
Multi-Robot Negotiation: Approximating the
Set of Subgame Perfect Equilibria in

General-Sum Stochastic Games

Chris Murray
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Geoffrey J. Gordon
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Abstract

In real-world planning problems, we must reason not only about our own
goals, but about the goals of other agents with which we may interact.
Often these agents’ goals are neither completely aligned with our own nor
directly opposed to them. Instead there are opportunities for cooperation:
by joining forces, the agents can all achieve higher utility than they could
separately. But, in order to cooperate, the agents must negotiate a mutu-
ally acceptable plan from among the many possible ones, and each agent
must trust that the others will follow their parts of the deal. Research in
multi-agent planning has often avoided the problem of making sure that
all agents have an incentive to follow a proposed joint plan. On the other
hand, while game theoretic algorithms handle incentives correctly, they of-
ten don’t scale to large planning problems. In this paper we attempt to
bridge the gap between these two lines of research: we present an efficient
game-theoretic approximate planning algorithm, along with a negotiation
protocol which encourages agents to compute and agree on joint plans that
are fair and optimal in a sense defined below. We demonstrate our algo-
rithm and protocol on two simple robotic planning problems.1

1 INTRODUCTION

We model the multi-agent planning problem as a general-sum stochastic game with cheap
talk: the agents observe the state of the world, discuss their plans with each other, and then
simultaneously select their actions. The state and actions determine a one-step reward for
each player and a distribution over the world’s next state, and the process repeats.

While talking allows the agents to coordinate their actions, it cannot by itself solve the
problem of trust: the agents might lie or make false promises. So, we are interested in plan-
ning algorithms that find subgame-perfect Nash equilibria. In a subgame-perfect equilibrium,
every deviation from the plan is deterred by the threat of a suitable punishment, and every
threatened punishment is believable. To find these equilibria, planners must reason about
their own and other agents’ incentives to deviate: if other agents have incentives to deviate
then I can’t trust them, while if I have an incentive to deviate, they can’t trust me.

In a given game there may be many subgame-perfect equilibria with widely differing payoffs:
some will be better for some agents, and others will be better for other agents. It is generally
not feasible to compute all equilibria [1], and even if it were, there would be no obvious way

1We gratefully acknowledge help and comments from Ron Parr on this research. This work was
supported in part by DARPA contracts HR0011-06-0023 (the CS2P program) and 55-00069 (the
RADAR program). All opinions, conclusions, and errors are our own.

to select one to implement. It does not make sense for the agents to select an equilibrium
without consulting one another: there is no reason that agent A’s part of one joint plan
would be compatible with agent B’s part of another joint plan. Instead the agents must
negotiate, computing and proposing equilibria until they find one which is acceptable to all
parties.

This paper describes a planning algorithm and a negotiation protocol which work together
to ensure that the agents compute and select a subgame-perfect Nash equilibrium which is
both approximately Pareto-optimal (that is, its value to any single agent cannot be improved
very much without lowering the value to another another agent) and approximately fair
(that is, near the so-called Nash bargaining point). Neither the algorithm nor the protocol
is guaranteed to work in all games; however, they are guaranteed correct when they are
applicable, and applicability is easy to check. In addition, our experiments show that they
work well in some realistic situations. Together, these properties of fairness, enforceability,
and Pareto optimality form a strong solution concept for a stochastic game. The use of
this definition is one characteristic that distinguishes our work from previous research: ours
is the first efficient algorithm that we know of to use such a strong solution concept for
stochastic games.

Our planning algorithm performs dynamic programming on a set-based value function: for
P players, at a state s, V ∈ V(s) ⊂ RP is an estimate of the value the players can achieve.
We represent V(s) by sampling points on its convex hull. This representation is conservative,
i.e., guarantees that we find a subset of the true V∗(s). Based on the sampled points we
can efficiently compute one-step backups by checking which joint actions are enforceable in
an equilibrium.

Our negotiation protocol is based on a multi-player version of Rubinstein’s bargaining game.
Players together enumerate a set of equilibria, and then take turns proposing an equilibrium
from the set. Until the players agree, the protocol ends with a small probability ε after each
step and defaults to a low-payoff equilibrium; the fear of this outcome forces players to make
reasonable offers.

2 BACKGROUND

2.1 STOCHASTIC GAMES

A stochastic game represents a multi-agent planning problem in the same way that a Markov
Decision Process [2] represents a single-agent planning problem. As in an MDP, transitions
in a stochastic game depend on the current state and action. Unlike MDPs, the current
(joint) action is a vector of individual actions, one for each player. More formally, a general-
sum stochastic game G is a tuple (S, sstart, P,A, T, R, γ). S is a set of states, and sstart ∈ S
is the start state. P is the number of players. A = A1×A2× . . .×AP is the finite set of joint
actions. We deal with fully observable stochastic games with perfect monitoring, where all
players can observe previous joint actions. T : S × A $→ P (S) is the transition function,
where P (S) is the set of probability distributions over S. R : S × A $→ RP is the reward
function. We will write Rp(s, a) for the pth component of R(s, a). γ ∈ [0, 1) is the discount
factor. Player p wants to maximize her discounted total value for the observed sequence
of states and joint actions s1, a1, s2, a2, . . ., Vp =

∑∞
t=1 γt−1Rp(st, at). A stationary policy

for player p is a function πp : S $→ P (Ap). A stationary joint policy is a vector of policies
π = (π1, . . . ,πP), one for each player. A nonstationary policy for player p is a function
πp : (∪∞t=0 (S × A)t × S) $→ P (Ap) which takes a history of states and joint actions and
produces a distribution over player p’s actions; we can define a nonstationary joint policy
analogously. For any nonstationary joint policy, there is a stationary policy that achieves
the same value at every state [3].

The value function V π
p : S $→ R gives expected values for player p under joint policy π. The

value vector at state s, Vπ(s), is the vector with components V π
p (s). (For a nonstationary

policy π we will define V π
p (s) to be the value if s were the start state, and V π

p (h) to be the
value after observing history h.) A vector V is feasible at state s if there is a π for which
Vπ(s) = V, and we will say that π achieves V.

We will assume public randomization: the agents can sample from a desired joint action
distribution in such a way that everyone can verify the outcome. If public randomization
is not directly available, there are cryptographic protocols which can simulate it [4]. This
assumption means that the set of feasible value vectors is convex, since we can roll a die at
the first time step to choose from a set of feasible policies.

2.2 EQUILIBRIA

While optimal policies for MDPs can be determined exactly via various algorithms such as
linear programming [2], it isn’t clear what it means to find an optimal policy for a general
sum stochastic game. So, rather than trying to determine a unique optimal policy, we will
define a set of reasonable policies: the Pareto-dominant subgame-perfect Nash equilibria.

A (possibly nonstationary) joint policy π is a Nash equilibrium if, for each individual player,
no unilateral deviation from the policy would increase that player’s expected value for
playing the game. Nash equilibria can contain incredible threats, that is, threats which
the agents have no intention of following through on. To remove this possibility, we can
define the subgame-perfect Nash equilibria. A policy π is a subgame-perfect Nash equilibrium
if it is a Nash equilibrium in every possible subgame: that is, if there is no incentive for any
player to deviate after observing any history of joint actions.

Finally, consider two policies π and φ. If V π
p (sstart) ≥ V φ

p (sstart) for all players p, and if
V π

p (sstart) > V φ
p (sstart) for at least one p, then we will say that π Pareto dominates φ. A

policy which is not Pareto dominated by any other policy is Pareto optimal.

2.3 RELATED WORK

Littman and Stone [5] give an algorithm for finding Nash equilibria in two-player repeated
games. Hansen et al. [6] show how to eliminate very-weakly-dominated strategies in par-
tially observable stochastic games. Doraszelski and Judd [7] show how to compute Markov
perfect equilibria in continuous-time stochastic games. The above papers use solution con-
cepts much weaker than Pareto-dominant subgame-perfect equilibrium, and do not address
negotiation and coordination. Perhaps the closest work to the current paper is by Braf-
man and Tennenholtz [8]: they present learning algorithms which, in repeated self-play, find
Pareto-dominant (but not subgame-perfect) Nash equilibria in matrix and stochastic games.
By contrast, we consider a single play of our game, but allow “cheap talk” beforehand. And,
our protocol encourages arbitrary algorithms to agree on Pareto-dominant equilibria, while
their result depends strongly on the self-play assumption.

2.3.1 FOLK THEOREMS

In any game, each player can guarantee herself an expected discounted value regardless of
what actions the other players takes. We call this value the safety value. Suppose that there
is a stationary subgame-perfect equilibrium which achieves the safety value for both players;
call this the safety equilibrium policy.

Suppose that, in a repeated game, some stationary policy π is better for both players than
the safety equilibrium policy. Then we can build a subgame-perfect equilibrium with the
same payoff as π: start playing π, and if someone deviates, switch to the safety equilibrium
policy. So long as γ is sufficiently large, no rational player will want to deviate. This is the
folk theorem for repeated games: any feasible value vector which is strictly better than the
safety values corresponds to a subgame-perfect Nash equilibrium [9]. (The proof is slightly
more complicated if there is no safety equilibrium policy, but the theorem holds for any
repeated game.)

There is also a folk theorem for general stochastic games [3]. This theorem, while useful,
is not strong enough for our purposes: it only covers discount factors γ which are so close
to 1 that the players don’t care which state they wind up in after a possible deviation. In
most practical stochastic games, discount factors this high are unreasonably patient. When
γ is significantly less than 1, the set of equilibrium vectors can change in strange ways as
we change γ [10].

0 0.5 1 1.5 2 2.5 3

0

0.5

1

Value to player 1

Va
lu

e
to

 p
la

ye
r 2

Figure 1: Equilibria of a Rubinstein game with γ = 0.8. Shaded area shows feasible value
vectors (U1(x), U2(x)) for outcomes x. Right-hand circle corresponds to equilibrium when
player 1 moves first, left-hand circle when player 2 moves first. The Nash point is at !.

2.3.2 RUBINSTEIN’S GAME

Rubinstein [11] considered a game where two players divide a slice of pie. The first player
offers a division x, 1 − x to the second; the second player either accepts the division, or
refuses and offers her own division 1− y, y. The game repeats until some player accepts an
offer or until either player gives up. In the latter case neither player gets any pie. Rubinstein
showed that if player p’s utility for receiving a fraction x at time t is Up(x, t) = γtUp(x) for a
discount factor 0 ≤ γ < 1 and an appropriate time-independent utility function Up(x) ≥ 0,
then rational players will agree on a division near the so-called Nash bargaining point. This is
the point which maximizes the product of the utilities that the players gain by cooperating,
U1(x)U2(1 − x). As γ ↑ 1, the equilibrium will approach the Nash point. See Fig. 1 for
an illustration. For three or more players, a similar result holds where agents take turns
proposing multi-way divisions of the pie [12]. See the technical report [13] for more detail
on the multi-player version of Rubinstein’s game and the Nash bargaining point.

3 NEGOTIATION PROTOCOL

The Rubinstein game implicitly assumes that the result of a failure to cooperate is known to
all players: nobody gets any pie. The multi-player version of the game assumes in addition
that giving one player a share of the pie doesn’t force us to give a share to any other player.
Neither of these properties holds for general stochastic games. They are, however, easy to
check, and often hold or can be made to hold for planning domains of interest.

So, we will assume that the players have agreed beforehand on a subgame-perfect equilibrium
πdis, called the disagreement policy, that they will follow in the event of a negotiation failure.
In addition, for games with three or more players, we will assume that each player can
unilaterally reduce her own utility by any desired amount without affecting other players’
utilities.

Given these assumptions, our protocol proceeds in two phases (pseudocode is given in the
technical report [13]. In the first phase agents compute subgame-perfect equilibria and take
turns revealing them. On an agent’s turn she either reveals an equilibrium or passes; if all
agents pass consecutively, the protocol proceeds to the second phase. When an agent states
a policy π, the other agents verify that π is a subgame-perfect equilibrium and calculate its
payoff vector Vπ(sstart); players who state non-equilibrium policies miss their turn.

At the end of the first phase, suppose the players have revealed a set Π of policies. Define

Xp(π) = V π
p (sstart)− V dis

p (sstart)
U = convhull {X(π) | π ∈ Π}

U = {u ≥ 0 | (∃v ∈ U | u ≤ v)}

where Vdis is the value function of πdis, Xp(π) is the excess of policy π for player p, and U
is the set of feasible excess vectors.

In the second phase, players take turns proposing points u ∈ U along with policies or
mixtures of policies in Π that achieve them. After each proposal, all agents except the pro-

poser decide whether to accept or reject. If everyone accepts, the proposal is implemented:
everyone starts executing the agreed equilibrium.

Otherwise, the players who accepted are removed from future negotiation and have their
utilities fixed at the proposed levels. Fixing player p’s utility at up means that all future
proposals must give p exactly up. Invalid proposals cause the proposer to lose her turn. To
achieve this, the proposal may require p to voluntarily lower her own utility; this requirement
is enforced by the threat that all players will revert to πdis if p fails to act as required.

If at some point we hit the ε chance of having the current round of communication end,
all remaining players are assigned their disagreement values. The players execute the last
proposed policy π (or πdis if there has been no valid proposal), and any player p for whom
V π

p (sstart) is greater than her assigned utility up voluntarily lowers her utility to the correct
level. (Again, failure to do so results in all players reverting to πdis.)

Under the above protocol, player’s preferences are the same as in a Rubinstein game with
utility set U: because we have assumed that negotiation ends with probability ε after each
message, agreeing on u after t additional steps is exactly as good as agreeing on u(1−ε)t now.
So with ε sufficiently small, the Rubinstein or Krishna-Serrano results show that rational
players will agree on a vector u ∈ U which is close to the Nash point argmaxu∈UΠpup.

4 COMPUTING EQUILIBRIA

In order to use the protocol of Sec. 3 for bargaining in a stochastic game, the players must be
able to compute some subgame-perfect equilibria. Computing equilibria is a hard problem,
so we cannot expect real agents to find the entire set of equilibria. Fortunately, each player
will want to find the equilibria which are most advantageous to herself to influence the
negotiation process in her favor. But equilibria which offer other players reasonably high
reward have a higher chance of being accepted in negotiation. So, self interest will naturally
distribute the computational burden among all the players.

In this section we describe an efficient dynamic-programming algorithm for computing equi-
libria. The algorithm takes some low-payoff equilibria as input and (usually) outputs higher-
payoff equilibria. It is based on the intuition that we can use low-payoff equilibria as en-
forcement tools: by threatening to switch to an equilibrium that has low value to player p,
we can deter p from deviating from a cooperative policy.

In more detail, we will assume that we are given P different equilibria πpun
1 , . . . , πpun

P ; we
will use πpun

p to punish player p if she deviates. We can set πpun
p = πdis for all p if πdis is

the only equilibrium we know; or, we can use any other equilibrium policies that we happen
to have discovered. The algorithm will be most effective when the value of πpun

p to player p
is as low as possible in all states.

We will then search for cooperative policies that we can enforce with the given threats πpun
p .

We will first present an algorithm which pretends that we can efficiently take direct sums
and convex hulls of arbitrary sets. This algorithm is impractical, but finds all enforceable
value vectors. We will then turn it into an approximate algorithm which uses finite data
structures to represent the set-valued variables. As we allow more and more storage for each
set, the approximate algorithm will approach the exact one; and in any case the result will
be a set of equilibria which the agents can execute.

4.1 THE EXACT ALGORITHM

Our algorithm maintains a set of value vectors V(s) for each state s. It initializes V(s) to
a set which we know contains the value vectors for all equilibrium policies. It then refines
V by dynamic programming: it repeatedly attempts to improve the set of values at each
state by backing up all of the joint actions, excluding joint actions from which some agent
has an incentive to deviate.

In more detail, we will compute V dis
p (s) ≡ V πdis

p (s) for all s and p and use the vector Vdis(s)
in our initialization. (Recall that we have defined V π

p (s) for a nonstationary policy π as the
value of π if s were the start state.) We also need the values of the punishment policies for

Initialization
for s ∈ S

V(s) ← {V | V dis
p (s) ≤ Vp ≤ Rmax/(1− γ)}

end
Repeat until converged
for iteration ← 1, 2, . . .

for s ∈ S
Compute value vector set for each joint action,

then throw away unenforceable vectors
for a ∈ A

Q(s, a) ← {R(s, a)} + γ
∑

s′∈S T (s, a)(s′)V(s′)
Q(s, a) ← {Q ∈ Q(s, a) | Q ≥ Vdev(s, a)}

end
We can now randomize among joint actions
V(s) ← convhull

⋃
a Q(s, a)

end
end

Figure 2: Dynamic programming using exact operations on sets of value vectors

their corresponding players, V pun
p (s) ≡ V

πpun
p

p (s) for all p and s. Given these values, define

Qdev
p (s, a) = Rp(s, a) + γ

∑

s′∈S

T (s, a)(s′)V pun
p (s′) (1)

to be the value to player p of playing joint action a from state s and then following πpun
p

forever after.

From the above Qdev
p values we can compute player p’s value for deviating from an equilib-

rium which recommends action a in state s: it is Qdev
p (s, a′) for the best possible deviation

a′, since p will get the one-step payoff for a′ but be punished by the rest of the players
starting on the following time step. That is,

V dev
p (s, a) = max

a′
p∈Ap

Qdev
p (s, a1 × . . .× a′p × . . .× aP) (2)

V dev
p (s, a) is the value we must achieve for player p in state s if we are planning to recommend

action a and punish deviations with πpun
p : if we do not achieve this value, player p would

rather deviate and be punished.

Our algorithm is shown in Fig. 2. After k iterations, each vector in V(s) corresponds to a
k-step policy in which no agent ever has an incentive to deviate. In the k+1st iteration, the
first assignment to Q(s, a) computes the value of performing action a followed by any k-step
policy. The second assignment throws out the pairs (a,π) for which some agent would want
to deviate from a given that the agents plan to follow π in the future. And the convex hull
accounts for the fact that, on reaching state s, we can select an action a and future policy
π at random from the feasible pairs.2 Proofs of convergence and correctness of the exact
algorithm are in the technical report [13].

Of course, we cannot actually implement the algorithm of Fig. 2, since it requires variables
whose values are convex sets of vectors. But, we can approximate V(s) by choosing a finite
set of witness vectors W ⊂ RP and storing V(s,w) = arg maxv∈V(s)(v ·w) for each w ∈W.
V(s) is then approximated by the convex hull of {V(s,w) | w ∈W}. If W samples the P -
dimensional unit hypersphere densely enough, the maximum possible approximation error
will be small. (In practice, each agent will probably want to pick W differently, to focus
her computation on policies in the portion of the Pareto frontier where her own utility is
relatively high.) As |W| increases, the error introduced at each step will go to zero. The
approximate algorithm is given in more detail in the technical report [13].

2It is important for this randomization to occur after reaching state s to avoid introducing
incentives to deviate, and it is also important for the randomization to be public.

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

P1 1

P1 2

P2 1

P2 2

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

P1 1

P1 2

P2 1

P2 2

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

P1 1

P1 2

P2 1

P2 2

Figure 3: Execution traces for our motion planning example. Left and Center: with 2 witness
vectors , the agents randomize between two selfish paths. Right: with 4–32 witnesses, the
agents find a cooperative path. Steps where either player gets a goal are marked with ×.

shop
D

ABC

A

E D A B

EDC

40 50 60 70 8060

65

70

75

80

85

90

Value to Player 1

Va
lu

e
to

 P
la

ye
r 2

Figure 4: Supply chain management problem. In the left figure, Player 1 is about
to deliver part D to the shop, while player 2 is at the warehouse which sells B.
The right figure shows the tradeoff between accuracy and computation time. The solid
curve is the Pareto frontier for sstart, as computed using 8 witnesses per state. The dashed
and dotted lines were computed using 2 and 4 witnesses, respectively. Dots indicate com-
puted value vectors; × marks indicate the Nash points.

5 EXPERIMENTS

We tested our value iteration algorithm and negotiation procedure on two robotic planning
domains: a joint motion planning problem and a supply-chain management problem.

In our motion planning problem (Fig. 3), two players together control a two-wheeled robot,
with each player picking the rotational velocity for one wheel. Each player has a list of
goal landmarks which she wants to cycle through, but the two players can have different
lists of goals. We discretized states based on X, Y, θ and the current goals, and discretized
actions into stop, slow (0.45m

s), and fast (0.9m
s), for 9 joint actions and about 25,000 states.

We discretized time at ∆t = 1s, and set γ = 0.99. For both the disagreement policy and
all punishment policies, we used “always stop,” since by keeping her wheel stopped either
player can prevent the robot from moving. Planning took a few hours of wall clock time on
a desktop workstation for 32 witnesses per state.

Based on the planner’s output, we ran our negotiation protocol to select an equilibrium.
Fig. 3 shows the results: with limited computation the players pick two selfish paths and
randomize equally between them, while with more computation they find the cooperative
path. Our experiments also showed that limiting the computation available to one player
allows the unrestricted player to reveal only some of the equilibria she knows about, tilting
the outcome of the negotiation in her favor (see the technical report [13] for details).

For our second experiment we examined a more realistic supply-chain problem. Here each
player is a parts supplier competing for the business of an engine manufacturer. The man-
ufacturer doesn’t store items and will only pay for parts which can be used immediately.
Each player controls a truck which moves parts from warehouses to the assembly shop; she
pays for parts when she picks them up, and receives payment on delivery. Each player gets

parts from different locations at different prices and no one player can provide all of the
parts the manufacturer needs.

Each player’s truck can be at six locations along a line: four warehouse locations (each
of which provides a different type of part), one empty location, and the assembly shop.
Building an engine requires five parts, delivered in the order A, {B, C},D,E (parts B and
C can arrive in either order). After E, the manufacturer needs A again. Players can move
left or right along the line at a small cost, or wait for free. They can also buy parts at a
warehouse (dropping any previous cargo), or sell their cargo if they are at the shop and the
manufacturer wants it. Each player can only carry one part at a time and only one player
can make a delivery at a time. Finally, any player can retire and sell her truck; in this case
the game ends and all players get the value of their truck plus any cargo. The disagreement
policy is for all players to retire at all states. Fig. 4 shows the computed sets V(sstart) for
various numbers of witnesses. The more witnesses we use, the more accurately we represent
the frontier, and the closer our final policy is to the true Nash point.

All of the policies computed are “intelligent” and “cooperative”: a human observer would
not see obvious ways to improve them, and in fact would say that they look similar despite
their differing payoffs. Players coordinate their motions, so that one player will drive out to
buy part E while the other delivers part D. They sit idle only in order to delay the purchase
of a part which would otherwise be delivered too soon.

6 CONCLUSION

Real-world planning problems involve negotiation among multiple agents with varying goals.
To take all agents incentives into account, the agents should find and agree on Pareto-
dominant subgame-perfect Nash equilibria. For this purpose, we presented efficient planning
and negotiation algorithms for general-sum stochastic games, and tested them on two robotic
planning problems.

References

[1] V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. Technical Report
CMU-CS-02-135, School of Computer Science, Carnegie-Mellon University, 2002.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Massa-
chusetts, 1995.

[3] Prajit K. Dutta. A folk theorem for stochastic games. Journal of Economic Theory, 66:1–32,
1995.

[4] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game theoretic
problem. In Lecture Notes in Computer Science, volume 1880, page 112. Springer, Berlin,
2000.

[5] Michael L. Littman and Peter Stone. A polynomial-time Nash equilibrium algorithm for
repeated games. In ACM Conference on Electronic Commerce, pages 48–54. ACM, 2003.

[6] E. Hansen, D. Bernstein, and S. Zilberstein. Dynamic programming for partially observable
stochastic games. In Proceedings of the Nineteenth National Conference on Artificial Intelli-
gence, pages 709–715, 2004.

[7] Ulrich Doraszelski and Kenneth L. Judd. Avoiding the curse of dimensionality in dynamic
stochastic games. NBER Technical Working Paper No. 304, January 2005.

[8] R. Brafman and M. Tennenholtz. Efficient learning equilibrium. Artificial Intelligence, 2004.

[9] D Fudenberg and E. Maskin. The folk theorem in repeated games with discounting or with
incomplete information. Econometrica, 1986.

[10] David Levine. The castle on the hill. Review of Economic Dynamics, 3(2):330–337, 2000.

[11] Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):97–109,
1982.

[12] V. Krishna and R. Serrano. Multilateral bargaining. Review of Economic Studies, 1996.

[13] Chris Murray and Geoffrey J. Gordon. Multi-robot negotiation: approximating the set of
subgame perfect equilibria in general-sum stochastic games. Technical Report CMU-ML-06-
114, Carnegie Mellon University, 2006.

