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A learning problem

Observation → Decision → Reward →
→ Observation → Decision → Reward → . . .

Maximize (say) discounted sum of rewards

Standard RL problem, but devil is in the details

Learning for Multi-AgentDecision Problems – p.2/67



Details

What do we get to observe?

What kinds of decisions can we make?

What does the environment remember about our
past decisions?

Is there anybody out there?
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Is there anybody out there?

Q: Why model other agents explicitly? Why are
they any different from the rest of the
environment?

A: Because it helps us predict the future.

A’: Because it helps us act.

Agent = part of the environment which we model
as choosing actions in pursuit of goals
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Problem

Many popular agent models don’t
help much in predicting or acting

. . . unless restrictive assumptions hold
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Agent models

Part of environment:
• Independent, identically distributed actions
• Finite state machine
• Mixture of FSMs

The “who needs more than Bayes’ rule” view

Correct, but unhelpful if many FSMs or states

Lots of FSMs, states in realistic priors
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Agent models

As decision maker:
• helpful teammate
• implacable enemy
• general-sum utility maximizer

First 2 are OK if true, last is not enough to predict
actions
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Rest of talk

Simplify the world drastically, step by step,
preserving agent-modeling aspect of problem

(Start to) add complications back in
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First simplification

Observation → Decision → Reward → . . .

Small discrete set of actions

Known payoff matrix

Observe past actions of all agents

⇒ Ignore all state except other agents; only
learning problem is how to influence them
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Repeated matrix game

Battle of the Sexes

O F

O 4, 3 0, 0

F 0, 0 3, 4
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Outcomes of learning

Q: What are possible/desireable outcomes of
learning in repeated matrix games?

A: Equilibria.

But which equilibria?
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Some kinds of equilibria

Equilibrium: distribution P over joint actions s.t.
no player wants to deviate unilaterally from P

Nash equilibrium: P factors into independent row
and column choices

Correlated equilibrium: general P

• executing P requires “moderator” or
“correlation device”

• “unilaterally deviate” means, on
recommendation of action a, play b
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Equilibria in BoS

OO

FF

OF

FO

Nash: OO, FF, [4
7
O, 3

7
O] (last

equalizes alternatives)

Correlated: e.g., coin flip
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Equilibria in BoS

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0

4a + 0b ≥ 0a + 3b

0c + 3d ≥ 4c + 0d

3a + 0c ≥ 0a + 4c

0b + 4d ≥ 3b + 0d

a, b, c, d ≥ 0

a + b + c + d = 1
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Equilibria as outcomes

Are any of the above reasonable outcomes of
learning?

• Coin flip: yes

• OO, FF: maybe

• [4
7
O, 3

7
O]: no!
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Equilibria as outcomes

Are there reasonable outcomes not included?

Yes: minimax is reasonable if our model is wrong
or if negotiation fails

Minimax: forget their payoffs, they’re out to get
me!

Minimax payoffs may not be result of any
equilibrium
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Equilibria of repeated game

Can’t learn from a single game of BoS

We’re playing repeated BoS

Equilibria of repeated game include minimax
point and all above equilibria (and much, much
more. . . )

(Note: imprecision)

Learning for Multi-AgentDecision Problems – p.17/67



Folk theorem

Luckily, equilibria of repeated game are easier to
characterize

Folk theorem: any feasible and strictly
individually rational reward vector is the payoff of
a subgame-perfect Nash equilibrium of the
repeated game
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Subgame-perfect Nash

Nash equilibrium gives recommended play for
each history

Some legal histories may not be reachable

Recommended plays for these histories don’t
have to be rational
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Incredible threats

T B

L R

0,2 10,3

1,5 *

Two Nash equilibria:
• T,L w/ payoffs 1, 5

• B,R w/ payoffs 10, 3

Only 2nd is subgame perfect: no one wants to
deviate at any history (even unreachable ones)
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Folk theorem, illustrated

OO

FF

OF

FO

⇒
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Are we done?

Not quite: minimax point is only a reasonable
outcome if negotiation fails

If other players are “reasonable,” want better
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Pareto optimality
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Conjecture

For some reasonable definition of “reasonable,” a
reasonable learner will converge to:
• its part of a Pareto-optimal subgame-perfect

Nash equilibrium of the repeated game, if
other players are also reasonable

• a best response, if other players are
stationary

• payoffs ≥ its minimax value, o/w

Cf: ELE [Brafman & Tennenholtz, AIJ 2005]

Note: sufficient patience
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Am I being reasonable?

OK, I’ve conjectured requirements for
“reasonable” algorithms

Are these requirements reasonable?

Maybe. . .
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A learning strategy

Based on two ideas:
• No-regret algorithms
• Proof of Folk Theorem

Run a no-regret algorithm which leaves some
action choices free

Fix those free choices to a folk-theorem-like
strategy

Learning for Multi-AgentDecision Problems – p.26/67



No-regret algorithms

Regret

No regret

An algorithm
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Regret

Regret vs. strategy π = ρπ = how much do I wish I
had played π?

E.g., other played OOOOOOOFOOOFOOFOOOOO, I
played at random

Lots of regret for not playing “O all the time”

Lots of negative regret v. “F all the time”
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Overall regret

Overall regret ρ v. ”comparison class” H = worst
regret v. any strategy in H

We will take H = all constant-action strategies
(e.g. “O all the time”)
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No-regret algorithms

Guarantee ρt grows slower than O(t), often
O(

√
t)

Average regret ρt

t
→ 0 as t → ∞ at rate 1/

√
t

Guarantee is for all sequences of opp plays

⇒ approach equilibrium if opponent tries to hurt
us, something like CLT if fixed opponent strategy

Learning for Multi-AgentDecision Problems – p.30/67



Algorithm for BoS

Keep track of regret vector, St

• St will tell us our regret ρt

Compute [St]+

Renormalize to get q = α[St]+

Randomize according to q

Or play arbitrarily if St ≤ 0

“External regret matching” [Hannan 1957]
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Regret vector

xt =

(

1 if I played O

1 if I played F

)

yt = same for opponent

Myt = my payoffs for each action at time t,
where M is my payoff matrix
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Regret vector, cont’d

rt = xt · Myt = my payoff

st = Myt − rt1 = my regret vector

St =
∑

t st

ρt = max St
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Why does it work?

Potential function, F (S)

• low F (S) ⇒ low regret

Gradient F ′(St) used to select plays

Prescribed play limits motion along gradient
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Potential
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Building on no regret

By itself, external regret matching:
• never gets less than minimax (“rational”)
• converges to best response v. stationary

(“teachable”)

Can we get last property as well (Pareto SP
Nash)?
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Building on no regret

ERM allows arbitrary play if St ≤ 0

Can generalize to use St − λ1 for fixed λ

⇒ we can start off with any strategy, then switch
to no-regret if it isn’t working

So, do something with this flexibility. . .
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Proof sketch of Folk Theorem

Constructive proof: exhibit SPNE strategy which
has desired payoffs

∃ a sequence of pure action profiles which has
(arbitrarily close to) desired average payoff

Start off playing this sequence repeatedly

Punish deviations
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Punishments

Simplest punishment: grim trigger

After a single deviation, play to minimize
deviator’s payoff forever

Nash, but not subgame perfect

More complicated punishments allow deviator to
“pay restitution” and maintain subgame
perfection

Learning for Multi-AgentDecision Problems – p.39/67



Combining NR & FT

Pick large λ so many initial free plays

Pick some Pareto-optimal payoffs

Use free plays to play grim trigger w/ those
payoffs

⇒ everything but subgame perfection
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Discussion

How to choose a Pareto point?

Can we incorporate more sophisticated
bargaining r.t. “take it or leave it”?

Why is subgame perfection hard?
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Bargaining

Important quantity: excess over minimax

Nash: maximize product of excesses

K-S: share sum of excesses proportional to each
player’s largest possible excess

If utilities are transferable, everything reduces to:
share sum of excesses equally
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Backing off simplifications

Environment = Nature, other agents; Nature
resets every stage

Everything is observable

Actions are in {1 . . . k} for small k

Can we add complications back in?
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Relaxing observability

Possible observables:
• my payoff (“bandits problem”)
• my payoff vector for all acts (“experts

problem”)
• entire payoff matrix (“perfect monitoring”)
• my action v. all actions

∃ no-regret algorithms for all cases
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Relaxing observability, cont’d

Difficulty is Folk Theorem strategies

Brafman & Tennenholtz proved ¬∃ ELE in some
cases of imperfect monitoring

Open question: are there interesting subcases of
imperfect monitoring where we can find
“reasonable” algorithms?
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Relaxing finiteness of actions

Suppose Ai is an arbitrary compact convex set

Payoffs are multilinear in a1, a2, . . .

Called “online convex programming”

∃ no-regret algorithms for OCP
• Some allow “free” action choices
• E.g., [Gordon 2005]
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OCP examples

Disjoint paths in a graph

Rebalancing trees

. . .

Learning for Multi-AgentDecision Problems – p.47/67



Paths as OCP

A0 = paths in graph
• One indicator variable for

each edge ij ∈ E

• aij = 1 iff edge ij in path

A = hull(A0) = rand. paths

Cost to i: ci · ai + a1 · a2

• ci = edge costs, player i
• a1 · a2 = collision count

x

1

2 1

3

z

y

g
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Example: avoiding detours
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Generalizing the algorithm

Can do same trick

Start w/ no-regret for OCP

Replace flexible action choices w/ a
folk-theorem-like strategy
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Relaxing independence

What happens if Nature doesn’t reset every
step?

Assume Nature always resets eventually

Between resets: extensive form game (or
stochastic game, or POSG, or . . . )
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Relaxing independence

Strategies in EF games form convex set

Sequence weights

Example: one-card poker
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Relaxing independence, cont’d

Sequence weights are sometimes a big set! Can
we get smaller?

Yes, in special cases ([randomized] path
planning w/ detours, key-finding, multiagent
linear regression)

Don’t know in general
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Example: keys
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Searching as OCP

Strategies = (randomized) paths which visit every
node

payoff = total cost of edges visited before finding
keys

Note: convexity

Learning for Multi-AgentDecision Problems – p.55/67



Searching as OCP

hijk = did we traverse ij before visiting k

E.g., [12543] =

`t(h) = ct,ijk · h

ct,ijk =

{

cij keys at k on trial t

0 otherwise
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Example: regression

Linear regression w/ 2 agents

Motivation: compensation for drift in a controller,
or actor-critic
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Drift compensation

Disturbance field
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Drift compensation

Disturbance field
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One-d view
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After 5 steps
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After 10 steps
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After 15 steps
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After 20 steps
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After 25 steps
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Conclusions

Argued that “reasonable” learners in repeated
matrix games should seek feasible, IR, and
Pareto-optimal payoffs

If other players reasonable, should converge to
equilibrium

If others stationary, best response

If others unreasonable, minimax
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Conclusions, cont’d

If Nature has state, move to repeated OCP

Open questions:
• reducing requirements for observability
• achieving subgame perfection
• reducing size of representations

Thanks: Ron Parr, Yoav Shoham’s group, Sebastian Thrun
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