
Planning for Markov Decision Processes with
Sparse Stochasticity

Maxim Likhachev Geoff Gordon Sebastian Thrun
School of Computer Science School of Computer Science Dept. of Computer Science
Carnegie Mellon University Carnegie Mellon University Stanford University

Pittsburgh, PA 15213 Pittsburgh, PA 15213 Stanford CA 94305
maxim+@cs.cmu.edu ggordon@cs.cmu.edu thrun@stanford.edu

Abstract

Planning algorithms designed for deterministic worlds, such as A*
search, usually run much faster than algorithms designed for worlds with
uncertain action outcomes, such as value iteration. Real-world planning
problems often exhibit uncertainty, which forces us to use the slower
algorithms to solve them. Many real-world planning problems exhibit
sparseuncertainty: there are long sequences of deterministic actions
which accomplish tasks like moving sensor platforms into place, inter-
spersed with a small number of sensing actions which have uncertain out-
comes. In this paper we describe a new planning algorithm, called MCP
(short for MDP Compression Planning), which combines A* search with
value iteration for solving Stochastic Shortest Path problem in MDPs
with sparse stochasticity. We present experiments which show that MCP
can run substantially faster than competing planners in domains with
sparse uncertainty; these experiments are based on a simulation of a
ground robot cooperating with a helicopter to fill in a partial map and
move to a goal location.

In deterministic planning problems, optimal paths are acyclic: no state is visited more
than once. Because of this property, algorithms like A* search can guarantee that they visit
each state in the state space no more than once. By visiting the states in an appropriate
order, it is possible to ensure that we know the exact value of all of a state’s possible
successors before we visit that state; so, the first time we visit a state we can compute its
correct value.

By contrast, if actions have uncertain outcomes, optimal paths may contain cycles:
some states will be visited two or more times with positive probability. Because of these
cycles, there is no way to order states so that we determine the values of a state’s successors
before we visit the state itself. Instead, the only way to compute state values is to solve a
set of simultaneous equations.

In problems with sparse stochasticity, only a small fraction of all states have uncertain
outcomes. It is these few states that cause all of the cycles: while a deterministic states
may participate in a cycle, the only way it can do so is if one of its successors has an action
with a stochastic outcome (and only if this stochastic action can lead to a predecessor ofs).

In such problems, we would like to build a smaller MDP which contains only states
which are related to stochastic actions. We will call such an MDP acompressed MDP,
and we will call its statesdistinguished states. We could then run fast algorithms like A*
search to plan paths between distinguished states, and reserve slower algorithms like value
iteration for deciding how to deal with stochastic outcomes.



(a) Segbot (b) Robotic helicopter

(d) Planning map (e) Execution simulation (c) 3D Map
Figure 1:Robot-Helicopter Coordination

There are two problems with such a strategy. First, there can be a large number of states
which are related to stochastic actions, and so it may be impractical to enumerate all of them
and make them all distinguished states; we would prefer instead to distinguish only states
which are likely to be encountered while executing some policy which we are considering.
Second, there can be a large number of ways to get from one distinguished state to another:
edges in the compressed MDP correspond to sequences of actions in the original MDP. If
we knew the values of all of the distinguished states exactly, then we could use A* search
to generate optimal paths between them, but since we do not we cannot.

In this paper, we will describe an algorithm which incrementally builds a compressed
MDP using a sequence of deterministic searches. It adds states and edges to the compressed
MDP only by encountering them along trajectories; so, it never adds irrelevant states or
edges to the compressed MDP. Trajectories are generated by deterministic search, and so
undistinguished states are treated only with fast algorithms. Bellman errors in the values
for distinguished states show us where to try additional trajectories, and help us build the
relevant parts of the compressed MDP as quickly as possible.

1 Robot-Helicopter Coordination Problem

The motivation for our research was the problem of coordinating a ground robot and a
helicopter. The ground robot needs to plan a path from its current location to a goal, but
has only partial knowledge of the surrounding terrain. The helicopter can aid the ground
robot by flying to and sensing places in the map.

Figure 1(a) shows our ground robot, a converted Segway with a SICK laser rangefinder.
Figure 1(b) shows the helicopter, also with a SICK. Figure 1(c) shows a 3D map of the
environment in which the robot operates. The 3D map is post-processed to produce a
discretized 2D environment (Figure 1(d)). Several places in the map are unknown, either
because the robot has not visited them or because their status may have changed (e.g, a
car may occupy a driveway). Such places are shown in Figure 1(d) as white squares. The
elevation of each white square is proportional to the probability that there is an obstacle
there; we assume independence between unknown squares.

The robot must take the unknown locations into account when planning for its route.
It may plan a path through these locations, but it risks having to turn back if its way is
blocked. Alternately, the robot can ask the helicopter to fly to any of these places and sense
them. We assign a cost to running the robot, and a somewhat higher cost to running the
helicopter. The planning task is to minimize the expected overall cost of running the robot
and the helicopter while getting the robot to its destination and the helicopter back to its
home base. Figure 1(e) shows a snapshot of the robot and helicopter executing a policy.

Designing a good policy for the robot and helicopter is a POMDP planning problem;
unfortunately POMDPs are in general difficult to solve (PSPACE-complete [7]). In the
POMDP representation, a state is the position of the robot, the current location of the
helicopter (a point on a line segment from one of the unknown places to another unknown
place or the home base), and the true status of each unknown location. The positions of the
robot and the helicopter are observable, so that the only hidden variables are whether each



unknown place is occupied. The number of states is (# of robot locations)×(# of helicopter
locations)×2# of unknown places. So, the number of states is exponential in the number of
unknown places and therefore quickly becomes very large.

We approach the problem by planning in the belief state space, that is, the space of
probability distributions over world states. This problem is a continuous-state MDP; in this
belief MDP, our state consists of the ground robot’s location, the helicopter’s location, and
a probability of occupancy for each unknown location. We will discretize the continuous
probability variables by breaking the interval[0, 1] into several chunks; so, the number of
belief states is exponential in the number of unknown places, and classical algorithms such
as value iteration are infeasible even on small problems.

If sensors are perfect, this domain is acyclic: after we sense a square we know its true
state forever after. On the other hand, imperfect sensors can lead to cycles: new sensor data
can contradict older sensor data and lead to increased uncertainty. With or without sensor
noise, our belief state MDP differs from general MDPs because its stochastic transitions
are sparse: large portions of the policy (while the robot and helicopter are traveling be-
tween unknown locations) are deterministic. The algorithm we propose in this paper takes
advantage of this property of the problem, as we explain in the next section.

2 The Algorithm
Our algorithm can be broken into two levels. At a high level, it constructs acompressed
MDP, denotedM c, which contains only the start, the goal, and some states which are out-
comes of stochastic actions. At a lower level, it repeatedly runs deterministic searches to
find new information to put intoM c. This information includes newly-discovered stochas-
tic actions and their outcomes; better deterministic paths from one place to another; and
more accurate value estimates similar to Bellman backups. The deterministic searches can
use an admissible heuristich to focus their effort, so we can often avoid putting many
irrelevant actions intoM c.

BecauseM c will often be much smaller thanM , we can afford to run stochastic plan-
ning algorithms like value iteration on it. On the other hand, the information we get by
planning inM c will improve the heuristic values that we use in our deterministic searches;
so, the deterministic searches will tend to visit only relevant portions of the state space.

2.1 Constructing and Solving a Compressed MDP
Each action in the compressed MDP represents several consecutive actions inM : if we
see a sequence of states and actionss1, a1, s2, a2, . . . , sk, ak wherea1 throughak−1 are
deterministic butak is stochastic, then we can represent it inM c with a single actiona,
available ats1, whose outcome distribution isP (s′ | sk, ak) and whose cost is

c(s1, a, s′) =
k−1∑
i=1

c(si, ai, si+1) + c(sk, ak, s′)

(See Figure 2(a) for an example of such a compressed action.) In addition, if we see a se-
quence of deterministic actions ending insgoal, says1, a1, s2, a2, . . . , sk, ak, sk+1 = sgoal,
we can define a compressed action which goes froms1 to sgoal at cost

∑k
i=1 c(si, ai, si+1).

We can label each compressed action that starts ats with (s, s′, a) (wherea = null if
s′ = sgoal).

Among all compressed actions starting ats and ending at(s′, a) there is (at least) one
with lowest expected cost; we will call such an action anoptimal compressionof (s, s′, a).
Write Astoch for the set of all pairs(s, a) such that actiona when taken from states has
more than one possible outcome, and include as well(sgoal,null). Write Sstoch for the
states which are possible outcomes of the actions inAstoch, and includesstart as well. If we
include in our compressed MDP an optimal compression of(s, s′, a) for everys ∈ Sstoch

and every(s′, a) ∈ Astoch, the result is what we call thefull compressed MDP; an example
is in Figure 2(b).

If we solve the full compressed MDP, the value of each state will be the same as the
value of the corresponding state inM . However, we do not need to do that much work:



(a) action compression

(b) full MDP compression

(c) incremental MDP compression

Figure 2:MDP compression

Main()
01 initializeMc with sstart andsgoal and set theirv-values to 0;
02 while (∃s ∈ Mc s.t. RHS(s)− v(s) > δ ands belongs to the current greedy policy)
03 selectspivot to be any such states;
04 [v; vlim] = Search(spivot);
05 v(spivot) = v;
06 set the costc(spivot, ā, sgoal) of the limit actionā from spivot to vlim;
07 optionally run some algorithm satisfying req. A for a bounded amount of time to improve the value function inMc;

Figure 3:MCP main loop

many states and actions in the full compressed MDP are irrelevant since they do not appear
in the optimal policy fromsstart to sgoal. So, the goal of the MCP algorithm will be to
construct only the relevant part of the compressed MDP by buildingM c incrementally.
Figure 2(c) shows the incremental construction of a compressed MDP which contains all
of the stochastic states and actions along an optimal policy inM .

The pseudocode for MCP is given in Figure 3. It begins by initializingM c to contain
only sstart andsgoal, and it setsv(sstart) = v(sgoal) = 0. It maintains the invariant that
0 ≤ v(s) ≤ v∗(s) for all s. On each iteration, MCP looks at the Bellman error of each of
the states inM c. The Bellman error isv(s)− RHS(s), where

RHS(s) = min
a∈A(s)

RHS(s, a) RHS(s, a) = Es′∈succ(s,a)(c(s, a, s′) + v(s′))

By convention the min of an empty set is∞, so ans which does not have any compressed
actions yet is considered to have infiniteRHS.

MCP selects a state with negative Bellman error,spivot, and starts a search at that state.
(We note that there exist many possible ways to selectspivot; for example, we can choose
the state with the largest negative Bellman error, or the largest error when weighted by state
visitation probabilities in the best policy inM c.) The goal of this search is to find a new
compressed actiona such that itsRHS-value can provide a new lower bound onv∗(spivot).
This action can either decrease the currentRHS(spivot) (if a seems to be a better action in
terms of the currentv-values of action outcomes) or prove that the currentRHS(spivot) is
valid. Sincev(s′) ≤ v∗(s′), one way to guarantee thatRHS(spivot, a) ≤ v∗(spivot) is



to compute an optimal compression of(spivot, s, a) for all s, a, then choose the one with
the smallestRHS. A more sophisticated strategy is to use an A∗ search with appropriate
safeguards to make sure we never overestimate the value of a stochastic action. MCP,
however, uses a modified A∗ search which we will describe in the next section.

As the search finds new compressed actions, it adds them and their outcomes toM c.
It is allowed to initialize newly-added states to any admissible values. When the search
returns, MCP setsv(spivot) to the returned value. This value is at least as large as
RHS(spivot). Consequently, Bellman error forspivot becomes non-negative.

In addition to the compressed action and the updated value, the search algorithm returns
a “limit value” vlim(spivot). These limit values allow MCP to run a standard MDP planning
algorithm onM c to improve itsv(s) estimates. MCP can use any planning algorithm
which guarantees that, for anys, it will not lower v(s) and will not increasev(s) beyond
the smaller ofvlim(s) andRHS(s) (Requirement A). For example, we could insert a fake
“limit action” into M c which goes directly fromspivot to sgoal at costvlim(spivot) (as we
do on line 06 in Figure 3), then run value iteration for a fixed amount of time, selecting for
each backup a state with negative Bellman error.

After updatingM c from the result of the search and any optional planning, MCP begins
again by looking for another state with a negative Bellman error. It repeats this process
until there are no negative Bellman errors larger thanδ. For small enoughδ, this property
guarantees that we will be able to find a good policy (see section 2.3).

2.2 Searching the MDP Efficiently

The top level algorithm (Figure 3) repeatedly invokes a search method for finding trajec-
tories fromspivot to sgoal. In order for the overall algorithm to work correctly, there are
several properties that the search must satisfy. First, the estimatev that search returns for
the expected cost ofspivot should always be admissible. That is,0 ≤ v ≤ v∗(spivot)
(Property 1). Second, the estimatev should be no less than the one-step lookahead value
of spivot in M c. That is,v ≥ RHS(spivot) (Property 2). This property ensures that search
either increases the value ofspivot or finds additional (or improved) compressed actions.
The third and final property is for thevlim value, and it is only important if MCP uses its
optional planning step (line 07). The property is thatv ≤ vlim ≤ v∗(spivot) (Property 3).
Herev∗(spivot) denotes the minimum expected cost of starting atspivot, picking a com-
pressed actionnot in M c, and acting optimally from then on. (Note thatv∗ can be larger
thanv∗ if the optimal compressed action is already part ofM c.) Property 3 usesv∗ rather
thanv∗ since the latter is not known while it is possible to compute a lower bound on the
former efficiently (see below).

One could adapt A* search to satisfy at least Properties 1 and 2 by assuming that we can
control the outcome of stochastic actions. However, this sort of search is highly optimistic
and can bias the search towards improbable trajectories. Also, it can only use heuristics
which are even more optimistic than it is: that is,h must be admissible with respect to the
optimistic assumption of controlled outcomes.

We therefore present a version of A*, called MCP-search (Figure 4), that is more effi-
cient for our purposes. MCP-search finds the correct expected value for the first stochas-
tic action it encounters on any given trajectory, and is therefore far less optimistic. And,
MCP-search only requires heuristic values to be admissible with respect tov∗ values,
h(s) ≤ v∗(s). Finally, MCP-search speeds up repetitive searches by improving heuris-
tic values based on previous searches.

A* maintains a priority queue,OPEN, of states which it plans to expand. TheOPEN
queue is sorted byf(s) = g(s)+h(s), so that A* always expands next a state which appears
to be on the shortest path from start to goal. During each expansion a states is removed
fromOPENand all theg-values ofs’s successors are updated; ifg(s′) is decreased for some
states′, A* insertss′ into OPEN. A* terminates as soon as the goal state is expanded. We
use the variant of A* with pathmax [5] to use efficiently heuristics that do not satisfy the
triangle inequality.

MCP is similar to A∗, but theOPENlist can also contain state-action pairs{s, a}where
a is a stochastic action (line 31). Plain states are represented inOPENas{s,null}. Just



ImproveHeuristic(s)
01 if s ∈ Mc thenh(s) = max(h(s), v(s));
02 improve heuristich(s) further if possible usingfbest andg(s) from previous iterations;

procedure fvalue({s, a})
03 if s = null return∞;
04 else ifa = null returng(s) + h(s);
05 else returng(s) + max(h(s), Es′∈Succ(s,a){c(s, a, s′) + h(s′)});

CheckInitialize(s)
06 if s was accessed last in some previous search iteration
07 ImproveHeuristic(s);
08 if s was not yet initialized in the current search iteration
09 g(s) = ∞;

InsertUpdateCompAction(spivot, s, a)
10 reconstruct the path fromspivot to s;
11 insert compressed action(spivot, s, a) into A(spivot) (or update the cost if a cheaper path was found)
12 for each outcomeu of a that was not inMc previously
13 setv(u) to h(u) or any other value less than or equal tov∗(u);
14 set the costc(u, ā, sgoal) of the limit actionā from u to v(u);

procedure Search(spivot)
15 CheckInitialize(sgoal), CheckInitialize(spivot);
16g(spivot) = 0;
17OPEN= {{spivot, null}};
18{sbest, abest} = {null, null}, fbest = ∞;
19 while(g(sgoal) > min{s,a}∈OPEN(fvalue({s, a})) AND fbest + θ > min{s,a}∈OPEN(fvalue({s, a})))
20 remove{s, a} with the smallest fvalue({s, a}) from OPENbreaking ties towards the pairs witha = null;
21 if a = null //expand states
22 for eachs′ ∈ Succ(s)
23 CheckInitialize(s′);
24 for each deterministica′ ∈ A(s)
25 s′ = Succ(s, a′);
26 h(s′) = max(h(s′), h(s)− c(s, a′, s′));
27 if g(s′) > g(s) + c(s, a′, s′)
28 g(s′) = g(s) + c(s, a′, s′);
29 insert/update{s′, null} into OPENwith fvalue({s′, null});
30 for each stochastica′ ∈ A(s)
31 insert/update{s, a′} into OPENwith fvalue({s, a′});
32 else //encode stochastic actiona from states as a compressed action fromspivot
33 InsertUpdateCompAction(spivot, s, a);
34 if fbest > fvalue({s, a}) then{sbest, abest} = {s, a}, fbest = fvalue({s, a});
35 if (g(sgoal) ≤ min{s,a}∈OPEN(fvalue({s, a})) AND OPEN 6= ∅)
36 reconstruct the path fromspivot to sgoal;
37 update/insert intoA(spivot) a deterministic actiona leading tosgoal;
38 if fbest ≥ g(sgoal) then{sbest, abest} = {sgoal, null}, fbest = g(sgoal);
39 return[fbest; min{s,a}∈OPEN(fvalue({s, a}))];

Figure 4:MCP-search Algorithm

like A*, MCP-search expands elements in the order of increasingf -values, but it breaks
ties towards elements encoding plain states (line 20). Thef -value of {s, a} is defined
asg(s) + max[h(s), Es′∈Succ(s,a)(c(s, a, s′) + h(s′))] (line 05). Thisf -value is a lower
bound on the cost of a policy that goes fromsstart to sgoal by first executing a series of
deterministic actions until actiona is executed from states. This bound is as tight as
possible given our heuristic values.

State expansion (lines 21-31) is very similar to A∗. When the search removes from
OPEN a state-action pair{s, a} with a 6= null, it adds a compressed action toM c (line
33). It also adds a compressed action if there is an optimal deterministic path tosgoal

(line 37). fbest tracks the minimumf -value of all the compressed actions found. As a
result,fbest ≤ v∗(spivot) and is used as a new estimate forv(spivot). The limit value
vlim(spivot) is obtained by continuing the search until the minimumf -value of elements
in OPEN approachesfbest + θ for someθ ≥ 0 (line 19). This minimumf -value then
provides a lower bound onv∗(spivot).

To speed up repetitive searches, MCP-search improves the heuristic of every state that
it encounters for the first time in the current search iteration (lines 01 and 02). Line 01
uses the fact thatv(s) from M c is a lower bound onv∗(s). Line 02 uses the fact that
fbest−g(s) is a lower bound onv∗(s) at the end of each previous call toSearch; for more
details see [4].



2.3 Theoretical Properties of the Algorithm
We now present several theorems about our algorithm. The proofs of these and other theo-
rems can be found in [4]. The first theorem states the main properties of MCP-search.
Theorem 1 The search function terminates and the following holds for the values it re-
turns:

(a) if sbest 6= null thenv∗(spivot) ≥ fbest ≥ E{c(spivot, abest, s
′) + v(s′)}

(b) if sbest = null thenv∗(spivot) = fbest = ∞
(c) fbest ≤ min{s,a}∈OPEN(fvalue({s, a})) ≤ v∗(spivot).

If neithersgoal nor any state-action pairs were expanded, thensbest = null and (b) says
that there is no policy fromspivot that has a finite expected cost. Using the above theorem
it is easy to show that MCP-search satisfies Properties 1, 2 and 3, considering thatfbest is
returned as variablev andmin{s,a}∈OPEN(fvalue({s, a})) is returned as variablevlim in
the main loop of the MCP algorithm (Figure 3). Property 1 follows directly from (a) and
(b) and the fact that costs are strictly positive andv-values are non-negative. Property 2
also follows trivially from (a) and (b). Property 3 follows from (c). Given these properties
the next theorem states the correctness of the outer MCP algorithm (in the theoremπc

greedy

denotes a greedy policy that always chooses an action that looks best based on its cost and
thev-values of its immediate successors).
Theorem 2 Given a deterministic search algorithm which satisfies Properties 1–3, the
MCP algorithm will terminate. Upon termination, for every states ∈ M c ∩ πc

greedy we
haveRHS(s)− δ ≤ v(s) ≤ v∗(s).

Given the above theorem one can show that for0 ≤ δ < cmin (wherecmin is the
smallest expected action cost in our MDP) the expected cost of executingπc

greedy from
sstart is at most cmin

cmin−δ v∗(sstart). Pickingδ ≥ cmin is not guaranteed to result in a proper
policy, even though Theorem 2 continues to hold.

3 Experimental Study
We have evaluated the MCP algorithm on the robot-helicopter coordination problem de-
scribed in section 1. To obtain an admissible heuristic, we first compute a value function
for every possible configuration of obstacles. Then we weight the value functions by the
probabilities of their obstacle configurations, sum them, and add the cost of moving the
helicopter back to its base if it is not already there. This procedure results in optimistic cost
estimates because it pretends that the robot will find out the obstacle locations immediately
instead of having to wait to observe them.

The results of our experiments are shown in Figure 5. We have compared MCP against
three algorithms: RTDP [1], LAO* [2] and value iteration on reachable states (VI). RTDP
can cope with large size MDPs by focussing its planning efforts along simulated execu-
tion trajectories. LAO* uses heuristics to prune away irrelevant states, then repeatedly
performs dynamic programming on the states in its current partial policy. We have im-
plemented LAO* so that it reduces to AO* [6] when environments are acyclic (e.g., the
robot-helicopter problem with perfect sensing). VI was only able to run on the problems
with perfect sensing since the number of reachable states was too large for the others.

The results support the claim that MCP can solve large problems with sparse stochas-
ticity. For the problem with perfect sensing, on average MCP was able to plan 9.5 times
faster than LAO*, 7.5 times faster than RTDP, and 8.5 times faster than VI. On average for
these problems, MCP computed values for 58633 states whileM c grew to 396 states, and
MCP encountered 3740 stochastic transitions (to give a sense of the degree of stochastic-
ity). The main cost of MCP was in its deterministic search subroutine; this fact suggests
that we might benefit from anytime search techniques such as ARA* [3].

The results for the problems with imperfect sensing show that, as the number and den-
sity of uncertain outcomes increases, the advantage of MCP decreases. For these problems
MCP was able to solve environments 10.2 times faster than LAO* but only 2.2 times faster
than RTDP. On average MCP computed values for 127,442 states, while the size ofM c

was 3,713 states, and 24,052 stochastic transitions were encountered.



Figure 5:Experimental results. The top row: the robot-helicopter coordination problem with perfect
sensors. The bottom row: the robot-helicopter coordination problem with sensor noise. Left column:
running times (in secs) for each algorithm grouped by environments. Middle column: the number
of backups for each algorithm grouped by environments. Right column: an estimate of the expected
cost of an optimal policy (v(sstart)) vs. running time (in secs) for experiment (k) in the top row and
experiment (e) in the bottom row. Algorithms in the bar plots (left to right): MCP, LAO*, RTDP and
VI (VI is only shown for problems with perfect sensing). The characteristics of the environments are
given in the second and third rows under each of the bar plot. The second row indicates how many
cells the 2D plane is discretized into, and the third row indicates the number of initially unknown
cells in the environment.

4 Discussion
The MCP algorithm incrementally builds a compressed MDP using a sequence of deter-
ministic searches. Our experimental results suggest that MCP is advantageous for problems
with sparse stochasticity. In particular, MCP has allowed us to scale to larger environments
than were otherwise possible for the robot-helicopter coordination problem.

Acknowledgements
This research was supported by DARPA’s MARS program. All conclusions are our own.

References
[1] S. Bradtke A. Barto and S. Singh. Learning to act using real-time dynamic program-

ming. Artificial Intelligence, 72:81–138, 1995.
[2] E. Hansen and S. Zilberstein. LAO*: A heuristic search algorithm that finds solutions

with loops.Artificial Intelligence, 129:35–62, 2001.
[3] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds

on sub-optimality. InAdvances in Neural Information Processing Systems (NIPS) 16.
Cambridge, MA: MIT Press, 2003.

[4] M. Likhachev, G. Gordon, and S. Thrun. MCP: Formal analysis. Technical report,
Carnegie Mellon University, Pittsburgh, PA, 2004.

[5] L. Mero. A heuristic search algorithm with modifiable estimate.Artificial Intelligence,
23:13–27, 1984.

[6] N. Nilsson. Principles of Artificial Intelligence. Palo Alto, CA: Tioga Publishing,
1980.

[7] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision pro-
cessses.Mathematics of Operations Research, 12(3):441–450, 1987.


