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We present a principled and efficient planning algo-
rithm for collaborative multiagent dynamical systems.
All computation, during both the planning and the ex-
ecution phases, is distributed among the agents; each
agent only needs to model and plan for a small part
of the system. Each of these local subsystems is
small, but once they are combined they can represent
an exponentially larger problem. The subsystems are
connected through a subsystem hierarchy. Coordina-
tion and communication between the agents is not im-
posed, but derived directly from the structure of this
hierarchy. A globally consistent plan is achieved by
a message passing algorithm, where messages corre-
spond to natural local reward functions and are com-
puted by local linear programs; another message pass-
ing algorithm allows us to execute the resulting pol-
icy. When two portions of the hierarchy share the same
structure, our algorithm can reuse plans and messages
to speed up computation.

1 Introduction
Many interesting planning problems have a very large num-
ber of states and actions, described as the cross product
of a small number of state variables and action variables.
Even very fast exact algorithms cannot solve such large
planning problems in a reasonable amount of time. For-
tunately, in many such cases we can group the variables in
these planning problems into subsystems that interact in a
simple manner.

As argued by Herbert Simon [20] in “Architecture of
Complexity”, many complex systems have a “nearly de-
composable, hierarchical structure”, with the subsystems
interacting only weakly between themselves. In this pa-
per, we represent planning problems using a hierarchical
decomposition into local subsystems. (In multiagent plan-
ning problems, each agent will usually implement one or
more local subsystems.) Although each subsystem is small,
once these subsystems are combined we can represent an
exponentially larger problem.

The advantage of constructing such a grouping is that
we can hope to plan for each subsystem separately. Coor-
dinating many local planners to form a successful global
plan requires careful attention to communication between
planners: if two local plans make contradictory assump-
tions, global success is unlikely.

In this paper, we describe an algorithm for coordinat-
ing many local Markov decision process (MDP) planners

to form a global plan. The algorithm is relatively sim-
ple: at each stage we solve a small number of small lin-
ear programs to determine messages that each planner will
pass to its neighbors, and based on these messages the lo-
cal planners revise their plans and send new messages until
the plans stop changing. The messages have an appealing
interpretation: they are rewards or penalties for taking ac-
tions that benefit or hurt their neighbors, and statistics about
plans that the agents are considering.

Our hierarchical decomposition offers another signifi-
cant feature: reuse. When two subsystems are equivalent
(i.e., are instances of the same class), plans devised for one
subsystem can be reused in the other. Furthermore, in many
occasions, larger parts of the system may be equivalent. In
these cases, we can not only reuse plans, but also messages.

The individual local planners can run any planning al-
gorithm they desire, so long as they can extract a particu-
lar set of state visitation frequencies from their plans. Of
course, suboptimal planning from local planners will tend
to reduce the quality of the global plan.

Our algorithm does not necessarily converge to an op-
timal plan. However, it is guaranteed to be the same as
the plan produced by a particular centralized planning al-
gorithm (approximate linear programming as in [19], with
a particular basis).

2 Related work

Many researchers have examined the idea of dividing a
planning problem into simpler pieces in order to solve it
faster. There are two common ways to split a problem into
simpler pieces, which we will call serial decomposition and
parallel decomposition. Our planning algorithm is signif-
icant because it handles both serial and parallel decompo-
sitions, and it provides more opportunities for abstraction
than other parallel-decomposition planners. Additionally,
it is fully distributed: at no time is there a global combina-
tion step requiring knowledge of all subproblems simulta-
neously. No previous algorithm combines these qualities.

In a serial decomposition, one subproblem is active at
any given time. The overall state consists of an indicator
of which subproblem is active along with that subprob-
lem’s state. Subproblems interact at their borders, which
are the states where we can enter or leave them. For exam-



ple, imagine a robot navigating in a building with multiple
rooms connected by doorways: fixing the value of the door-
way states decouples the rooms from each other and lets us
solve each room separately. In this type of decomposition,
the combined state space is the union of the subproblem
state spaces, and so the total size of all of the subproblems
is approximately equal to the size of the combined problem.

Serial decomposition planners in the literature include
Kushner and Chen’s algorithm [12] and Dean and Lin’s
algorithm [6], as well as a variety of hierarchical plan-
ning algorithms. Kushner and Chen were the first to ap-
ply Dantzig-Wolfe decomposition to Markov decision pro-
cesses, while Dean and Lin combined decomposition with
state abstraction. Hierarchical planning algorithms include
MAXQ [7], hierarchies of abstract machines [16], and
planning with macro-operators [22, 9].

By contrast, in a parallel decomposition, multiple sub-
problems can be active at the same time, and the combined
state space is the cross product of the subproblem state
spaces. The size of the combined problem is therefore ex-
ponential rather than linear in the number of subproblems,
which means that a parallel decomposition can potentially
save us much more computation than a serial one. For
an example of a parallel decomposition, suppose there are
multiple robots in our building, interacting through a com-
mon resource constraint such as limited fuel or through a
common goal such as lifting a box which is too heavy for
one robot to lift alone. A subproblem of this task might be
to plan a path for one robot using only a compact summary
of the plans for the other robots.

Parallel decomposition planners in the literature include
Singh and Cohn’s [21] and Meuleau et al.’s [15] algo-
rithms. Singh and Cohn’s planner builds the combined
state space explicitly, using subproblem solutions to initial-
ize the global search. So, while it may require fewer plan-
ning iterations than naive global planning, it is limited by
having to enumerate an exponentially large set. Meuleau
et al.’s planner is designed for parallel decompositions in
which the only coupling is through global resource con-
straints. More complicated interactions such as conjunctive
goals or shared state variables are beyond its scope.

Our planner works by representing a planning problem
as a linear program [14], substituting in a compact approx-
imate representation of the solution [19], and transforming
and decomposing the LP so that it can be solved by a dis-
tributed network of planners. One of this paper’s contribu-
tions is the method for transformation and decomposition.

Our transformation is based on the factorized planning
algorithm of Guestrin, Koller, and Parr [8]. Their algo-
rithm uses a central planner, but allows distributed execu-
tion of plans. We extend that result to allow planning to be
distributed as well, while still guaranteeing that we reach
the same solution. That means that our algorithm allows
for truly decentralized multiagent planning and execution:
each agent can run its own local planner and compute mes-
sages locally, and doesn’t need to know the global state of
the world or the actions of unrelated agents.

The transformation produces a sparse linear program, to
which we apply a nested Benders decomposition [1]. (Or,
dually, a Dantzig-Wolfe decomposition [3].) As mentioned
above, other authors have used this decomposition for plan-
ning; but, our method is the first to handle parallel decom-
positions of planning problems.

Another contribution of our new hierarchical repre-
sentation and planning algorithm over the algorithm of
Guestrin et al. [8] is reuse. As we describe in Sec. 9, our
approach can reuse plans and messages for parts of the hi-
erarchy that share the same structure.

3 Markov Decision Processes
The Markov Decision Process (MDP) framework formal-
izes the problem where agents are acting in a dynamic
environment, and are jointly trying to maximize their ex-
pected long-term return. An MDP is defined as a 4-tuple��������������	�


where:
�

is a finite set of ��
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�

is a set of actions;
�

is a reward function
��������������
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������� �!
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after taking action

�
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is a Markovian transition
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�
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� #
with action

�
. We will write�&%

to mean the vector of rewards associated with action�
(with one entry for each state), and we will write

	 %
to

mean the transition matrix associated with action
�

(with
one entry for each pair of source and destination states).
We assume that the MDP has an infinite horizon and that
future rewards are discounted exponentially with a discount
factor ')(+* , �.-/
 .

In general, the state space
�

is more compactly defined
in terms of state variables, i.e.,

� 
10.243 �65.5657� 2�8:9 . Sim-
ilarly, the action can be decomposed into action variables� 
;0/< 3 �65.5657� <>=?9 .

The optimal value function @�A is defined so that @�A ���B

is the maximal value achievable by any action at state

�
.

More precisely, @�A is the solution to (1) below. A station-
ary policy is a mapping C �D�E�� < , where C ���B


is the
action to be taken at state

�
. For any value function @ , we

can define the policy obtained by one-step lookahead on @ :
Greedy * @GFH
JILK M�N"IPO % * �&%�Q)	B% @GF , where the I�K�MDN�ILO is
taken componentwise. The greedy policy for the optimal
value function @�A is the optimal policy CRA .

There are several algorithms for computing the optimal
policy (see [17] for a review). One is to solve the Bellman
linear program: write @�( ��S

for the value function, so
that @!T represents the value of state U . Pick any fixed state
relevance weights VW( ��S

with VYXZ, ; without loss of
generality assume [ T V\TR
 -

. Then the Bellman LP is

]_^a`b^ N ^ac6d V)ef@
@hg � % Q ' 	 % @ (1)

Throughout this paper, inequalities between vectors hold
componentwise; e.g., i_gkj means i T gkj T for all U . Also,
free index variables are by convention universally quanti-
fied; e.g., the constraint in (1) holds for all

�
.
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Figure 1: Smart engine control dynamics; e.g., the state variable
O2-sensor depends on the action variables fuel-flow and air-flow.

The dual of the Bellman LP is] ILO ^ N ^ c.d [ % � % e � %
[ % � %�� ' [ % 	��% � % 
JV � � % g , (2)

The vector
� %

, called the flow for action
�

, can be inter-
preted as the expected number of times that action

�
will

be executed in each state (discounted so that future visits
count less than present ones). So, the objective of (2) is
to maximize total reward for all actions executed, and the
constraints say that the number of times we enter each state
must be the same as the number of times we leave it. State
relevance weights tell us how often we start in each state.

4 Hierarchical multiagent factored MDPs
Most interesting MDPs have a very large number of states.
For example, suppose that we want to build a smart en-
gine control, whose state at any time is described by the
variables shown in Fig. 1. The number of distinct states in
such an MDP is exponential in the number of state vari-
ables. Similarly, many interesting MDPs have a very large
number of actions described by a smaller number of ac-
tion variables. Even very fast exact algorithms cannot solve
such large MDPs in a reasonable amount of time.

Fortunately, in many cases we can group the variables
in a large MDP into subsystems that interact in a sim-
ple manner. The rounded boxes in Fig. 1 show one pos-
sible grouping; we might call the three subsystems fuel-
injection, engine-control, and speed-control.

These subsystems overlap with each other on some vari-
ables; e.g., fuel-injection and engine-control overlap on
O2-sensor. We can consider O2-sensor to be an output of
the fuel-injection system and an input to the engine-control.

The advantage of constructing such a grouping is that
we can now plan for each subsystem separately. Since there
are many fewer variables in each subsystem than there are
in the MDP as a whole, we can hope that it will be pos-
sible to construct a global plan by stitching together plans
for the various subsystems. Of course, if we plan for each
subsystem completely separately there’s no guarantee that
the overall plan will be useful, so we may need to replan
for each subsystem several times taking into account the
current plans for neighboring subsystems.

In our engine example, we can examine the speed-
control subsystem and compute what values of engine-
power, brake, and transmission-gear would help us most in
keeping actual-speed near desired-speed. While the speed-
control system controls transmission-gear and brake di-
rectly, it must communicate with the engine-control system
to influence the value of engine-power. If the desired value
of engine-power turns out to be too expensive to maintain,

the speed-control system may have to form a new plan that
makes do with the available engine-power.

4.1 Subsystem tree MDPs

To formalize the above intuition, we will define a general
class of MDPs built from interacting subsystems. In Sec. 5,
we will give an algorithm for planning in such MDPs; this
algorithm will run efficiently when the number of state
variables in the scope of each subsystem is small.

We will start by defining a basic subsystem. On its own,
a basic subsystem is just an MDP with factored state and
action spaces, but below we will describe how to combine
several basic subsystems into a larger MDP by allowing
them to share state and action variables. (In particular, an
action variable in one subsystem can be a state variable in
another; a subsystem’s actions are just the variables which
can be set by forces external to the subsystem.)

Definition 4.1 (Basic subsystem) A basic subsystem ���
is an MDP defined by the tuple

��� � � � � ��� � ��	 � 
 . The
internal state variables

� � 

	 `�� d K ` I�
 * � � F and the ex-
ternal state variables

� � 
�� O ��d K ` I�
 * ���7F are disjoint
sets. The scope of � � is ������� d * � � FG
 � ��� � � . The
local reward function

� � ��� � ��� � 
 maps assignments for
������� d * ���7F to real-valued rewards, and the local transition
function

	 � ���$#� � � � � � � 
 maps assignments for ������� d * � � F
to a probability distribution over the assignment

�R#� to the
internal variables

� � in the next time step.

We have divided the scope of a subsystem into internal
variables and external variables. Each subsystem knows the
dynamics of its internal variables, and can therefore reason
about value functions that depend on these variables. Exter-
nal variables are those which the subsystem doesn’t know
how to influence directly; a subsystem may form opinions
about which values of the external variables would be help-
ful or harmful, but cannot perform Bellman backups for
value functions that depend on external variables.

We will write
� ��� %�� for the vector of rewards associated

with a setting
� � for

� � . � ��� %�� has one component for each
setting of

� � . Similarly, we will write
	 ��� % � for the transi-

tion matrix associated with setting
� � to

� � ; each column
of

	 ��� % � corresponds to a single setting of
� � at time ! ,

while each row corresponds to a setting of
� � at time ! Q -

.
Given several basic subsystems, we can collect them to-

gether into a subsystem tree. Right now we are not impos-
ing any consistency conditions on the subsystems, but we
will do so in a little while.

Definition 4.2 (Subsystem tree) A subsystem tree � is a
set of local subsystem MDPs � 3 �65.5656� �#" together with
a tree parent function � T 
 Parent * � � F . Without loss of
generality take � 3 to be the root of the tree. We will write
Parent * � 3 F 
�$ , and we will define Children * ��� F in the
usual way. The internal variables of the tree, 	 `%��d K ` I�
 * � F ,
are those variables which are internal to any � � ; the ex-
ternal variables, ��O ��d K ` I�
�* � F , are the variables which are
in the scope of some subsystem but not internal to any sub-
system. Finally, the common (separator) variables between



a subsystem and its parent are denoted by � d � � d�� * � � F 
� � 
 ������� d * � � F�� ������� d * Parent * � � FaF .
There are two consistency conditions we need to en-

force on a subsystem tree to make sure that it defines an
MDP. The first says that every subsystem that references
a variable 2 T must be connected to every other subsystem
referencing 2"T , and the second says that neighboring sub-
systems have to agree on transition probabilities.

Definition 4.3 (Running intersection property) A sub-
system tree � satisfies the running intersection property
if, whenever a variable 2 T is in both � ����� d * � � F and
������� d * ���.F , then 2"T�( ������� d * ��� F for every subsystem
� � in the path between � � and � � in � . Similarly,
internal variables must satisfy the same condition.

Definition 4.4 (Consistent dynamics) A subsystem tree
� has consistent dynamics if pairs of subsystems agree
on the dynamics of their joint variables. Specifically, if �
is an assignment to ������� d * � � F � � ����� d * � � F , and if

�B#
is

an assignment to 	 `�� d K ` I�
 * � � F	� 	 `%��d K ` I�
 * ���/F in the next
time step, then


� ��
��� � 
�� 	 � ���
# � ��� 
 
 


� ��
� � � 
�� 	 � ���
#� ��� 


Here the sum * �$# � � �$# F runs over all assignments
�B# � to

	 `%��d K ` I�
 * ���/F consistent with
�B#

.

A subsystem tree which satisfies the running intersec-
tion property and has consistent dynamics is called a con-
sistent subsystem tree. For the rest of this paper, all subsys-
tem trees will be assumed to be consistent. Given a con-
sistent subsystem tree, we can construct a plain old MDP,
which defines the dynamics associated with this tree:

Lemma 4.5 (Equivalent MDP) From a consistent sub-
system tree � we can construct a well-defined equiva-
lent MDP,

]���� * � F)
 ���)� �)� � � 	�

. The state vari-

able set is
� 
 	 `%��d K ` I�
 * � F . The action variable set is� 
 ��O � d K ` I�
 * � F . The reward function is the sum of all

subsystem rewards
� 
Z[ "��� 3 � � . The transition proba-

bilities for a given state and action � 
 ����� �!

are

	"��� ��� 
 
 � "��� 3 	 � ��� � ��� � 

� " � ��� [ � � � � � � � 	 � ��� � ��� � 


where � � is the restriction of � to the scope of � � ; � � is the
restriction of

�
to the internal variables of � � ; � � is the

restriction of � to variables in � d � � d�� * � � F ; and * � � �!� � F
denotes the set of assignments to

� � consistent with � � .

In our engine example, the rounded boxes in Fig. 1 are
the scopes of the three subsystems. The O2-sensor variable
is an external variable for the engine-control system, and
engine-power is an external variable for the speed-control
system; all other variables of each subsystem are internal.
(Note: the way we have described this example, each vari-
able is internal to only one subsystem; this is not necessary
so long as we maintain the running intersection property.)
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Figure 2: Multiagent factored MDP with basis functions )+* and)-, (left) represented as a hierarchical subsystem tree (right).

4.2 Hierarchical subsystem trees

In our engine example, we might decide to add several
more variables describing the internal state of the engine.
In this case the engine-control subsystem would become
noticeably more complicated than the other two subsystems
in our decomposition. Since our decomposition algorithm
below allows us to use any method we want for solving the
subsystem MDPs, we could use another subsystem decom-
position to split engine-control into sub-subsystems. For
example, we might decide that we should break it down
into a distributor subsystem, a power-train subsystem, and
four cylinder subsystems. This recursive decomposition
would result in a tree of subsystem trees. We call such a
tree of trees a hierarchical subsystem tree.

Hierarchical subsystem trees are important for two rea-
sons. First, they are important for knowledge representa-
tion: it is easier to represent and reason about hierarchies
of subsystems than flat collections. Second, they are impor-
tant for reuse: if the same subsystem appears several times
in our model, we can reuse plans from one copy to speed
up planning for other copies (see Sec. 9 for details).

4.3 Relationship to factored MDPs

Factored MDPs [2] allow the representation of large struc-
tured MDPs by using a dynamic Bayesian network [5]
as the transition model. Guestrin et al. [8] used factored
MDPs for multiagent planning. They presented a planning
algorithm which approximates the value function of a fac-
tored MDP with factored linear value functions [10]. These
value functions are a weighted linear combination of basis
functions where each basis function is restricted to depend
only on a small subset of state variables.

The relationship between factored MDPs and the hi-
erarchical decomposition described in this paper is anal-
ogous to the one between standard Bayesian networks and
Object-Oriented Bayesian networks [11]. In terms of repre-
sentational power, hierarchical multiagent factored MDPs
are equivalent to factored MDPs with factored linear value
functions. That is, a factored MDP associated with some
choice of basis functions can be easily transformed into a
subsystem tree with a particular choice of subsystems and
vice-versa.1 This transformation involves the backprojec-
tion of the basis functions [10] and the triangulation of the

1For some basis function choices, the transformation from fac-
tored MDPs to subsystem trees may also imply an approximate
solution of the basic subsystem MDPs.



resulting dependency graph into a clique tree [13]. For ex-
ample, consider the factored MDP on the left of Fig. 2,
with basis functions 0�� 3 � � �P9 represented as diamonds in
the next time step. The figure on the right represents an
equivalent subsystem tree, where each local dynamical sys-
tem is represented by a small part of the global DBN.

However, the hierarchical model offers some advan-
tages: First, we can specify a simple, completely dis-
tributed planning algorithm for this model (Sec. 5). Sec-
ond, the hierarchical model allows us to reuse plans gener-
ated for two equivalent subsystems. Third, the knowledge
engineering task is simplified as systems can be built from
a library of subsystems. Finally, even in collaborative mul-
tiagent settings, each agent may not want to reveal private
information; e.g., in a factory, upper management may not
want to reveal the salary of one section manager to another.
Using our hierarchical approach, each subsystem could be
associated with an agent, and each agent would only have
access to its local model and reward function.

5 Solving hierarchical factored MDPs

We need to address some problems before we can solve the
Bellman LP for an MDP represented as a subsystem tree:
the LP has exponentially many variables and constraints,
and it has no separation between subsystems. This section
describes our solutions to these problems.

5.1 Approximating the Bellman LP

Consider the MDP obtained from a subsystem tree � ac-
cording to Lemma 4.5. This MDP’s state and action spaces
are exponentially large, with one state for each assignment�

to 0/2 3 �65.565.� 2"8 9 and one action for each assignment
�

to 0/< 3 �65.5657� < = 9 ; so, optimal planning is intractable. We
use the common approach of restricting attention to value
functions that are compactly represented as a linear com-
bination of basis functions 0�� 3 �.56565.� � � 9 . We will write� ( � � for the weights of our linear combination and �
for the matrix whose columns are the basis functions; so,
our representation of the value function is @�
�� � .

As proposed by Schweitzer and Seidmann [19], we can
substitute our approximate value function representation
into the Bellman LP (1):

]_^a`b^ N ^ac6d V)e�� �
� � g �&% Q ' 	R% � � (3)

There is, in general, no guarantee on the quality of the ap-
proximation @�
�� � , but recent work of de Farias and
Van Roy [4] provides some analysis of the error relative to
that of the best possible approximation in the subspace, and
some guidance as to selecting the state relevance weights V
so as to improve the quality of the approximation.

We will choose the basis � to reflect the structure of
� : we will allow ourselves complete flexibility to repre-
sent the value function @ � of each subsystem � � , but we
will approximate the global value function @ by the sum

of the subsystem value functions.2 If � � is itself a sub-
system tree, we will further approximate the global value
function by decomposing @ � recursively into a sum of its
sub-subsystem value functions; but for simplicity of nota-
tion, we will assume that � has been flattened so that the
��� s are all basic subsystem MDPs.

More specifically, let � � be the basis for � � within
� . In other words, let the U th column of � � be an indi-
cator function over assignments to 	 `%��d K ` I�
 * � F which is 1
when 	 `%� d K ` I�
 * � �7F is set to its U th possible setting, and 0
otherwise. Then we can write @�
 [ � � � @ � . Substituting
this approximation into (3) yields

])^ `b^ N ^ c.d [ � V)e�� � @ �
[ � � � @ � g � % Q [ � ' 	 % � � @ � (4)

5.2 Factoring the approximate LP

The substitution (4) dramatically reduces the number of
free variables in our linear program: instead of one vari-
able for each assignment to 	 `%� d K ` I�
 * � F , we now have one
variable for each assignment to 	 `�� d K ` I�
 * � � F for each � .
The number of constraints, however, remains the same: one
for each assignment to ������� d * � F . Fortunately, Guestrin et
al. [8] proposed an algorithm that reduces the number of
constraints in a factored MDP by a method analogous to
variable elimination.

Their algorithm introduces an extra variable 	 � � � � 

(called a message variable) for each possible assignment� � to each separating set � d � � d�� * � �7F . To simplify nota-
tion we will sometimes write extra arguments to 	 � ; for
instance, if

� � ��� � is an assignment to ������� d * � � F , it deter-
mines the value of � � and so we can write 	 � ��� � � � � 
 . We
will also introduce dummy variables 
 ��� % � to represent the
total influence of all of the 	 ’s on subsystem � � under ac-
tion

� � . 
 ��� % � is a vector with one component 
 ��� � � � % � for
each assignment

� � to 	 `%��d K ` I�
 * � � F .
With this notation, the Guestrin et al. algorithm re-

duces (4) to the following LP:

]_^ `!^ N ^ac6d [ � V)e�� � @ �
@ � g � ��� % � Q 
 ��� % � Q ' 	 ��� % � @��

 ��� � � � % � 
 [ ����
�� � 	 � ��� � � � � 
 � 	 � ��� � � � � 
 (5)

(The set ��� � contains all � such that � � ( Children * � � F .)
This LP has many fewer constraints than (4): there is one
inequality for each � ��� � ��� � instead of one for each

�����
.

If we are willing to assume a centralized planner with
knowledge of the details of every subsystem, we are now
done: we can just construct (5) and hand it to a linear
program solving package.3 In order to achieve distributed

2We are not restricting ��� to be the value function which
would be optimal if ��� were isolated.

3Actually, we need one more assumption: the state relevance
weights � must factor along subsystem lines so that we can
compute ���� � efficiently. Equivalently, we can pick subsystem
weight vectors �� � that satisfy a condition analogous to consistent
dynamics, then define � so that ������ � �� � .
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Figure 3: Message passing algorithm from the point of view of
subsystem ��� : it maintains a set of local flows � � � and � ���
with corresponding local values � � . ��� receives the current re-
ward message

�� � from its parent ��� . Additionally, each child
subsystem � � sends a message to ��� containing the flows � �
over their separator variables, along with the corresponding total
values �	� of the subtree rooted at �
� . � � combines this infor-
mation to compute the new reward messages

�� � for each child,
along with the flow message � � and total value � � sent to ��� .
planning, though, we need to break (5) into pieces which
refer only to a single subsystem and its neighbors. (In fact,
even if we are relying on a central planner, we may still
want to break (5) into subsystems to give ourselves the flex-
ibility to solve each subsystem with a different algorithm.)

5.3 Reward sharing

If we fix all message variables 	 � � � � 
 , the LP in (5) splits
into many small pieces. An individual piece looks like:

]_^a`b^ N ^ c.d��V � e/@ �
@���g � ��� % � Q 
 ��� % � Q ' 	 ��� % � @�� (6)

Here we have written
�V � for � �� V . The vectors 
 ��� % � are

now constants.
By comparing (6) to the standard Bellman LP (1), we

can see that it represents an MDP with rewards
� ��� % � Q


 ��� % � and transition probabilities
	 ��� % � . We will call this

MDP the stand-alone MDP for subsystem ��� .
Viewing (6) as an MDP allows us to interpret 
 ��� % � as

a vector of adjustments to the reward for subsystem � � .
These adjustments depend on the separating sets between
��� and its neighbors in the subsystem tree.

By looking at the definition of 
 ��� % � in (5), we can see
how a good setting for the message variables encourages
cooperative behavior. The message variable 	 � � � � 
 reduces
the reward of � � in states where � � is true, but increases
the reward of � � ’s parent by the same amount. So, if � �
benefits from being in states where � � is true, we can in-
crease 	 � � � � 
 to cause ��� ’s parent to seek out those states.
Conversely, if the � � states hurt � � ’s parent, we can de-
crease 	 � � � � 
 to encourage � � to avoid them.

This interpretation is an important feature of our algo-
rithm. We have taken a complex planning problem which
may have many strong couplings between subsystems, and
defined a small number of message variables which allow
us to reduce the global coordination problem to the prob-
lem of finding an appropriate reward-sharing plan.

Our algorithm is also linked to reward shaping [18]. In
reinforcement learning, it is common to add fictitious shap-

1. Initialization:
— 
����
— For all subsystems � � , � � ��� , � � ��� , � � ��� ,

and
�� ����� .

— For all � � and separating sets � � touching � � ,
� ��� ���

2. For each subsystem � � , if � ��� or � � for ������� � changed
in the last iteration:

— Solve the reward message LP (11) to find new values
for the message variables

�� � of each separating set be-
tween � � and its children.

— If the reward message LP was bounded, use its value
and dual variables to add a new entry to � � according
to (9). Also add a new row to � � according to (10).

3. For every � , if � � depends on a reward message which
changed in step 2, solve its stand-alone MDP (6). Add a
new entry to � � according to (7). For every separating set
� � which touches � � , add a new row to � ��� as in Eq. (8).

4. If an
��

or a � has changed, set 
���
	 !� and go to 2.

Figure 4: Planning algorithm for subsystem trees.

ing rewards to the system to speed up learning. The pur-
pose of the reward message in our approach is to encour-
age coordination rather than fast learning. Nonetheless, the
reward messages do shape the subsystems’ policies to con-
form to a globally consistent strategy.

5.4 Algorithm description

In this subsection we will describe our algorithm for finding
a good reward-sharing plan. The algorithm is guaranteed to
converge in a finite number of iterations; at termination we
will have found an exact solution to (5).

Our algorithm maintains several sets of variables at each
subsystem in the tree. These variables represent messages
passed between neighboring subsystems in the tree. All
messages are about one of two topics: rewards or expected
frequencies (flows). Flow messages pass up the tree from
child to parent, generating reward messages in their wake.
These reward messages cause neighboring subsystems to
replan, which in turn generates more flow messages. Fig. 3
illustrates the messages exchanged between subsystems.

Reward messages allow our algorithm to encourage co-
operative behavior by rewarding actions which help neigh-
boring subsystems and punishing actions which hurt them.
Flow messages tell subsystems about the policies their
neighbors are considering; they let subsystems know what
assignments to

� � their neighbors have figured out how to
achieve (and at what cost).

The first set of message variables is "	 � � � � 
 , the most
recent reward message received by � � from its parent.
The second set consists of "	 � � � � 
 , the most recent reward-
sharing plan sent to � � ’s children. The remaining sets of
variables keep track of important statistics about the poli-
cies found so far. The algorithm uses these statistics to help
generate new policies for various parts of the subsystem
tree.

We keep track of policies both for individual subsys-



tems and for groups of subsystems. For each individual
subsystem � � , we keep a vector � � whose U th component
is the local expected discounted reward of the U th policy we
computed for � � . We also keep matrices � � � for every
separating set

� � that touches � � . The U th row of � � �
tells us how often the U th policy sets the variables of

� � to
each of their possible values.

If
�

is a feasible flow for � � , composed of one vector� %
for each action

�
, then its component in � � is
 % � % e � % (7)

This is the reward for
�

excluding contributions from mes-
sage variables. The corresponding row of � � � has one ele-
ment for every assignment � � to the variables of

� � . This
element is: 


� � � % � � � �
� %!���B


(8)

This is the marginalization of
�

to the variables of
� � .

Consider now the subtree rooted at � � . For this subtree
we keep a vector of subtree rewards � � and a matrix of
frequencies � � . A new policy for a subtree is a mixture
of policies for its children and its root; we can represent
such a mixed policy with some vectors of mixture weights.
We will need one vector of mixture weights for each child
(call them � � for � ( ��� � ) and one for � � (call it � � ).
Each element of � � and the � � s is a weight for one of the
previous policies we have computed.

Given a set of mixture weights, compute a new entry for
� � in terms of ��� and the trees rooted at � � ’s children:


� � � e�� � Q ���>e�� � (9)

This is the expected discounted reward for our mixed pol-
icy, excluding contributions from message variables. We
can also compute the corresponding new row for � � : it is

� �� � � � (10)

This is how often our mixed policy sets the variables of
� �

to each of their possible values.
Our algorithm alternates between two ways of generat-

ing new policies. The simpler way is to solve a stand-alone
MDP for one of the subsystems; this will generate a new
policy if we have changed any of the related reward mes-
sage variables. The second way is to solve a reward mes-
sage linear program; this LP updates some reward message
variables and also produces a set of mixture weights for use
in equations (9) and (10).

There is a reward message LP for the subtree rooted at
any non-leaf subsystem � � . Let the index � run over ����� ;
then we can write the LP as:]_^ `!^ N ^ac6d�� � Q [ � � �	 � � g
� � � � � � "	 � Q [ � � � ��	��	 � � g���� � � � 	�� (11)

The solution of this LP tells us the value of the new reward
messages "	�� to be sent to � � ’s children. To obtain mixture
weights, we can look at the dual of (11):

] IPO ^ N ^ac6d [ � � � e�� � Q ���>e � � � � � � � "	 � 

� � � � � 

� �� � � �	 � � � 
 - 	 � � � 
 -
� � g ,�� � g ,

(12)

These mixture weights are used to generate the message to
be sent to ��� ’s parent. Fig. 4 brings all of these ideas to-
gether into a message-passing algorithm which propagates
information through our subsystem tree. The following
theorem guarantees the correctness of our algorithm; for
a proof see Sec. 7.

Theorem 5.1 (Convergence and correctness) Let � be
a subsystem tree. The distributed algorithm in Fig. 4 con-
verges in a finite number of iterations to a solution of the
global linear program (4) for � .

While Fig. 4 describes a specific order in which agents
update their policies, other orders will work as well. In
fact, Thm. 5.1 still holds so long as every agent eventually
responds to every message sent to it.

6 An example
Before we justify our algorithm, we will work through a
simple example. This example demonstrates how to deter-
mine which messages agents need to pass to each other, as
well as how to interpret those messages.

6.1 A simple MDP

Our example MDP has 2 binary state variables, � and � ,
and 2 binary action variables, i and j . The state evolves
according to �����R3 
�i�� and �����R3�
�j�������� . Our per-step
reward is

- ,�� ��� � and our discount factor is ' 
J, 5 � . That
means there is a tension between wanting � 
J, to avoid an
immediate penalty and wanting �4
 -

to allow �"
 -
later.

The exact value function for this MDP is
�! �"!�$#�"!�$# , ��% , 


for the states ����
 � , , � , -��.- , �.-�-f
 .
We will decompose our MDP into 2 subsystems, one

with internal variable � and external variable i , and one
with internal variable � and external variables � and j . This
decomposition cannot represent all possible value func-
tions: it is restricted to the family @ � � � � 
 
 @H3 � � 
 Q @ � � � 
 ,
which has only three independent parameters. However,
the exact value function is a member of this family (with@H3 
 �& '"!�$# , 
 and @ � 
 � , �6- , 
 ), so our decomposition
algorithm will find it.

6.2 The LP and its decomposition

With the above definitions, we can write out the full linear
program for computing @ � � � � 
 :])^ `b^ N ^ c.d [
( @ 3 � � 
RQ [*)�@ � � � 


@ 3 � � 
RQ @ � � � 
 g - ,�� �+� � Q ' � @ 3 � i 
BQ @ � � �,��j 
 

There are 16 constraints in the full LP (4 states

�
4 actions).

We can reduce that to 10 by introducing two new variables
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Figure 5: Constraint matrix for the example MDP after
variable elimination. Columns correspond to the variables�
	 ����
 �
	 ����
 � * 	 ����
 � * 	 ����
 � , 	 ����
 � , 	 ��� in that order.

	 � � 
 . 	 � -f
 represents N ^ ` ) � � * @ � � � 
 � '$@ � � j 
 � - ,�� F (the
minimum of the part of the constraint depending on � andj , if � is 1) and similarly for 	 � , 
 . Now we write our LP as

])^ `b^ N ^ c.d [ ( @:3 � � 
BQ [ ) @ � � � 

@H3 � � 
 g '$@:3 � i 
 �+� � � 	 � � 

	 � , 
�� @ � � � 
 � '$@ � � , 
 � - ,��
	 � -/
�� @ � � � 
 � '$@ � � j 
 � - ,��

This LP has the constraint matrix shown in Fig. 5. As in-
dicated, the matrix has a simple block structure: two vari-
ables 	 � � 
 appear in all constraints; two variables @$3 � � 

appear only in the subproblem above the horizontal line;
and two variables @ � � � 
 appear only in the subproblem be-
low the horizontal line. This block structure is what allows
our algorithm to plan separately for the two subproblems.

6.3 Execution of the decomposition algorithm

The decomposition algorithm starts out with 	 � � 
 
J, (no
reward sharing). So, � � always picks � 
 -

, since that
allows it to set � 
 -

and capture a reward of 10 on each
step. Similarly, � 3 sees no benefit to visiting its � 
 -
state, so it heads for �4
J, to avoid a reward of -3 per step.

Each of these two policies results in a new constraint
for our message LP. For example, � � ’s policy tells us that� � g �� Q 33���� 	 � -f
 , since it achieves an average reward of
95 when 	 � -/
 
J, and always sets �4
 -

.
Adding the new constraints and re-solving the message

LP tells us that � 3 and � � disagree about how often �
should equal 1, and suggests putting a premium on �+
 -
for � 3 and the corresponding penalty on � 
 -

for � � .
(The message LP is unbounded at this point, so the size
of the premium/penalty is arbitrary so long as it is large.)
As we would expect, the two MDPs react to this change in
rewards by changing their policies: in step 2 � 3 decides it
will set �_
 -

as often as possible, and � � decides it will
set ��
 , as often as possible.

With the constraints derived from these new policies,
the message LP decides that it will give � 3 a reward of
9 for setting �W
 -

, and charge ��� the corresponding
penalty. With this new reward structure, the two MDPs
can now compute what will turn out to be their final poli-
cies: � 3 will set �J
 -

as often as possible despite the
one-step penalty of -3, thereby allowing � � to set � 
 -
and achieve a reward of 10 on each step. Summing the re-
sulting value functions for the two subproblems gives the
true globally-optimal value function for the overall MDP,
and further steps of our algorithm do not change this result.

7 Algorithm justification
We can derive the algorithm in Fig. 4 by performing a
sequence of nested Benders decompositions on the linear
program (5). This section reviews Benders decomposition,
then outlines how to apply it to (5) to produce our algo-
rithm. Since Benders decomposition is correct and finitely
convergent, this section is a proof sketch for Thm. 5.1.

7.1 Benders decomposition

Benders decomposition [1] solves LPs of the form

]_^a`b^ N ^ c.d i e�� Q j e��� � Q�� � g � (13)

by repeatedly solving subproblems where the value of � is
fixed. It is useful mainly when the subproblems are easier
to solve than the problem as a whole, perhaps because the
matrix

�
is block diagonal or has some other special struc-

ture. (Other types of constraints besides g are also pos-
sible.) We will call � the master variable and � the slave
variable. If we fix �4
��� , we get the subproblem:

]_^ `!^ N ^ac6d jDe��� � g � � � �� (14)

Writing
� � �� 
 for the optimal value of this subproblem, we

reduce (13) to:
]_^a`b^ N ^ac6d i e�� Q � � � 
 . The dual of (14) is

] IPO ^ N ^ac6d � e � � � � �� 
� # � 
Jj � � g , (15)

Note that the feasible region of (15) is independent of �� . If
we have a feasible solution �� to (15), it provides a lower
bound on the subproblem value by plugging �� into the ob-
jective of (15):

� � � 
 g �� e � � � � � 
 . If we have several
feasible solutions

� 3 , � � , . . . , each one provides a lower
bound on

� � � 
 . So, we can approximate the reduced ver-
sion of (13) with

]_^a`b^ N ^ac6d i e�� Q �
� g � TBe � � � � � 
 (16)

The Benders algorithm repeatedly solves (16) to get a new
value of � , then plugs that value of � into (15) and solves
for a new

� T . The process is guaranteed to converge in
finitely many iterations.

7.2 Decomposing the factored LP

We can pick any set of message variables to start our Ben-
ders decomposition. Suppose we pick 	 � � � � 
 for all ��� s
which are children of the root � 3 . These 	 � s will be mas-
ter variables, and all remaining LP variables will be slaves.

Fixing these message variables to "	 � separates the root
from its children. So, the Benders subproblem will split
into several separate pieces which we can solve indepen-
dently. One piece will be just the stand-alone MDP for the
root subsystem, and each other piece will contain a whole
subsystem tree rooted at one of � 3 ’s children.



Using this decomposition, our master becomes:
]_^a`b^ N ^ac6d�� � Q [ ����
�� � � �
Constraints in � � (17)

where
� � is the objective of the root stand-alone MDP and

the
� � s are the objectives of the LPs for the subtrees rooted

at each child ��� . The set � � contains the constraints re-
ceived from each subproblem.

First, consider the stand-alone MDP for the root. The
dual of its Bellman LP (6) is:

] IPO ^ N ^ac6d [ %���� � ��� % � Q "
 ��� % ��� e � % �
[ % � %�� � '�[ % 	����� %�� � % � 
 �V � � %�� g ,

where "
 ��� %�� is a constant vector specified by the choice of

"	�� . We note that the "	�� s appear only in the objective. Thus,
any policy for this subsystem will yield flows "� % � which are

feasible for any setting of the "	 � s. These flows will, in turn,
yield a constraint for the LP in (17):

� � g 
 % � � ��� % � e "� %�� Q 
 % � 
 ��� %�� e "� %�� (18)

The first part of the constraint is the value of the policy
associated with "� %�� , which we stored as an entry in � � in
Sec. 5.4. The second part is the product of the flows (which
we stored as a row of � � � ) with the reward messages.

Now, let’s turn our attention to the LP for the subtree
rooted at a child ��� . By taking the dual of this LP, we will
obtain a constraint of the same form as the one in Eq. (18).
However, the two terms will correspond to the value of the
whole subtree and the flows of the whole subtree, respec-
tively. Fortunately, we can compute these terms with an-
other Benders decomposition that separates � � from its
children. This recursive decomposition gives us the quan-
tities we called � � and � � . Note that we do not need the
complete set of flows, but only the marginals over the vari-
ables in � � ; so, we can compute � � locally by Eq. (10).
The proof is concluded by induction.

8 Hierarchical action selection
Once the planning algorithm has converged to a solution@�� for each subsystem � � , we need a method for selecting
the greedy action associated with the global value function@ 
 [ � � � @ � . We might try to compute the best action
by enumerating all actions and comparing them. Unfortu-
nately, our action space is exponentially large, making this
approach infeasible. However, we can exploit the subsys-
tem tree structure to select an action efficiently [8].

Recall that we are interested in finding the greedy ac-
tion which maximizes the � function. Our value func-
tion is decomposed as the sum of local value functions
over subsystems. This decomposition also implies a de-
composition of the � function: � 
 [ � � � , where:� � ��� � ��� � 
 
 � � ��� � ��� � 
�Q ' [ � 
� 	 � ��� #� � � � ��� � 
 @ � ��� #� 
 .

Note that some of the external variables
� � will be in-

ternal to some other subsystem, while others correspond to
actual action choices. More specifically, for each subsys-
tem � � , divide its variables into those which are internal
to some subsystem in � (state variables) and those which
are external to all subsystems (action variables). Write � �
for the former and � � for the latter.

At each time step ! , � � observes the current value of� � . (All of these variables are either internal or external to
��� , so a subsystem never needs to observe variables out-
side its scope.) Subsystem � � then instantiates the state-
variables part of � � to � � , generating a new local � � func-

tion, denoted by �	� ��
� � � � 
 , which only depends on local
action variables � � .

The subsystems must now combine their local � � func-
tions to decide which action is globally greedy, i.e., which
action � maximizes [ � ��� ��
� � * � � �
�RF 
 . They can do so by
making two passes over the subsystem tree, one upwards
and one downwards. If the parent of � � is ��� , write � � �
for an assignment to their common action variables.

In the upwards pass, � � computes a conditional strat-
egy for each assignment � � � to its parent’s actions. The

value � � ��
� � of this strategy is computed recursively:

��� ��
� � � � � � 
 
 N"IPO� � � � � ��� ���� ��� ��
� � � � 
$Q 

����
 � � ��� ��
� � � � � 
���

In the downwards pass, each subsystem chooses an action
given the choices already made: ILK M�N"IPO � � � � � ��� � ��� ��
� � � � � 
 .

The cost of this action selection algorithm is linear in the
number of subsystems and in the number of actions in each
subsystem. Thus, we can efficiently compute the greedy
policy associated with our compact value function.

9 Reusing subsystems, plans and messages
In typical real-world problems, subsystems of the same
type will appear in several places in the subsystem tree.
For example, in a car engine, there will typically be several
cylinder subsystems. In addition to the conceptual advan-
tages of representing all cylinders the same way, our algo-
rithm can gain computational advantages by reusing both
plans and messages in multiple parts of the subsystem tree.

We can view a subsystem tree (Definition 4.1) as a class
or template. Then, when designing a factorization for a new
problem, we can instantiate this class in multiple positions
in our subsystem tree. We can also form complex classes
out of simpler ones; instantiating a complex class then in-
serts a whole subtree into our tree (and also indicates how
subsystems are grouped to form a hierarchical tree).

Now suppose that we have found a new policy for a sub-
system � � . Our algorithm uses this policy to compute a
set of dual variables

�
as in (2), then marginalizes

�
onto

each of � � ’s separating sets (8) to generate constraints
in reward message LPs. These same dual variables

�
are

feasible for any subsystem � � of the same class as � � .



Therefore, we can reuse
�

by marginalizing it onto � � ’s
separating sets as well to generate extra constraints. Fur-
thermore, we can record

�
in � � ’s class definition, and

whenever a new subsystem tree uses another instance of
� � ’s class, we can save computation by reusing

�
again.

Finally, if two whole subtrees of � are equivalent, we
can reuse the subtree policy messages from our algorithm.
More precisely, two subtrees are equivalent if their roots
are of the same class and their children are equivalent. Sets
of equivalent subtrees contain sets of same-class subsys-
tems, and so policies from subsystems in one subtree can
be reused in the others as described above. In addition,
mixed policies for the whole subtree can be reused, since
they will be feasible for one subtree iff they are feasible for
the other. That means that whenever we add a row to � �
and � � (equations (9) and (10)) we can add the same row
to � � and ��� , yielding further computational savings.

10 Conclusions

In this paper, we presented a principled and practical plan-
ning algorithm for collaborative multiagent problems. We
represent such problems using a hierarchical decomposi-
tion into local subsystems. Although each subsystem is
small, once these subsystems are combined we can repre-
sent an exponentially larger problem.

Our planning algorithm can exploit this hierarchical
structure for computational efficiency, avoiding an expo-
nential blow-up. Furthermore, this algorithm can be im-
plemented in a distributed fashion, where each agent only
needs to solve local planning problems over its own sub-
system. The global plan is computed by a message passing
algorithm, where messages are calculated by local LPs.

Our representation and algorithm are suitable for het-
erogeneous systems, where subsystem MDPs are repre-
sented in different forms or solved by different algorithms.
For example, one subsystem MDP could be solved by pol-
icy iteration, while other could be tackled with a library
of heuristic policies. Furthermore, some subsystem MDPs
could have known models, while others could be solved by
reinforcement learning techniques.

Our planning algorithm is guaranteed to converge to the
same solution as the centralized approach of Guestrin et
al. [8], who experimentally tested the quality of their algo-
rithm’s policies on some benchmark problems. They con-
cluded that the policies attained near-optimal performance
on these problems and were significantly better than those
produced by some other methods. Our distributed algo-
rithm converges to the same policies; so, we would expect
to see the same positive results, but with planning speedups
from reuse and without the need for centralized planning.

We believe that hierarchical multiagent factored MDPs
will facilitate the modeling of practical systems, while our
distributed planning approach will make them applicable to
the control of very large stochastic dynamical systems.
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