No-regret Algorithms for Online Convex Programs

Geoffrey J. Gordon
Department of Machine Learning
Carnegie Mellon University
Pittsburgh, PA 15213

ggor don@s. crru. edu

Abstract

Online convex programming has recently emerged as a powgatfaitive for
designing machine learning algorithms. For example, OCPbeaused for learn-
ing a linear classifier, dynamically rebalancing a binargrek tree, finding the
shortest path in a graph with unknown edge lengths, solvisguetured classi-
fication problem, or finding a good strategy in an extensiveafgame. Several
researchers have designed no-regret algorithms for OCR. cBmpared to al-
gorithms for special cases of OCP such as learning from exubiice, these
algorithms are not very numerous or flexible. In learningrfrexpert advice,
one tool which has proved particularly valuable is the cspomdence between
no-regret algorithms and convex potential functions: bgsoming about these
potential functions, researchers have designed algasithith a wide variety of
useful guarantees such as good performance when the tgpmehbsis is sparse.
Until now, there has been no such recipe for the more genéZ&® @oblem, and
therefore no ability to tune OCP algorithms to take advamtafgproperties of the
problem or data. In this paper we derive a new class of ncetdgarning al-
gorithms for OCP. Theskagrangian Hedginglgorithms are based on a general
class of potential functions, and are a direct generatiraif known learning rules
like weighted majority and external-regret matching. ldi&dn to proving regret
bounds, we demonstrate our algorithms learning to playcamd-poker.

1 Introduction

In a sequence of trials we must pick hypothegges,,... €). After we choosey;, the correct
answer is revealed as a convex loss functigy;).! Just before seeing thé&" example, our total

loss is thereford.; = ZE;} 2;(y;). If we had predicted using some fixed hypothesisstead, then

our loss would have beeﬁf;} £;(y). Our totalregretat timet is the difference between these two
losses, with positive regret meaning that we would havespredly to our actual plays:

t—1
pe(y) =L =Y Li(y) pe=suppi(y)
i=1 yey

We assume thay is a compact convex subset Bf that has at least two elements. In classical
no-regret algorithms such as weighted majorityjs a simplex: the corners QP represent pure
actions, the interior points @f represent probability distributions over pure actionsl tre number
of cornersn is the same as the number of dimensiansin a more general OCB/) may have

"Many problems use loss functions of the fofaty:) = £(y:, yi™°), where/ is a fixed function such as
squared error angl™* is a target output. The more general notation allows for problems where thay be
more than one correct prediction.

many more extreme points than dimensionss d. For example) could be a convex set like
{y | Ay = b, y > 0} for some matrixA and vectom, or it could even be a sphere.

The shape ofy captures the structure in our prediction problem. Eachtpaif)) is a separate
hypothesis, but the losses of different hypotheses artetkta each other because they are all em-
bedded in the common representation sg&éeWhile we could run a standard no-regret algorithm
such as weighted majority on a structu@@dy giving it hypotheses corresponding to the extreme
pointsc; ... ¢, of Y, this transformation would lose the connections among thgses (with a
corresponding loss in runtime and generalization ability)

Our algorithms below are stated in terms of linear loss fonst ¢;(y) = ¢; - y. If £; is nonlinear
but convex, we can substitute the derivative at the curredigtion,d¢;(y;), for ¢;, and our regret
bounds will still hold (see [1, p. 53]). We will writé for the set of possible gradient vectas

2 Related Work

A large number of researchers have studied online prediatigeneral and OCP in particular. The
OCP problem dates back to Hannan in 1957 [2]. The name “oklimgex programming” is due
to Zinkevich [3], who gave a clever gradient-descent athani A similar algorithm and a weaker
bound were presented somewhat earlier in [1]: that pap&® @lgorithm, using potential function
lo(w) = k|lw||%, is equivalent to Zinkevich's “lazy projection” with a fixddarning rate. Another
clever algorithm for OCP was presented by Kalai and Vemp§la [

Compared to the above papers, the most important contibafithe current paper is its generality:
no previous family of OCP algorithms can use as flexible asct#spotential functions. As an
illustration of the importance of this generality, consittes problem of learning from expert advice.
Well-known regret bounds for this problem are logarithnmi¢tie number of experts (e.g., [5]); no
previous bounds for general OCP algorithms are subline@aeimumber of experts, but logarithmic
bounds follow directly as a special case of our results [6, 8€l.2]. Despite this generality, our
core result, Thm. 4 below, takes only half a dozen short égsto prove.

From the online prediction literature, the closest relatedk is that of Cesa-Bianchi and Lugosi [7],
which follows in the tradition of an algorithm and proof bya8kwell [8]. Cesa-Bianchi and Lugosi
consider choosing predictions from an essentially-aahytdecision space and receiving outcomes
from an essentially-arbitrary outcome space. Togethercsidoa and an outcome determine how
a markerR* € R¢ will move. Given a potential functiod/, they present algorithms which keep
G(R;) from growing too quickly. This result is similar in flavor taioThm. 4, and both Thm. 4
and the results of Cesa-Bianchi and Lugosi are based on Bédkekke conditions. In fact, our
Thm. 4 can be thought of as the first generalization of wetlviem online learning results such as
Cesa-Bianchi and Lugosi’s to online convex programming.

The main differences between the Cesa-Bianchi—Lugositsemud ours are the restrictions on their
potential functions. They write their potential functios @(u) = f(®(u)); they require® to

be additive (that isP(u) =), ¢:(u;) for one-dimensional functiong;), nonnegative, and twice
differentiable, and they requirg : R — R¥ to be increasing, concave, and twice differentiable.
These restrictions rule out many of the potential functiossd here, and in fact they rule out most
online convex programming problems. The most restrictaguirement is additivity; for example,
when defining potentials for OCPs via Eq. (7) below, unlesssét)’ can be factored &g8; x Vs, x

... x Yy the potentials are generally not expressiblg @B(v)) for additive®.

During the preparation of this manuscript, we became awfiteearecent work of Shalev-Shwartz
and Singer [9]. This work generalizes some of the theorenj§]iand provides a very simple and
elegant proof technique for algorithms based on convexmpialdunctions. However, it does not
consider the problem of defining appropriate potential fiams for the feasible regions of OCPs
(as discussed in Sec. 5 below and in more detail in [6]); figdinch functions is an important
requirement for applying potential-based algorithms td?eC

In addition to the general papers above, there are manygretralgorithms for specific OCPs, such
as predicting as well as the best pruning of a decision tr@g f@organizing a binary search tree so
that frequent items are near the root [4], and picking patlesgraph with unknown edge costs [11].

81 — 0

| fort«—1,2,...

04] _yt «— f(st) (*)
] if 7; -u > 0then

] Ye — U/ (G - u)

] else
1 y; — arbitrary element o)

' f

] Observer;, computes;; from (1)
end

-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 1: Asefy = {y1 +y> = 1, y > 0} (thick Figure 2: The gradient form of the La-
dark line) and its safe sé&t (light shaded region). grangian Hedging algorithm.

3 Regret Vectors

Lagrangian Hedging algorithms maintain their state ragret vector s;, defined by the recursion
St+1 = St —+ (yt . Ct)’u — Ct (1)

with the base case, = 0. Herew is an arbitrary vector which satisfigs « = 1 forall y € V.
(If necessary we can append a constant element tosesclthat such a exists.) The regret vector
contains information about our actual losses and the gnélad our loss functions: frorms, we can
find our regret versus anyas follows. (This property justifies the name “regret vetor

t—1 t—1 t—1

yose=» Wi-c)y-u—Y y-ci=Li—Y y-ci=pi(y)

=1 =1 =1

We can define aafe setin which our regret is guaranteed to be nonpositive:
S={s|(Vyed)y -s<0} 2)

The goal of the Lagrangian Hedging algorithm is to keep iggetvectors; near the safe s&. Sis

a convex cone: it is closed under positive linear combimatiof its elements. And, it igolar [12]
to the cone of unnormalized hypotheses:

St=Y={w|yed, r>0} 3)

4 The Main Algorithm

We will present the general LH algorithm first, then (in Séca Specialization which is often easier
to implement. The two versions are called gradient formand theoptimization form The gradient
form is shown in Fig. 2. At each step it chooses its play basati®@current regret vectey (Eqg. (1))
and a closed convex potential functiéi{s) : R? — R with subgradientf(s) : R s R?. This
potential function is what distinguishes one instance efltH algorithm from another#'(s) should
be small whens is in the safe set, and large wheis far from the safe set.

For example, suppose thytis the probability simplex ifR¢, so thatS is the negative orthant iR<.
(This choice ofy would be appropriate for playing a matrix game or predictiogn expert advice.)
For this)’, two possible potential functions are

Fi(s) :ane"s" —Ind Fy(s) 22[51]3/2
wheren > 0 is a learning rate anfk], = max(s,0). The potentialF; leads to the Hedge [5] and

weighted majority [13] algorithms, while the potenti& results in external-regret matching [14,
Theorem B]. For more examples of useful potential functices [6].

To ensure the LH algorithm chooses legal hypotheges), we require the following (note the
constant O is arbitrary; any othemwould work as well)

F(s) <0 VseS 4)

Theorem 1 The LH algorithm is well-defined: defirg as in (2) and fix a finite convex potential
functionF'. If F(s) < 0forall s € S, then the LH algorithm picks hypothesgsc) for all ¢.

(Omitted proofs are given in [6].) We can also define a versibthe LH algorithm with an ad-
justable learning rate: replacifg(s) with F'(ns) is equivalent to updating; with learning rate.
Adjustable learning rates will help us obtain regret bouileisome classes of potentials.

5 The Optimization Form

Even if we have a convenient representation of our hypategmce), it may not be easy to work
directly with the safe sef. In particular, it may be difficult to define, evaluate, anffedentiate a
potential functionf” which has the necessary properties. To avoid these difésulive can work
with an alternate form of the LH algorithm. This form, callta optimization form definesF’ in
terms of a simpler functioi” which we will call thehedging functionlt uses the same pseudocode
as the gradient form (Fig. 2), but on each step it compiitemnd O F' by solving an optimization
problem involvingi¥ and the hypothesis sgt (Eq. (8) below).

For example, two possible hedging functions are

Wi(y) = 5
1(®) { 0 otherwise ®)
Wa(y) = 57 /2 (6)

i

If Y is the probability simplex irR9, it will turn out thatWW; (57/n) and Ws(y) correspond to the
potentialsF; and F» from Section 4 above. So, these hedging functions resubhénwieighted
majority and external-regret matching algorithms. For sangple where the hedging function is
easy to write analytically but the potential function is rhunore complicated, see Sec. 8 or [6].

The optimization form of the LH algorithm using hedging ftino IV is defined to be equivalent to

the gradient form using
F(s) =sup (s- 5 — W(y)) (@)
geY
Here) is defined as in (3). To implement the LH algorithm using th€ of Eq. (7), we need an
efficient way to comput@F'. As Thm. 2 below shows, there is alwayg ahich satisfies

y € arg ;;lea;(s g —W(y)) (8)

and any sucly is an element 0®F. So, the optimization form of the LH algorithm uses the same
pseudocode as the gradient form (Fig. 2), but uses Eq. (B)swit s; to computey; in line (x).

To gain an intuition for Egs. (7—8), consider the examplextémal-regret matching. Singg is
the unit simplex inR?,) is the positive orthant ilR?. So, withiW, () = ||7|/2/2, the optimization
problem (8) will be equivalent to

y in £ [ls — 3
= arg min —||s — 1
y = arg mi i yliz
That is,y is the projection of ontoR¢ by minimum Euclidean distance. It is not hard to verify that
this projection replaces the negative elements wfth zeros,j = [s];.. Substituting this value for
7 back into (7) and using the fact that [s] = [s] - [s]+, the resulting potential function is

Fy(s)=s-[s]y =) [silf/2 =) [si}/2

% %

as claimed above. This potential function is the standaefonanalyzing external-regret matching.

Theorem 2 Let W be convexdom W N) be nonempty, andl () > 0 for all 7. Suppose the
sets{y | W(y) + s -y < k} are compact for alls and k. DefineF" as in (7). ThenF is finite and
F(s) <0forall s € S. And, the optimization form of the LH algorithm using the giad function
W is equivalent to the gradient form of the LH algorithm withtgratial functionF'.

2Eq. (7) is similar to the definition of the convex du&l*, but the supremum is ovgre) instead of over
all 5. As aresult,F" andW* can be very different functions. As discussed in [B]can be expressed as the
dual of a function related to/.

6 Theoretical Results

Our main theoretical results are regret bounds for the Lirittyn. The bounds depend on the
curvature of our potential’, the size of the hypothesis sBt and the possible slopé&sof our loss
functions. Intuitively,F must be neither too curved nor too flat on the scale of the egdat; from
Eq. (1): if F is too curved the® F" will change too quickly and our hypothesjswill jump around

a lot, while if F' is too flat then we will not react quickly enough to change=iret.

We will state our results for the gradient form of the LH aifam. For the optimization form,
essentially the same results hold, but the constants aneedeifi terms of the hedging function
instead. Therefore, we never need to work with (or even be tblvrite down) the corresponding
potential function. For more details, see [6]. One resulicWhs slightly tricky to carry over is
tuning learning rates. The choice of learning rate below thedresulting bound are the same as
for the gradient form, but the implementation is slightl§felient: to set a learning ratg > 0, we
replaceW (z) with W (g/n).

We will need upper and lower bounds &h We will assume

F(s+A) < F(s) + A f(s) + CllA|I? 9)

for all regret vectors and increments\, and
[F(s) + Al = inf Blls — " (10)
for all s. Here|| - || is an arbitrary finite norm, and > 0, B > 0, C' > 0, and1 < p < 2 are

constants. Eg. (9), together with the convexityfafimplies thatF' is differentiable andf is its
gradient; the LH algorithm is applicable # is not differentiable, but its regret bounds are weaker.

We will bound the size o} by assuming that
lylle < M (11)
for all y in). Here,|| - ||, is the dual of the norm used in Eq. (9) [12].

The size of our update tg (in Eq. (1)) depends on the hypothesis ¥ethe cost vector set, and
the vectoru. We have already boundéd rather than bounding andu separately, we will assume
that there is a constaifi? so that

E(||st+1— sell* | s0) < D (12)

Here the expectation is taken with respect to our choice pbthesis, so the inequality must hold
for all possible values of;. (The expectation is only necessary if we randomize ouraehof
hypothesis, as would happen)ifis the convex hull of some non-convex set. If interior poiity/
are valid plays, we need not randomize, so we can drop thetatj in (12) and below.)

Our theorem then bounds our regret in terms of the above aatisstSince the bounds are sublinear
in t, they show that Lagrangian Hedging is a no-regret algoritftlan we choose an appropriate
potential F'.

Theorem 3 Suppose the potential functidnis convex and satisfies Egs. (4), (9) and (10). Suppose
that the problem definition is bounded according to (11) ah®)(Then the LH algorithm (Fig. 2)
achieves expected regret

E(pia(y)) < M((tCD + A)/B)"? = O(t'/7)
versus any hypothesise).

If p = 1 the above bound i©(t). But, suppose that we know ahead of time the number of trials
we will see. Definé:(s) = F(ns), where

n=+A/(tCD)
Then the LH algorithm with potenti&l achieves regret
E(pe1(y)) < (2M/B)VIACD = O(V1)
for any hypothesig €).

The full proof of Thm. 3 appears in [6]; here, we sketch theopraf one of the most important
intermediate results. Thm. 4 shows that, if we can guarafitee,; — s;) - OF (t) < 0, thenF'(s;)
cannot grow too quickly. This result is analogous to Blackwapproachability theorem: since the
level sets ofF" are related t&, we will be able to shows; /t — S, implying no regret.

Theorem 4 (Gradient descent)Let F'(s) and f(s) satisfy Equation (9) with seminorih- || and
constantC. Letzg,x1,... be a sequence of random vectors. Weite= Zl o Zi, and letD be a
constant so thaf?(||z¢||? | s;) < D. Suppose that, for ali, E(x, - f(s;) | s;) < 0. Then for allt,

E(F(StJrl) | 81) — F<S1) S tCD

ProOF The proof is by induction: fot > 2, assumeZ(F'(s;) | s1) < F(s1) + (¢t — 1)CD. (Itis
obvious that the base case holds#fet 1.) Then:

F(si41) = F(st+)
< F(s) +a- fse) + Clla?
E(F(si31) | 1) < F(s)+CD
E(F(st+1) [s1) < E(F(st) | s1) +CD
E(F(si31) | 1) < F(s1) + (t —1)CD +CD
which is the desired result. O

7 Examples

The classical applications of no-regret algorithms arenieg from expert advice and learning to
play a repeated matrix game. These two tasks are essemipllyalent, since they both use the
probability simplexy = {y | y > 0, >_,y; = 1} for their hypothesis set. This choicepfsimplifies
the required algorithms greatly; with appropriate choiigsotential functions, it can be shown that
standard no-regret algorithms such as Freund and Scleapleglge [5], Littlestone and Warmuth'’s
weighted majority [13], and Hart and Mas-Colell's externegret matching [14, Theorem B] are all
special cases of the LH algorithm.

A large variety of other online prediction problems can deccast in our framework. These prob-
lems include path planning when costs are chosen by an ady€ikl], planning in a Markov
decision process when costs are chosen by an adversarpfilig pruning of a decision tree [16],
and online balancing of a binary search tree [4]. More usesntihe convex programming are
given in [1, 3,4]. In each case the bounds for the LH algorithithbe polynomial or better in the
dimensionality of the appropriate hypothesis set and sahliin the number of trials.

8 Experiments

To demonstrate that our theoretical bounds translate td goactical performance, we implemented
the LH algorithm with the potential functio; from (6) and used it to learn policies for the game
of one-card poker. (The hypothesis space for this learnioglem is the set ofequence weight
vectors which is convex because one-card poker is an extensive-dgame [17].)

In one-card poker, two players (called theamblerand thedealer) each ante $1 and receive one
card from a 13-card deck. The gambler bets first, addingrefber $1 to the pot. Then the dealer
gets a chance to bet, again either $0 or $1. Finally, if theldenbet $0 and the dealer bet $1, the
gambler gets a second chance to bring her bet up to $1. Ifrgithger bets $0 when the other has
already bet $1, that player folds and loses her ante. If eefitayer folds, the higher card wins the
pot, resulting in a net gain of either $1 or $2 (equal to thepfilayer's ante plus the bet of $0 or
$1). In contrast to the usual practice in poker we assumehbaiayoff vector; is observable after
each hand; the partially-observable extension is beyomdc¢bpe of this paper.

One-card poker is a simple game; nonetheless it has manyedfléments of more complicated
games, including incomplete information, chance eventd, raultiple stages. And, optimal play
requires behaviors like randomization and bluffing. Thegba} strategic difference between one-
card poker and larger variants such as draw, stud, or holdsehe idea of hand potential: while

0.6

0.6

: : : :

— Gambler bound — Gambler bound
Dealer bound Dealer bound

051 Avg payoft 051 Avg payoft

- Minimax value - Minimax value

0.4F 1 04k

031 4 031

021 4 0.2

0.1p 1 01p

—0ak

—02F

~03F

—0.4lt L L L L L —0.4lt L L L L L
0 50 100 150 200 250 0 50 100 150 200 250

Figure 3: Performance in self-play (left) and against a figpdonent (right).

45679 and 24679 are almost equally strong hands in a show@bey are both 9-high), holding
45679 early in the game is much more valuable because reglt@ 9 with either a 3 or an 8 turns
it into a straight.

Fig. 3 shows the results of two typical runs: in both panedstbaler is using our no-regret algorithm.
In the left panel the gambler is also using our no-regretrittym, while in the right panel the
gambler is playing a fixed policy. The-axis shows number of hands played; thexis shows
the average payoff per hand from the dealer to the gamblee. v@lue of the game;-$0.064, is
indicated with a dotted line. The middle solid curve shows #lctual performance of the dealer
(who is trying to minimize the payoff).

The upper curve measures the progress of the dealer'sigaratiter every fifth hand we extracted
a strategyy;"® by taking the average of our algorithm’s predictions so ffe then plotted the

worst-case value af;*®. That is, we plotted the payoff for playing“® against an opponent which
knowsy;“® and is optimized to maximize the dealer’s losses. SimildHlg lower curve measures

the progress of the gambler’s learning.

In the right panel, the dealer quickly learns to win agaihst hon-adaptive gambler. The dealer
never plays a minimax strategy, as shown by the fact that piperucurve does not approach the
value of the game. Instead, she plays to take advantage gjatihbler's weaknesses. In the left
panel, the gambler adapts and forces the dealer to play moseovatively; in this case, the limiting
strategies for both players are minimax.

The curves in the left panel of Fig. 3 show an interestingatfféhe small, damping oscillations
result from the dealer and the gambler “chasing” each otteemal a minimax strategy. One player
will learn to exploit a weakness in the other, but in doing st @pen up a weakness in her own
play; then the second player will adapt to try to take advgmtaf the first, and the cycle will
repeat. Each weakness will be smaller than the last, so theesee of strategies will converge to a
minimax equilibrium. This cycling behavior is a common pberenon when two learning players
play against each other. Many learning algorithms will eysb strongly that they fail to achieve the
value of the game, but our regret bounds eliminate this pbibgi

9 Discussion

We have presented the Lagrangian Hedging algorithms, dyfarhno-regret algorithms for OCP
based on general potential functions. We have proved rbgratds for LH algorithms and demon-
strated experimentally that these bounds lead to goodgirezlperformance in practice. The regret
bounds for LH algorithms have low-order dependenced,ahe number of dimensions in the hy-
pothesis sey. This low-order dependence means that the LH algorithmseean well in prediction
problems with complicated hypothesis sets; these problemodd otherwise require an impractical
amount of training data and computation time.

Our work builds on previous work in online learning and oalgonvex programming. Our contribu-
tions include a new, deterministic algorithm; a simple,gahproof; the ability to build algorithms
from a more general class of potential functions; and a new afduilding good potential func-
tions from simpler hedging functions, which allows us to stoact potential functions for arbitrary
convex hypothesis sets. Future work includes a no-intewawakt version of the LH algorithm, as
well as a bandit-style version. The former will guaranteevesgence to a correlated equilibrium in
nonzero-sum games, while the latter will allow us to worknirimcomplete observations of the cost
vector €.g, as might happen in an extensive-form game such as poker).

Acknowledgments Thanks to Amy Greenwald, Martin Zinkevich, and Sebastiarumhas well
as Yoav Shoham and his research group. This work was supdoyts8ISF grant EF-0331657 and
DARPA contracts F30602-01-C-0219, NBCH-1020014, and HRE06-0023. The opinions and
conclusions are the author’s and do not reflect those of thgdy&rnment or its agencies.

References

[1] Geoffrey J. Gordon. Approximate Solutions to Markov Decision Processd2hD thesis,
Carnegie Mellon University, 1999.

[2] James F. Hannan. Approximation to Bayes risk in repeplayg In M. Dresher, A. Tucker, and
P. Wolfe, editorsContributions to the Theory of Gameslume 3, pages 97-139. Princeton
University Press, 1957.

[3] Martin Zinkevich. Online convex programming and getieed infinitesimal gradient ascent.
In Proceedings of the Twentieth International Conference aghihe LearningAAAI Press,
2003.

[4] Adam Kalai and Santosh Vempala. Geometric algorithrmofdine optimization. Technical
Report MIT-LCS-TR-861, Massachusetts Institute of Tedbgy 2002.

[5] Yoav Freund and Robert E. Schapire. A decision-theomgtineralization of on-line learning
and an application to boosting. EuroCOLT 95 pages 23-37. Springer-Verlag, 1995.

[6] Geoffrey J. Gordon. No-regret algorithms for structipgediction problems. Technical Report
CMU-CALD-05-112, Carnegie Mellon University, 2005.

[7] Nicolo Cesa-Bianchi and &or Lugosi. Potential-based algorithms in on-line préaiicand
game theoryMachine Learning51:239-261, 2003.

[8] David Blackwell. An analogue of the minimax theorem factor payoffs.Pacific Journal of
Mathematics6(1):1-8, 1956.

[9] Shai Shalev-Shwartz and Yoram Singer. Convex repeatedeg and Fenchel duality. In
B. Sctolkopf, J.C. Platt, and T. Hofmann, editofsgjvances in Neural Information Processing
Systemsvolume 19, Cambridge, MA, 2007. MIT Press.

[10] David P. Helmbold and Robert E. Schapire. Predictingriyeas well as the best pruning of a
decision tree. IfProceedings of COLTpages 61—68, 1995.

[11] Eiji Takimoto and Manfred Warmuth. Path kernels andtiplitative updates. I€OLT, 2002.
[12] R. Tyrell Rockafellar.Convex AnalysisPrinceton University Press, New Jersey, 1970.

[13] Nick Littlestone and Manfred Warmuth. The weighted aréy algorithm. Technical Report
UCSC-CRL-91-28, University of California Santa Cruz, 1992

[14] Sergiu Hart and Andreu Mas-Colell. A simple adaptivegadure leading to correlated equi-
librium. Econometrica68(5):1127-1150, 2000.

[15] H. Brendan McMahan, Geoffrey J. Gordon, and Avrim BIuRfanning in the presence of cost
functions controlled by an adversary.Pnoceedings of the Twentieth International Conference
on Machine Learning2003.

[16] David P. Helmbold and Robert E. Schapire. Predictingriyeas well as the best pruning of a
decision tree. ITCOLT, 1995.

[17] D. Koller, N. Meggido, and B. von Stengel. Efficient contation of equilibria for extensive
two-person gamessames and Economic Behavipa#(2), 1996.

