{v \in \mathcal{V}} b \cdot v$

Value iteration

Bellman's equation:

$$
\begin{gathered}
V(b)=\max _{a} Q(b, a) \\
Q(b, a)=r_{a}+\gamma \sum_{z} P(z \mid b, a) V\left(b_{a z}\right)
\end{gathered}
$$

where $b_{a z}=\eta\left(b T_{a}\right) \times w_{z}$

Convergence

Backup operator T : $V \leftarrow T V$

T is a contraction on $P(X) \mapsto \mathbb{R}$
$\left\|b-b^{\prime}\right\|=\max _{x}\left|b(x)-b^{\prime}(x)\right|$

Sondik's algorithm (1972)

Rearrange Bellman equation to make it linear:

$$
\begin{aligned}
& \eta^{-1}=P(z \mid b, a), \text { and } V(\eta b)=\eta V(b), \text { so } \\
& \qquad \begin{aligned}
Q(b, a) & =r_{a}+\gamma \sum_{z} V\left(\left(b T_{a}\right) \times w_{z}\right) \\
& =r_{a}+\gamma \sum_{z} \max _{v \in \mathcal{V}}\left(\left(b T_{a}\right) \times w_{z}\right) \cdot v \\
& =r_{a}+\gamma \sum_{z} \max _{v \in \mathcal{V}} b \cdot T_{a}\left(w_{z} \times v\right)
\end{aligned}
\end{aligned}
$$

Evaluate from inside out

Suppose $V_{t}(b)=b \cdot v$
$v_{z}=w_{z} \times v$
$v_{a z}=\gamma T_{a} v_{z}$
$v_{a}=v_{a z_{1}}+v_{a z_{2}}+\ldots$
$\mathcal{V}^{\prime}=\left\{v_{a_{1}}, v_{a_{2}}, \ldots\right\}$
Now $V_{t+1}(b)=\max _{v \in \mathcal{V}^{\prime}} b \cdot v$

More than 1 hyperplane

Suppose $V_{t}(b)=\max _{v \in \mathcal{V}} b \cdot v$
$\mathcal{V}_{z}=w_{z} \times \mathcal{V}$
set ops are elementwise
$\mathcal{V}_{a z}=\gamma T_{a} \mathcal{V}_{z}$
$\mathcal{V}_{a}=r_{a}+\mathcal{V}_{a z_{1}} \oplus \mathcal{V}_{a z_{2}} \oplus \ldots$
expensive!
$\mathcal{V}^{\prime}=\mathcal{V}_{a_{1}} \cup \mathcal{V}_{a_{2}} \cup \ldots$
Now $V_{t+1}(b)=\max _{v \in \mathcal{V}^{\prime}} b \cdot v$
above representation due to [Cassandra et al]

A note on complexity

Or, some very large numbers

Set Comment Total size Time/element

$\mathcal{V}_{z} \quad$ same size as $\mathcal{V} \quad|Z||\mathcal{V}| \quad O(|X|)$
$\mathcal{V}_{a z}$ still same size $\quad|A||Z||\mathcal{V}| \quad O\left(|X|^{2}\right)$
\mathcal{V}_{a} big! $\quad|A||\mathcal{V}|^{|Z|} \quad O(|X|)$
For example, w/ 5 actions, 5 observations:

$$
1,5,15625,4.6566 \times 10^{21}, 1.0948 \times 10^{109}, \ldots
$$

Witnesses (Littman 1994)

Don't need all elements of \mathcal{V}
Just those which are $\arg \max b \cdot v$ for some b
If we have the b (a witness), fast to check that v is indeed \arg max

Linear feasibility problem (size about $|\mathcal{V}| \times|X|$)

$$
\begin{aligned}
b \cdot v & \geq b \cdot v_{i} \quad \forall i \\
b \cdot \mathbf{1} & =1 \\
b & \geq 0
\end{aligned}
$$

Solve one LF per element of \mathcal{V} —expensive, but well worth it

Can add margin $\epsilon>0$ for approximate solution

- don't have to have all witnesses

Incremental pruning

(Cassandra, Littman, Zhang 1997)
Prune $\mathcal{V}_{z}, \mathcal{V}_{a z}$, and \mathcal{V}_{a} as they are constructed Another big win in runtime We are now up to 16 -state POMDPs

Summary so far

Solve POMDPs by repeatedly applying backup T
Represent V with set of hyperplanes \mathcal{V}
\mathcal{V} grows fast
Can prune \mathcal{V} using witnesses

Plan for rest of talk

Better use of witnesses: point backups
Better way to find witnesses: exploration
PBVI = point backups + exploration for witnesses
PBVI examples

Backups at a point

Computing witnesses is expensive What if we knew a witness b already?
Fast to compute both $V(b)$ and $\frac{d}{d b} V(b)$
Intuitive, then formal derivation

Point backup-intuition

$V\left(b^{\prime}\right)$ depends on $P(z \mid b, a) b_{a z}$ for all a, z $P(z \mid b, a) b_{a z}$ are linear functions of b
$V\left(P(z \mid b, a) b_{a z}\right)$ is scaled/shifted copy of V
Adding these copies: hard over $P(X)$, easy at b

Point backup-math

When $\mathcal{V} \rightarrow \mathcal{V}^{\prime}$, we want $\max _{v \in \mathcal{V}^{\prime}} b \cdot v$
That's $\max _{a} \max _{v \in \mathcal{V}_{a}} b \cdot v$, since $\mathcal{V}^{\prime}=\mathcal{V}_{a_{1}} \cup \mathcal{V}_{a_{2}} \ldots$
But $\max _{v \in \mathcal{V}_{a}} b \cdot v$ is

$$
\max _{v_{1} \in \mathcal{V}_{a z_{1}}} b \cdot v_{1}+\max _{v_{2} \in \mathcal{V}_{a z_{2}}} b \cdot v_{2}+\ldots
$$

since any $v \in \mathcal{V}_{a}$ is $v_{1}+v_{2}+\ldots$
\ldots and $\mathcal{V}_{a z}$ is quick to compute.

Advantage of point-based backups

Suppose we have a set B of witnesses and \mathcal{V} of hyperplanes
Pruning \mathcal{V} takes time $O(|B||\mathcal{V}||X|)(\mathrm{w} /$ small constant)
Without knowing witnesses, solve $|\mathcal{V}|$ LFs, each $|\mathcal{V}| \times|X|$
Higher order, worse constants

Where do witnesses come from?

Grids (note difference to discretizing belief simplex)
Random (Poon 2001)
Interleave point-based with incremental pruning (Zhang \& Zhang 2000)
We are now up to 90-state POMDPs

New theorem

Bound error of the point-based backup operator
Bound depends on how densely we sample reachable beliefs

Probably exists an extension to "easily reachable" beliefs

Error bound on one step + contraction of value iteration = overall error bound

First result of this sort for POMDP VI

Definitions

Let Δ be the set of reachable beliefs
Let B be a set of witnesses
Let $\epsilon(B)$ be the worst-case density of B in Δ :

$$
\epsilon(B)=\max _{b^{\prime} \in \Delta} \min _{b \in B}\left\|b-b^{\prime}\right\|_{1}
$$

Theorem

A single point-based backup's error is

$$
\frac{\epsilon(B)\left(R_{\max }-R_{\min }\right)}{1-\gamma}
$$

That means the error after value iteration is

$$
\frac{\epsilon(B)\left(R_{\max }-R_{\min }\right)}{(1-\gamma)^{2}}
$$

plus a bit for stopping at finite horizon

Policy error

We therefore have that policy error is:

$$
\frac{\epsilon(B)\left(R_{\max }-R_{\min }\right)}{(1-\gamma)^{3}}
$$

$(1-\gamma)^{3}$, ouch! But it does go to 0 as $\epsilon(B) \rightarrow 0$

Exploration

Theorem tells us we want to sample reachable beliefs with high worst-case 1 -norm density
We can do this by simulating forward from b_{0}
Generate a set of candidate witnesses
Accept those which are farthest (1-norm) from current set

Selecting new witnesses

Summary of algorithm

$B \leftarrow\left\{b_{0}\right\}$
$\mathcal{V}=\{0\}$ (or whatever-e.g., use QMDP)
Do some point-based backups on \mathcal{V} using B

- we backup k times, where γ^{k} is small

Add more beliefs to B

- we double the size of B each time

Repeat

Tag problem

870 states, 2×29 observations, 5 actions
fixed opponent policy

Results

Results

Catches opponent 60\% of time
Don't know of another value iteration algorithm which could do this well

On smaller problems, gets policies as good as other algorithms

But uses a small fraction of the compute time

Contributions and Conclusion

Others have used point-based backups

- mostly in combination with other, more expensive ops

Others have tried to select witnesses quickly

- on small problems, random \& grid are good heuristics

Pushed to $10 \times$ larger problems with efficient algorithm and intelligent search for witnesses
Our theorem is the strongest of its type

