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Abstract

MDPs are an attractive formalization for
planning, but realistic problems often have
intractably large state spaces. When we only
need a partial policy to get from a fixed start
state to a goal, restricting computation to
states relevant to this task can make much
larger problems tractable. We introduce
a new algorithm, Bounded RTDP, which
can produce partial policies with strong per-
formance guarantees while only touching a
fraction of the state space, even on prob-
lems where other algorithms would have
to visit the full state space. To do so,
Bounded RTDP maintains both upper and
lower bounds on the optimal value func-
tion. The performance of Bounded RTDP
is greatly aided by the introduction of a
new technique to efficiently find suitable up-
per bounds; this technique can also be used
to provide informed initialization to a wide
range of other planning algorithms.

1. Introduction

In this paper we consider the problem of finding a pol-
icy in a Markov decision process with a fixed start
state1

s, a fixed zero-cost absorbing goal state g, and
non-negative costs. Such problems are also commonly
known as stochastic shortest path problems (Bertsekas

1An arbitrary start-state distribution can be accomo-
dated by adding an imaginary start state with a single
action which produces the desired state distribution; the
algorithms considered in this paper become less effective,
however, as the start-state distribution becomes denser.
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& Tsitsiklis, 1996). Perhaps the simplest algorithm
for this problem is value iteration, which solves for an
optimal policy on the full state space. In many real-
istic problems, however, only a small fraction of the
the state space is relevant to the problem of reach-
ing g from s. This fact has inspired the development
of a number of algorithms that focus computation on
states that seem to be most relevant to finding an op-
timal policy from s. Such algorithms include Real-
Time Dynamic Programming (RTDP) (Barto et al.,
1995), Labeled RTDP (LRTDP) (Bonet & Geffner,
2003b), LAO? (Hansen & Zilberstein, 2001), Heuris-
tic Search/DP (HDP) (Bonet & Geffner, 2003a), En-
velope Propagation (EP) (Dean et al., 1995), and
Focused Dynamic Programming (FP) (Ferguson &
Stentz, 2004).

Many of these algorithms use heuristics (lower bounds
on the optimal value function) and/or sampled greedy
trajectories to focus computation. In this paper we
introduce Bounded RTDP, or BRTDP, which is based
on RTDP and uses both a lower bound and sampled
trajectories. Unlike RTDP, however, it also main-
tains an upper bound on the optimal value function,
which allows it to focus on states that are both rel-
evant (frequently reached under the current policy)
and poorly understood (large gap between upper and
lower bound). Further, acting greedily with respect to
an appropriate upper bound allows BRTDP to make
anytime performance guarantees.

Finding an appropriate upper bound to initialize
BRTDP can greatly impact its performance. One of
the contributions of this paper is an efficient algorithm
for finding such an upper bound. Nevertheless, our ex-
periments show that BRTDP performs well even when
initialized naively.

We evaluate BRTDP on two criteria: off-line conver-
gence, the time required to find an approximately op-
timal partial policy before any actions are taken in



Bounded Real-Time Dynamic Programming

the real world; and anytime performance, the abil-
ity to produce a reasonable partial policy at any time
after computation is started. Our experiments show
that when run off-line, BRTDP often converges much
more quickly than LRTDP and HDP, both of which
are known to have good off-line convergence proper-
ties. And, when used as an anytime algorithm, a
suitably-initialized BRTDP consistently outperforms
a similarly initialized RTDP; RTDP is known to have
good anytime properties. Furthermore, given reason-
able initialization assumptions, BRTDP will always re-
turn a policy with a provable performance bound; we
know of no other MDP algorithms with this property.

In fact, the gap in offline performance between BRTDP
and competing algorithms can be arbitrarily large be-
cause of differences in how they check convergence.
HDP, LRTDP, and LAO? (and most other algorithms
of which we are aware2) have convergence guarantees
based on achieving small Bellman residual on all states
reachable under the current policy, while BRTDP only
requires a small residual on states reachable with sig-
nificant probability. Let fπ(y) be the expected number
of visits to state y given that the agent starts at s and
executes policy π. We say an MDP has dense noise
if all policies have many nonzero entries in fπ. For
example, planning problems with action errors have
fπ > 0 for all reachable states. (Action errors mean
that, with some small probability, we take a random
action rather than the desired one.) Dense noise is
fairly common, particularly in domains from robotics.
For example, Gaussian errors in movement will make
every state have positive probability of being visited.
Gaussian motion-error models are widespread, e.g. (Ng
et al., 2004). Unpredictable motion of another agent
can also cause large numbers of states to have positive
visitation probability; an example of this sort of model
is described in (Roy et al., 2004).

For HDP or LRTDP to converge for problems with
dense noise, they must do work that is at least linear
in the number of nonzero entries in fπ, even if most
of those entries are almost zero. With an appropriate
initialization, BRTDP’s bounds allow it to make per-
formance guarantees on MDPs with dense noise with-
out touching all reachable states, potentially making
it arbitrarily faster than HDP, LRTDP, and LAO?.

2After the submission of our paper, it was pointed out
that our exploration strategy is similar to that of the HSVI
algorithm (Smith & Simmons, 2004); since HSVI is de-
signed for POMDPs rather than MDPs, the forms of the
bounds that it maintains are different from ours, and its
backup operations are much more expensive.

2. Basic Results

We represent a stochastic shortest path problem with
a fixed start state as a tuple M = (S,A, P, c, s, g),
where S is a finite set of states, s ∈ S is the start
state, g ∈ S is the goal state, A is a finite action set,
c : S × A → R+ is a cost function, and P gives the
dynamics; we write P a

xy for the probability of reaching
state y when executing action a from state x. Since g

is a zero-cost absorbing state we have c(g, g) = 0 and
P a

g,g = 1 for all actions a. If v ∈ R
|S| is an arbitrary

assignment of values to states, we define state-action
values with respect to v by

Qv(x, a) = c(x, a) +
∑

y∈S

P a
xyv(y).

A stationary policy is a function π : S → A. A policy
is proper if an agent following it from any state will
eventually reach the goal with probability 1. We make
the standard assumption that at least one proper pol-
icy exists for M, and that all improper policies have
infinite expected total cost at some state (Bertsekas &
Tsitsiklis, 1996). For a proper policy π, we define the
value function of π as the solution to the set of linear
equations vπ(x) = c(x, π(x)) +

∑

y∈S P
π(x)
xy vπ(y). It is

well-known that there exists an optimal value function
v?, and it satisfies the Bellman equations:

v?(x) = min
a∈A

Qv?(x, a), v?(g) = 0.

For an arbitrary v, we define the (signed) Bellman er-
ror of v at x by bev(x) = v(x)−mina∈A Qv(x, a). The
greedy policy with respect to v, greedy(v), is defined
by greedy(v)(x) = argmina∈A Qv(x, a).

We are particularly interested in monotone value func-
tions: we refer to v as monotone optimistic (a mono-
tone lower bound) if ∀x, bev(x) ≤ 0. We call it
monotone pessimistic (a monotone upper bound) if
∀x, bev(x) ≥ 0. We use the following two theorems,
which can be proved using techniques from, e.g., (Bert-
sekas & Tsitsiklis, 1996, Sec. 2.2).

Theorem 1 If v is monotone pessimistic, then v is
an upper bound on v?. Similarly, if v is monotone
optimistic, then v is a lower bound on v?.

Theorem 2 Suppose vu is a monotone upper bound
on v?. If π is the greedy policy with respect to vu, then
for all x, vπ(x) ≤ vu(x).

No analog to Theorem 2 exists for a greedy policy
based on a lower bound v`, monotone or otherwise:
such a policy may be arbitrarily bad. As an exam-
ple, consider the values vd found by solving Md, the
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Figure 1. An MDP where the greedy policy with respect
to vd, the values from the deterministic relaxation, is im-
proper. Costs are c(x, a) = 1 and c(x, b) = 10.

deterministic relaxation of M. (In Md, the agent
gets to choose any outcome of any action from each
state, rather than choosing an action and then facing a
stochastic outcome. Md is important because RTDP,
LRTDP, HDP, and LAO? are often initialized to vd.)
It is easy to show that vd is a monotone lower bound on
v?. Further,Md is deterministic, so we can solve it by
A∗ or Dijkstra’s algorithm. However, greedy(vd) need
not even be proper. Consider the MDP in Figure 1:
vd(x) = 10, so Qvd

(x, a) = 11 and Qvd
(x, b) = 19,

and the greedy policy for vd always selects action a.
Since RTDP, LRTDP, HDP, and LAO? select actions
greedily, this example shows that these algorithms may
initially produce arbitrarily bad policies.3

3. Efficient Monotone Bounds

Our planning algorithm, BRTDP, is described below
in Section 4. It can be initialized with any upper
and lower bounds vu and v` on v?, and provides per-
formance guarantees if vu and v` are monotone. So,
we need to compute monotone bounds vu and v` effi-
ciently. This section describes how to do so assuming
we can afford to visit every state a small number of
times; Section 5 describes looser bounds which don’t
require visiting all of S. As noted above, we can ini-
tialize v` to the value of the deterministic relaxation
Md; so, the remainder of this section deals with vu.

For any proper policy π, the value function vπ is a
monotone upper bound. A proper policy can be found
reasonably quickly, for example by computing πp from
the deterministic relaxation. Unfortunately, directly
solving the linear system to evaluate π requires about
O(|S|3) time (worst-case). This is the fastest tech-
nique we are aware of in the literature. We introduce
a new algorithm, called Dijkstra Sweep for Monotone
Pessimistic Initialization (DS-MPI), which can com-
pute a monotone upper bound in O(|S| log |S|) time.

Suppose we are given a policy π along with pg, w ∈

3We can, however, always extract a proper policy πp

from vd. In order for x to get a value vd(x) there must exist
a ∈ A and y ∈ S satisfying P a

xy > 0, vd(x) = c(x, a)+vd(y).
We can set πp(x) equal to any such action a; it is natural
to pick the a which makes P a

xy as large as possible.

R
|S|
+ that satisfy the following property: if we execute

π from x until some fixed but arbitrary condition4 is
met, then w(x) is an upper bound on the expected cost
of the execution from x until execution is stopped, and
pg(x) is a lower bound on the probability the current
state is the goal when execution is stopped. If pg(x) >
0 and w(x) is finite for all x (and if the other conditions
of the theorem below are satisfied), then we can use
pg and w to construct a monotone upper bound. We
first prove that we can do so, then show an algorithm
for constructing such a pg and w.

Theorem 3 Suppose pg and w satisfy the conditions
given above for some policy π. Further, suppose for all
x, there exists an action a such that either (I) pg(x) <
∑

y∈S P a
xypg(y) or (II) w(x) ≥ c(x, a)+

∑

y∈S P a
xyw(y)

and pg(x) =
∑

y∈S P a
xypg(y). Define λ(x, a) by

λ(x, a) =
c(x, a) +

∑

y∈S P a
xyw(y)− w(x)

∑

y∈S P a
xypg(y)− pg(x)

when case (I) applies, let λ(x, a) = 0 when case (II)
applies, and let λ(x, a) = ∞ otherwise. Then, if we
choose λ ≥ maxx∈S mina∈A λ(x, a), the value function
vu(x) = w(x)+(1−pg(x))λ is a finite monotone upper
bound on v?.

Proof: It is sufficient to show that all Bellman errors
for vu are positive, that is for all x,

vu(x)−min
a∈A



c(x, a) +
∑

y∈S

P a
xyvu(y)



 ≥ 0.

Plugging in the definition of vu from above gives

w(x) + (1− pg(x))λ ≥

min
a∈A



c(x, a) +
∑

y∈S

P a
xy(w(y) + (1− pg(y))λ)



 . (1)

We need to show that this holds for all x given λ as
defined by the Theorem. Consider an a for which one
of the conditions (I) or (II) on w and pg holds. (This
need not be the minimizing action in (1).) In case
(I) we can solve (1) for λ and arrive at the constraint
λ ≥ λ(x, a). In case (II), any λ will satisfy (1), so
we pick the constraint λ ≥ 0 = λ(x, a). Since we
only need (1) to hold for a single action in state x,

4For example, we might execute π for t steps, or exe-
cute π until we reach a state in some subset of S. For-
mally, π can be an arbitrary (history-dependent) policy,
and the stopping condition can be an arbitrary function
from histories to {stop,don’t stop} which ensures that
all trajectories eventually stop.
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Initialization:

∀(x, a), p̂g(x, a)← 0; ∀a, p̂g(g, a)← 1
ŵ(x, a)← c(x, a)
pg, w initialized arbitrarily
∀x, π(x)← undefined; π(g)← (arbitrary action)
∀x, pri(x) =∞, fin(x) = false

Sweep:

queue.enqueue(goal, 0)
while not queue.empty() do

x← queue.pop()
fin(x) = true
w(x)← ŵ(x, π(x))
pg(x)← pg(x, π(x))
for all (y, a) s.t.(P a

yx > 0) and (not fin(y)) do

ŵ(y, a)← ŵ(y, a) + P a
yxw(x)

p̂g(y, a)← p̂g(y, a) + P a
yxpg(x)

pri← 〈1− p̂g(y, a), ŵ(y, a)〉
if pri < pri(y) then

pri(y)← pri
π(y)← a
queue.decreaseKey(y,pri(y))

Algorithm 1: DS-MPI

choosing the action with the loosest constraint yields
λ ≥ mina∈A λ(x, a); intersecting these constraints for
all states gives the λ defined by the Theorem. Since we
assumed that every state has an action that satisfies
either (I) or (II), this λ is finite and so vu is finite. �

Now we will show how to construct the necessary w,
pg, and corresponding π. The idea is simple: suppose
state x1 has an action a such that P a

x1g
> 0. Then we

can set w(x1) = c(x1, a) and pg(x1) = P a
x1g

. Now, pick
some x2 and a2 such that P a2

x2g
+ P a2

x2x1
> 0. We can

set pg(x2) equal to P a2

x2g
+ P a2

x2x1
pg(x1) and w(x2) =

c(x2, a2) + P a2

x2g
0 + P a2

x2x1
w(x1). We can now select

x3 to be any state with an action that has positive
probability of reaching g, x1, or x2, and we will be able
to assign it a positive pg. The policy π corresponding
to pg and w is given by π(xi) = ai, and the stopping
condition ends a trajectory whenever a transition from
xi to xj occurs with j ≥ i. The pg and w values we
compute are exact values, not bounds, for this policy
and stopping condition.

To complete the algorithm, it remains to give a method
for determining what state to select next when there
are multiple possible states. We propose the greedy
maximization of pg(xk): having fixed x1, . . . , xk−1, se-
lect (xk, ak) to maximize

∑

i<k P ak

xkxi
pg(xi). If there

are multiple states that achieve the same pg(xk), we
choose the one that minimizes

∑

i<k P ak

xkxi
w(xi). Al-

gorithm 1 gives the pseudocode for calculating pg and

w; the queue is a min priority queue (with priorities in
R

2 which are compared according to lexical order), and
p̂g and ŵ are analogous to the Q values for v. After ap-
plying the sweep procedure, one can apply Theorem 3
to construct vu.

In fact, condition (I) or (II) will always hold for action
ak, and so it is sufficient to set λ = maxxi∈S λ(xi, ai).
To see this, consider the (xk, ak) selected by DS-
MPI after x1, . . . , xk−1 have already been popped
(i.e., fin(xi) = true, i < k). Then pg(xk) =
∑

i<k P ak

xkxi
pg(xi). At convergence all states x have

pg(x) > 0, and so the only way pg(xk) can equal
∑

y∈S P ak

xkypg(y) is if all outcomes of (xk, ak) were al-
ready finished when pg(xk) was determined. This im-
plies that

∑

i<k P ak

xkxi
w(xi) =

∑

y∈S P ak

xkyw(y), and so
w(y) = c(x, a) +

∑

y∈S P xk

xkyw(y) and condition (II)
holds. Otherwise, condition (I) must hold for (xk, ak).
Additional backups of w and pg will preserve these
properties, so if extra computation time is available,
additional sweeps will tighten our upper bound.

If the dynamics are deterministic, we can always pick
(xk, ak) so pg(xk) = 1, and so our scheduling corre-
sponds to Dijkstra’s algorithm. This sweep is similar
to the policy improvement sweeps in the Prioritized
Policy Iteration (PPI) algorithm described in (McMa-
han & Gordon, 2005). The primary differences are
that the PPI version assumes it is already initialized
to some upper bound and performs full Q updates,
while this version performs incremental updates.

The running time of DS-MPI is O(|S| log |S|) (assum-
ing a constant branching factor for outcomes) if a
standard binary heap is used to implement the queue.
However, an unscheduled version of the algorithm will
still produce a finite (though possibly much looser) up-
per bound, so this technique can be run in O(|S|) time.
If no additional information is available, then this per-
formance is the best possible for arbitrary MDPs: in
general it is impossible to produce an upper bound on
v? without doing O(|S|) work, since we must consider
the cost at each reachable state.

4. Bounded RTDP

The pseudocode for Bounded RTDP is given in Algo-
rithm 2. BRTDP has four primary differences from
RTDP: first, it maintains upper and lower bounds
vu and v` on v?, rather than just a lower bound.
When a policy is requested (before or after conver-
gence), we return greedy(vu); v` helps guide explo-
ration in simulation. Second, when trajectories are
sampled in simulation, the outcome distribution is bi-
ased to prefer transitions to states with a large gap
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Main loop:

while (vu(s)− v`(s)) > α do

runSampleTrial()

runSampleTrial:

x← s

traj← (empty stack)
while true do

traj.push(x)
vu(x)← mina Qvu

(x, a)
a← argmina Qv`

(x, a)
v`(x)← Qv`

(x, a)
∀y, b(y)← P a

xy(vu(y)− v`(y))
B ←

∑

y b(y)
if (B < (vu(s)− v`(s))/τ) then break
x← sample from distribution b(y)/B

while not traj.empty() do

x← traj.pop()
vu(x)← mina Qvu

(x, a)
v`(x)← mina Qv`

(x, a)

Algorithm 2: Bounded RTDP

(vu(x) − v`(x)). Third, BRTDP maintains a list of
the states on the current trajectory, and when the tra-
jectory terminates, it does backups in reverse order
along the stored trajectory. Fourth, simulated trajec-
tories terminate when they reach a state that has a
“well-known” value, rather than when they reach the
goal. We assume that BRTDP is initialized so that vu

is an upper bound and v` is a lower bound.

Like RTDP, BRTDP performs backups along sampled
trajectories that begin from s, picking greedy actions
with respect to v`. Unlike RTDP, it biases action out-
comes towards less-well-understood states: it picks an
outcome y in proportion to P a

xy(vu(y)− v`(y)).

The value of the goal state is known to be zero, and
so we assume vu(g) = v`(g) = 0 initially (and hence
always). This implies that b(g) = 0, and so our trajec-
tories will never actually reach the goal (or any other
state whose value is completely known). So, we end
trajectories when we reach a state whose successors,
on average, have well-known values; more precisely,
we look at the expected gap between vu and v` for
states reached under the greedy action. The normal-
izing constant B has exactly this interpretation, so
we terminate the trajectory when B is small. We
experimented with various definitions of “small,” and
found that they have relatively minor impacts on per-
formance. The adaptive criterion given in Algorithm 2
was as good as anything; τ > 1 is a constant (we used
τ between 10 and 100 in our experiments).

The convergence proof for BRTDP is very different
from that for RTDP. Proving convergence of RTDP
relies on the assumption that all states reachable un-
der the greedy policy are backed up infinitely often in
the limit (Bertsekas & Tsitsiklis, 1996). In the face of
dense noise, this implies that convergence will require
visiting the full state space. We take convergence to
mean vu(s)−v`(s) ≤ α for some error tolerance α, and
BRTDP can achieve this (given a good initialization)
without visiting the whole state space even in the face
of dense noise. Space constraints preclude a detailed
proof, but the result is based on establishing three
claims: (1) vu and v` remain upper and lower bounds
on v?, (2) trajectories have finite expected lengths, and
(3) every trajectory has a positive probability of in-
creasing v` or decreasing vu.

5. Initialization Assumptions and

Performance Guarantees

We assume that at the beginning of planning, the al-
gorithm is givenM, including s. As mentioned in Sec-
tion 3, if this is the only information available, then on
arbitrary problems it may be necessary to consider the
whole state space to prove any performance guarantee.

LRTDP, HDP, and LAO? can converge on some prob-
lems without visiting the whole state space. This is
possible if there exists an E ⊂ S such that some ap-
proximately optimal policy π has fπ(y) > 0 only for
y ∈ E, and further, a tight lower bound on s can be
proved by only considering states inside E and possibly
a lower bound provided at initialization. While some
realistic problems have this property, many do not, in-
cluding those with dense noise. The question, then, is
what is the minimal amount of additional information
that might allow convergence guarantees while only
visiting a small fraction of S on arbitrary problems.
We propose that the appropriate assumption is that
an achievable upper bound (v0

u, π0) is known; here π0

is a policy, and v0
u is some upper bound (it need not

be monotone) on vπ0 (and hence v?). Such a pair is
almost always available trivially, for example, by let-
ting v0

u(x) ← Z where Z is some worst-case cost of
system failure, and letting π0(x) be the sit-and-wait-
for-help action, or something similar. Even such trivial
information may be enough to allow convergence while
visiting a small fraction of the state space.

It is easiest to see how to use (v0
u, π0) via a trans-

formation. Consider M ′ = (S,A ∪ {φ}, P̃ , c̃, s, g),
where φ is a new action that corresponds to switch-
ing to π0 and following it indefinitely. This action has
P̃φ

xg
= 1.0 and costs c̃(x, φ) = v0

u(x); for all other ac-

tions, P̃ = P and c̃ = c. We know v0
u ≥ vπ0 ≥ v?,
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and so adding the action φ does not change the op-
timal values, so solving M′ is equivalent to solving
M. Suppose we run BRTDP on M′, but extract the
current upper bound vt

u before convergence; then, vt
u

need not be monotone for M, though it will be for
M′. We show how to construct a policy for M using
only vt

u that achieves the values vt
u. At a state where

vt
u(x) ≥ mina∈A Qvt

u
(x, a), we play the greedy ac-

tion, and the performance guarantee follows from the
standard monotonicity argument. Suppose, however,
we reach a state x where vt

u(x) < mina∈A Qvt
u
(x, a).

Then, it is not immediately clear how to achieve this
value. However, we show that in this case vt

u(x) =
v0

u(x), and so we can switch to π0 to achieve the
value. Suppose vt−1

u was the value function just before
BRTDP backed up x most recently. Then, BRTDP
assigned vt

u(x) ← mina∈A∪φ Qv
t−1

u
(x, a). Since v0

u is
monotone (for M′, on which BRTDP is running),
Qv

t−1

u
(x, a) ≥ Qvt

u
(x, a), and so the only way we could

have vt
u(x) < mina∈A Qvt

u
(x, a) is if the auxiliary ac-

tion φ achieved the minimum, implying vt
u(x) = v0

u(x).

Thus, we conclude that via this transformation it is
reasonable to assume BRTDP is initialized with mono-
tone upper bound, implying that at any point in time
BRTDP can return a stationary policy with provable
performance guarantees. This policy will be greedy in
M′, but may be non-stationary on M as it may fall
back on π0. This potential non-stationary behavior is
critical to providing a robust suboptimal policy.

6. Experimental Results

We test BRTDP on two discrete domains. The first
is the 4-dimensional racetrack domain described in
(Barto et al., 1995; Bonet & Geffner, 2003b; Bonet
& Geffner, 2003a; Hansen & Zilberstein, 2001). Prob-
lems (A) and (B) are from this domain, and use the
large-b racetrack map (Bonet & Geffner, 2003a).
Problem (A) fixes a 0.2 probability of getting the zero
acceleration rather than the chosen control, similar to
test problems from the above references. Problem (B)
uses the same map, but uses a dense noise model where
with a 0.01 probability a random acceleration occurs.
Problems (C) and (D) are from a 2D gridworld do-
main, where actions correspond to selecting target cells
within a Euclidean distance of two (giving 13 actions).
Both instances use the same map. In (C), the agent
accidentally targets a state up to a distance 2 from the
desired target state, with probability 0.2. In (D), how-
ever, a random target state (within distance 2 of the
current state) is selected with probability 0.01. Note
that problems (A) and (C) have fairly sparse noise,
while (B) and (D) have dense noise.

S vπd
(s) vu(s) vπ′(s) v?(s) vd(s)

A 21559 29 63 32 23 19
B 21559 1.3e10 26.9 20.1 19.9 19.0
C 6834 15283 1642 485 176 52
D 6834 7662 182.1 117.1 116.7 63.0

Figure 2. Test problem sizes and start-state values.

Figure 2 summarizes the sizes of the test problems,
as well as the quality of various initializations. The
vπd

(s) column gives the value of the start state under
policy πd, the greedy policy for the value function vd of
the problem’s deterministic relaxation (see Section 2).
The vu(s) column gives the value computed via DS-
MPI. We also give the value of s under π′ = greedy(vu)
and under the optimal policy, as well as vd(s). Fig-
ure 2 shows that DS-MPI can produce high-quality
upper bounds that have high-quality greedy policies,
despite running in only O(|S| log |S|) time rather than
the O(|S|3) needed to compute vπd

.

6.1. Anytime Performance

We compare the anytime performance of BRTDP to
RTDP on the test domains listed in Figure 2, con-
sidering both informed initialization and uninformed
initialization for both algorithms. Informed initializa-
tion means RTDP has its value function initially set to
vd, and BRTDP has v` set to vd and vu set by running
DS-MPI. For uninformed initialization, RTDP has its
value function set uniformly to zero, and BRTDP has
v` set to zero and vu set to 106.

Figure 3 gives anytime performance curves for the al-
gorithms on each of the test problems. We interrupt
each algorithm at fixed intervals to consider the quality
of the policy available at that time. Rather than sim-
ply evaluating the current greedy policy, we assume
the executive agent has some limited computational
power and can itself run RTDP on a given initial value
function received from the planner. (This assumption
results in a fairer comparison for RTDP, since that
algorithm’s greedy policy may be improper.) To eval-
uate a value function v, we place an agent at the start
state, initialize its value function to v, run RTDP until
we reach the goal, and record the cost of the resulting
trajectory. The curves in Figure 3 are the result of
100 separate runs of each algorithm, with each value
function evaluated using 200 repetitions of the above
testing procedure.

BRTDP performs 4 backups for each state on the tra-
jectories it simulates: one each on vu and v` on the way
down, and one each on the way back. RTDP performs
only one backup per sampled state. Because of local-
ity, BRTDP has better cache performance and lower
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Figure 3. Anytime performance of informed and uninformed RTDP and BRTDP: the first row is for the informed initial-
ization, and the second for uninformed. The X-axis gives number of backups (×105), and the Y axis indicates the current
value of the policy; Y -axis labels are (negative) rewards, so higher numbers are better. Note the differences in scales.

overhead per backup, and on the test problems we ob-
served 1.5 to 3 times more backups per unit of runtime
than RTDP. Thus, if Figure 3 were re-plotted with
time as the X-axis, the performance of BRTDP would
appear even stronger. So, our evaluation has handi-
capped BRTDP in two ways: we compare it to RTDP
in terms of number of updates rather than CPU time,
and we evaluate RTDP-trajectories rather than sta-
tionary policies, even though stationary policies taken
from BRTDP have provable guarantees.

Several conclusions can be drawn from the results in
Figure 3. First, appropriate initialization provides sig-
nificant help to both RTDP and BRTDP. Second,
under both types of initialization, BRTDP often pro-
vides much higher-reward policies than RTDP for a
given number of backups (especially with a small num-
ber of backups or with informative initialization), and
we never observed its policies to be much worse than
RTDP. In particular, on problems (C) and (D) BRTDP
is nearly optimal from the very beginning. This, com-
bined with the fact that BRTDP provides performance
bounds even for stationary policies, make BRTDP an
attractive option for anytime applications.

6.2. Off-line Convergence

We compare off-line convergence times for BRTDP to
those of LRTDP and HDP.5 Again, we consider both
informed and uninformed initialization. Informed

5Improved LAO? is very similar to HDP without la-
beling solved states, and (Bonet & Geffner, 2003a) shows
HDP has generally better performance, so LAO? was not
considered in our experiments.

LRTDP and HDP have their value functions initial-
ized to vd, while uninformed initialization sets them
to zero. Time spent computing informed initialization
values is not charged to the algorithms. This time will
be somewhat longer for BRTDP, as it also uses an up-
per bound heuristic; however, in our experiments this
time is dominated by the algorithm runtime.

We evaluate the algorithms by measuring the time it
takes to find an α-optimal partial policy. For BRTDP,
since we maintain upper and lower bounds, we can
simply terminate when (vu(s) − v`(s)) ≤ α; we used
α = 0.1 in our experiments. As discussed in Sec-
tion 3 we initialized vu to a monotone upper bound,
so the greedy policy with respect to the final vu will
be within α of optimal. The other tested algorithms
measure convergence by stopping when the max-norm
Bellman error drops below some tolerance ε. With-
out further information there is no way to translate ε
into a bound on policy quality: we can incur an extra
cost of ε at each step of our trajectory, but since our
trajectory could have arbitrarily many steps we could
be arbitrarily suboptimal by the end. To provide an
approximately equivalent stopping criterion, we used
the following heuristic: pick an optimal policy π∗ and
let `?(x) be the expected number of steps to reach g

from x by following π∗. Then take ε = α/`?(s). This
heuristic yielded ε = 0.004, 0.005, 0.001, and 0.002 for
problems (A) through (D).

As expected, on (B) and (D), the problems with
dense noise, BRTDP significantly outperformed the
other algorithms. On (D), uninformed BRTDP is
3.2 times faster than uninformed HDP, and informed
BRTDP is 6.4 times faster than informed HDP. Un-
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Figure 4. CPU time required for convergence with informed (left) and uninformed (right) initialization of the algorithms.

informed BRTDP outperforms informed HDP on (D)
by a factor of 1.8. More importantly, on (B) and
(D) HDP and LRTDP visit all of S before conver-
gence, while BRTDP does not: for example, on (B),
informed BRTDP visits 28% of S and only brings
|vu(x)− v`(x)| ≤ α for 10% of S. We could make the
performance gap arbitrarily large by adding additional
states to the MDPs.

7. Conclusions

We have shown BRTDP paired with DS-MPI is a pow-
erful combination for both offline and anytime appli-
cations. BRTDP can converge quickly when other al-
gorithms cannot, and it can return policies with strong
performance guarantees at any time. In future work
we hope to generalize DS-MPI and apply it to other
algorithms, as well as continue to develop BRTDP.
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