# Notes on the Kalman filter 

Geoff Gordon<br>ggordon@cs.cmu.edu

## 1d Gaussian

Usual form of a 1d Gaussian is

$$
\mathbb{P}(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

Expectation parameters are mean $\mu$, variance $\sigma^{2}$
$\mathbb{P}$ (variable; parameters) means a probability density function

## Natural parameters

By defining $p=\frac{1}{\sigma^{2}}$ and $\theta=p \mu$, we have

$$
\mathbb{P}(x ; \theta, p)=Z(\theta, p) e^{-\frac{p}{2} x^{2}+\theta x}
$$

where the normalizing constant $Z$ is

$$
Z(\theta, p)=\sqrt{\frac{p}{2 \pi}} e^{-\frac{\theta^{2}}{2 p}}
$$

$p$ is the precision
$\theta, p$ are natural parameters

## Operations on Gaussians

Expectation and natural parameters are useful for different purposes
Adding two Gaussians is easy in expectation parameters
"Intersecting" two Gaussians (i.e., multiplying their PDFs and renormalizing-what we need to do in the observation step of a Bayes filter) is easy in natural parameters

## Adding Gaussians

When adding two Gaussians, we just add their means and their variances
If $Z=X+Y$ then

- $\mu_{Z}=\mu_{X}+\mu_{Y}$
- $\sigma_{Z}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$


## Intersecting Gaussians

When intersecting two Gaussians, we just add their $\theta$ s and precisions

If $\mathbb{P} Z=\alpha \mathbb{P} X \mathbb{P} Y$ then

- $\theta_{Z}=\theta_{X}+\theta_{Y}$
- $p_{Z}=p_{X}+p_{Y}$


## An example

Suppose the robot starts at $x=0 \pm 5 \mathrm{~cm}$ then moves right $2 \mathrm{~m} \pm 20 \mathrm{~cm}$

Then it ends up at $x=2 m \pm \sqrt{425} \mathrm{~cm}$
The corresponding natural parameters are $p=\frac{1}{425} \approx 0.00235$ and $\theta=\frac{2}{425} \approx 0.00471$

## Example cont'd

Now suppose that we observe $x=2.5 \mathrm{~m} \pm 20 \mathrm{~cm}$
(i.e., $p=0.0025$ and $\theta=0.00675$ )

Then the final $p$ is $0.0025+0.00235=0.00485$ and the final $\theta$ is $0.00675+0.00471=0.01146$

In expectation parameters, that's $2.36 \mathrm{~m} \pm 14.4 \mathrm{~cm}$

## Multivariate Gaussians

Usual form of a multivariate Gaussian is

$$
\mathbb{P}(x ; \mu, \sigma)=\frac{1}{\sqrt{|2 \pi \Sigma|}} e^{-\frac{1}{2}(x-\mu)^{\mathrm{T}} \Sigma^{-1}(x-\mu)}
$$

Here the random variable $x$ and its mean $\mu$ are both $d$-dimensional vectors
$\Sigma$ is a $d \times d$ covariance matrix
$|\cdot|$ is the determinant of a matrix (i.e., the product of its eigenvalues)

## Natural parameters

Let $P=\Sigma^{-1}$ and $\theta=P \mu$
Then we can rewrite

$$
\mathbb{P}(x ; \theta, P)=Z(\theta, p) e^{-\frac{1}{2} x^{\mathrm{T}} P x+\theta x}
$$

where the normalizing constant $Z$ is

$$
Z(\theta, P)=\sqrt{\left|\frac{1}{2 \pi} P\right|} e^{-\frac{1}{2} \theta^{\mathrm{T}} P^{-1} \theta}
$$

## Multivariate Gaussian examples



$$
P=\left(\begin{array}{cc}
.4 & 0 \\
0 & 1
\end{array}\right) \quad P=\left(\begin{array}{cc}
.4 & -.3 \\
-.3 & 1
\end{array}\right)
$$

Diagonal elements of $\Sigma$ are variances of $x_{i} \mathrm{~S}$ $i, j$ element of $\Sigma$ is covariance of $x_{i}$ and $x_{j}$

# Operations on multivariate Gaussians 

Just as before, when adding two Gaussians, the means add and the variances add

Similarly, when intersecting two Gaussians, the $\theta$ s add and the precisions add

## Low-rank updates

Often our observation only gives us information along some directions in state space
We might keep track of many landmarks, but only observe a few on each time step

Similarly, our motion model may only change a few pieces of information

Odometry updates only change our robot's state, not the state of the landmarks

In either case, we save computation

## The Sherman-Morrison formula

$$
\left(A+u v^{\mathrm{T}}\right)^{-1}=A^{-1}-\frac{1}{1+v^{\mathrm{T}} A^{-1} u} A^{-1} u v^{\mathrm{T}} A^{-1}
$$

Rank-1 update to $A$ yields rank-1 update to $A^{-1}$
E.g., if $A$ is precision, $v=u$ and either represents direction along which we measured state

So, with low-rank motions or observations, we can update both precision and variance efficiently

## Sherman-Morrison savings

Inverting is $O\left(d^{3}\right)$ (or slightly less if we get tricky)
SM update is $O\left(d^{2}\right)$ (or less if $u$ or $v$ is sparse)
Preview: in (useful!) special cases, can get down to $O(\ln d)$-allows KFs with $10 \mathrm{~K}-100 \mathrm{~K}$ dimensions!

