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Abstract

In machine learning problems with tens of
thousands of features and only dozens or hun-
dreds of independent training examples, di-
mensionality reduction is essential for good
learning performance. In previous work,
many researchers have treated the learning
problem in two separate phases: first use an
algorithm such as singular value decomposi-
tion to reduce the dimensionality of the data
set, and then use a classification algorithm
such as näıve Bayes or support vector ma-
chines to learn a classifier. We demonstrate
that it is possible to combine the two goals
of dimensionality reduction and classification
into a single learning objective, and present a
novel and efficient algorithm which optimizes
this objective directly. We present experi-
mental results in fMRI analysis which show
that we can achieve better learning perfor-
mance and lower-dimensional representations
than two-phase approaches can.

1. Introduction

Learning problems in biomedical image analysis are of-
ten characterized by having tens of thousands of fea-
tures and only a small number of labelled training ex-
amples. In the domain we are considering, functional
neuroimaging, this situation arises because of the dif-
ficulty of collecting and labelling independent training
examples: temporal autocorrelation in fMR image se-
quences is very high and it is expensive to collect more
than a few image sequences.

In order to obtain good learning performance in these
domains, researchers often perform dimensionality re-
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duction before learning a classifier. Two typical ap-
proaches to dimensionality reduction are feature se-
lection (e.g., forward stepwise selection) and feature
synthesis (e.g., singular value decomposition). In this
paper we will focus on feature synthesis.

In a typical feature synthesis approach we build fea-
tures based on the distribution of the independent vari-
ables in the training data, using algorithms like singu-
lar value decomposition (SVD) or independent com-
ponent analysis (ICA). Unfortunately, feature spaces
produced in this manner may not necessarily be good
for classification, since they are derived without refer-
ence to the quantity we are trying to predict.

For example, consider fMR images taken while a sub-
ject was thinking about items of different semantic cat-
egories, and suppose that our task is to decide which
semantic category was present in each example. If
we perform an SVD of this data, the components ex-
tracted will capture image variability due to aware-
ness, task control, language use, the visual form of the
cues given, and many other factors. Most of these
dimensions of variability will have little information
about the semantic category, and if their variance is
too high they may prevent the SVD from noticing the
directions of variation which would be useful for clas-
sification.

On the other hand, the basic idea of the SVD—trying
to find a small set of features which accurately describe
the test data—seems sound. The problem is only that
the SVD performs its data reduction without paying
attention to the classification problem at hand. So,
we pose the question of whether we can combine di-
mensionality reduction and classification into a single
learning algorithm.

In this paper we propose one such learning algorithm,
the Support Vector Singular Value Decomposition Ma-
chine (SVDM). To design the SVDM, we combine
the goals of dimensionality reduction and classifica-
tion into a single objective function, and present an
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efficient alternating-minimization algorithm for opti-
mizing this objective. Like an SVM, the SVDM can
be viewed as trading off between a classifier’s hinge
loss and the norm of a learned weight vector; however,
instead of regularizing with the 2-norm like the SVM,
the SVDM regularizes with a norm derived from the
goal of reconstructing the design matrix. So, the “sim-
ple” points on the SVDM’s regularization frontier cor-
respond to classifiers which split the data across direc-
tions of high variability. We present experiments show-
ing that we can achieve better learning performance
and find lower-dimensional representations than ap-
proaches that separate dimensionality reduction and
classification into independent steps.

2. Methods

2.1. Singular Value Decomposition

The goal of the singular value decomposition algo-
rithm is to find a representation of our matrix of train-
ing data as a product of lower-rank matrices. Our
dataset is a matrix of n examples (rows) with m fea-
tures (columns)

Xn×m =









x1(1) x1(2) . . . x1(m)
x2(1) x2(2) . . . x2(m)
. . .
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The SVD approximates X as a product of two1 lower-
rank matrices,

Xn×m ≈ Zn×lWl×m

Here l is the rank of the approximation. W is a basis

matrix: each of its l rows is a direction of variability
of the training examples. And Z is a matrix of coor-

dinates: the ith row of Z gives the coefficients neces-
sary to reconstruct the ith training example as a linear
combination of the rows of W .

More precisely, the SVD minimizes the sum of squared
approximation errors: we can compute Z and W by
solving the optimization problem

min
Z,W

‖X − ZW‖2
Fro (1)

Here ‖A‖Fro stands for the Frobenius norm of the ma-

trix A,
√

∑

ij A2
ij .

1Often the SVD is written as a product of 3 matrices,
X = UΣV

′, and constraints are imposed on U , Σ, and V

to make the solution unique. It is easy to convert back and
forth between the two representations if desired.

2.2. Classification

We will suppose that there are k ≥ 1 classification
problems which we wish to solve. The target labels
for these problems are given in the matrix Yn×k, with
yi,j ∈ {−1, 1}. The reason for allowing k classification
problems instead of just one is that one problem may
give information about features which are useful for
solving another (this is a form of Multitask Learning
(Caruana, 1997)).

To solve these classification problems using the learned
low-dimensional representation from the SVD, we can
seek parameters Θl×k such that the matrix sgn(ZΘ) is
a good approximation to Y . Here sgn(·) is the compo-
nentwise sign function, so for example if some element
of Y is 1 we want the corresponding element of ZΘ to
be positive. For convenience, we will constrain all the
entries in the first column of Z to be 1, so that the
corresponding entries in the first row of Θ will act as
biases for the k classification problems.

2.3. Optimization problem

As discussed above, the SVD computes Z and W with-
out reference to Y or Θ. To improve on the SVD we
will simultaneously search for values of Z, W , and Θ
which minimize the following objective:

‖X − ZW‖Fro +
∑

i=1:n,j=1:k

h(ρij , µ,D)

where ρij = yijZi,:Θ:,j . Here h is the hinge loss func-
tion with slope −D and breakpoint µ:

h(ρ, µ,D) =

{

0 ρ ≥ µ

D(µ − ρ) otherwise

This objective trades off reconstruction error (the first
term) with a bound on classification error (the sec-
ond term). The parameter D controls the weight of
the hinge loss term, and the parameter µ controls the
target classification margin.

The relative norms of Z, W , and Θ are not constrained
by the above objective; for example, if we multiply Θ
by some constant λ, we can compensate by dividing Z
by λ and multiplying W by λ. So, we will impose the
arbitrary constraints

Zi,1 = 1

‖Zi,2:end‖2 ≤ 1

‖Θ:,j‖2 ≤ 1

(2)

to pick one solution out of the many possible ones. We
have constrained Zi,1 to be 1 for two different reasons:
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the first is to make Θ1,j be a bias term for the jth linear
discriminant, and the second is to make the first row
of W correspond to the mean of the dataset.

The SVDM optimization problem is strongly related to
both the SVD and the SVM. We will make part of this
relationship more formal in Section 2.5; but, to gain
an intuition, we can examine what happens when we
set D to its extreme values. As D rises the objective
will be dominated by the hinge loss term. Thus, the
problems of finding Z and Θ will be similar to linear
SVM problems. On the other hand, if we set D to
0, the hinge term vanishes, leaving only the Frobenius
norm term. The resulting optimization is identical to
the SVD problem (1), save for the constraints (2). The
only one of these constraints that makes a difference is
Zi,1 = 1; its effect is equivalent to centering the data
by subtracting its mean before performing the SVD.

2.4. Optimization procedure

We can solve the SVDM optimization problem by iter-
ating the following steps: minimize the objective with
respect to the variables W while holding Z and Θ
fixed, then minimize with respect to Θ with Z and W
fixed, then finally minimize with respect to Z with W
and Θ fixed. Holding two of the three matrices fixed at
each step of the optimization procedure simplifies the
optimization problem in different ways, described in
the following subsections. Because each step reduces
the overall objective value, and because the objective is
positive, this alternating minimization procedure will
cause the objective value to converge to a local mini-
mum or saddle point.

Each minimization problem was solved using either our
own Matlab implementation or the SeDuMi optimiza-
tion package (http://sedumi.mcmaster.ca). We
stopped when an iteration (a set of three minimiza-
tions, one each with respect to W , Z, and Θ) yielded
less than an 0.1% decrease in the objective. For the
experiments described below, this translated into be-
tween 1 and 20 iterations.

2.4.1. Given Θ and Z, solve for W

As there is only one term involving W , we want to
minimize

‖X − ZW‖Fro

with no additional constraints. That is, we wish to
predict X as a linear function of Z using coefficients
W , minimizing the sum of squared prediction errors.
We can find the best W by solving a linear regression
problem for each column of X:

X:,j ≈ ZW:,j

For stability we can add a tiny ridge term to each re-
gression (Hastie et al., 2001). It would be conceptually
simple to add external constraints on the rows of W ,
such as sparsity or spatial smoothness, without affect-
ing the other subproblems.

2.4.2. Given W and Z, solve for Θ

Since W and Z are fixed, we can drop the first part
of the objective as well as the constraints that don’t
involve Θ. The rest of the problem is then

minΘ,ρij

∑

ij h(ρij , µ, C)

subject to ρij = yijZi,:Θ:,j i = 1 . . . n, j = 1 . . . k

‖Θ:,j‖2 ≤ 1 j = 1 . . . k

This optimization problem tells us to choose Θ so that
sgn(Zi,:Θ:,j) is a good predictor of Yij ; that is, it is a
linear threshold classification problem. We can divide
the optimization into k subproblems, each of which
tries to find weights θ = Θ:,j which predict the jth
column of Y from the features Z:

minθ,ρi

∑

i h(ρi, µ, C)

subject to ρi = yijZi,:θ i = 1 . . . n

‖θ‖2 ≤ 1

Since the hinge loss h is piecewise linear and convex,
we can replace each term h(ρi, µ, C) in the objective
by a variable hi and the additional constraints

hi ≥ 0

hi ≥ D(µ − ρi)

and hence the final problem is

minθ,ρi,hi

∑

i hi

subject to ρi = yijZi,:θ i = 1 . . . n

hi ≥ 0 i = 1 . . . n

hi ≥ D(µ − ρi) i = 1 . . . n

‖θ‖2 ≤ 1

This problem is similar to a standard SVM optimiza-
tion, but not identical: it has a constraint ‖θ‖ ≤ 1
instead of a penalty proportional to ‖θ‖2

2. See Sec-
tion 2.5 for a more detailed comparison.

2.4.3. Given Y and Θ, solve for Z

Z is the hardest variable to minimize over, since it
appears in both terms of the objective We can divide
the optimization for Z into n subproblems, one per
example. The ith subproblem is to predict the ith row
of Y using the ith row of Z as adjustable weights:

Yi,: ≈ sgn(Zi,:Θ)



The Support Vector Decomposition Machine

The Frobenius norm term in the objective is quadratic
in Z; if it were just ‖Z‖2

Fro we would have essentially a
standard SVM again, but instead we have shifted and
scaled the quadratic so that it is more expensive to
increase Z along a direction that hurts reconstruction
accuracy.

As in Section 2.4.2 we can eliminate h(ρij , µ, C) from
the objective by adding variables hj with appropriate
constraints. With this replacement, the ith problem is
to find the ζ = Zi,: which solves

minζ,ρj ,hj
‖Xi,: − ζW‖2

Fro +
∑

j hj

subject to ρj = yijζΘ:,j j = 1 . . . k

hj ≥ 0 j = 1 . . . k

hj ≥ D(µ − ρj) j = 1 . . . k

ζ1 = 1

‖ζ2:end‖2 ≤ 1

2.5. Relationship to the SVM

In this section we compare our procedure for opti-
mizing Θ (Section 2.4.2) to a standard linear SVM.
We show that the the two optimization problems are
highly similar: given appropriate parameter settings
(which will not in general be known in advance), they
will have equivalent solutions. We believe that it is
possible to reformulate the SVDM so that the opti-
mizations for Θ and Z become even more similar to
standard SVM problems; we plan to experiment with
such reformulations in future work.

The usual SVM formulation for solving a classification
problem Yi ≈ sgn Zi,: θ for a vector of parameters θ is

minθ,εi
‖θ‖2

2 + Q
∑

i εi

subject to (YiZi,:) · θ ≥ 1 − εi i = 1 . . . n

εi ≥ 0 i = 1 . . . n

Suppose that the optimal solution to the above prob-
lem is θopt. (θopt is unique, since the objective is
strictly convex in θ.) Write k = ‖θopt‖2. If we change
variables to φ = θ

k
and hi = εi

k
, we get the equivalent

problem

minφ,hi
k2‖φ‖2

2 + kQ
∑

i hi

subject to (YiZi,:) · φ ≥ 1/k − hi i = 1 . . . n

hi ≥ 0 i = 1 . . . n

We know that this problem has an optimal solution
φopt with ‖φopt‖2 = 1 (namely, φopt = θopt/k). So,
adding the constraint

‖φ‖2 ≤ 1

doesn’t change the solution. But, with this constraint,
the first term in the objective (k2‖φ‖2

2) becomes unnec-
essary: this term favors values of φ with smaller norm,
but we already know reducing ‖φ‖2 below 1 would re-
sult in a suboptimal solution. So, we can drop this
term from the objective, leaving min kQ

∑

i hi.

Now, setting µ = 1
k

and D = 1 and dividing the ob-
jective by the constant kQ (which leaves the optimal
solution φopt = θopt/k unchanged), we obtain

minφ,hi

∑

i hi

subject to hi ≥ D(µ − (YiZi,:) · φ) i = 1 . . . n

hi ≥ 0 i = 1 . . . n

‖φ‖2 ≤ 1

This optimization problem is the same as the one de-
scribed in Section 2.4.2.

In other words, we have just shown that for any value
of the SVM regularization parameter Q, there are cor-
responding values of the SVDM parameters µ and D
which result in an equivalent optimal solution. (By
equivalent, we mean that the solutions have the same
direction but possibly different norms, resulting in the
same classification boundary.)

2.6. Related Work

The papers that are most closely related to this
work are (Weinberger et al., 2005) and (Globerson &
Roweis, 2005). Both introduced algorithms for learn-
ing a Mahalanobis distance metric for use in nearest-
neighbour classification, differing in the objective used
and its relation to the classification error. This is in
contrast with other metric learning methods insofar as
it optimizes directly for classification instead of other
related criteria (e.g. the clustering measure in (Xing
et al., 2002)). Our work is more related to (Globerson
& Roweis, 2005) in that the metric introduced there
can be used to do a linear projection of the data into a
low dimensional space, much as we aim to do by find-
ing a basis and then reducing each example vector to
its coordinates in that basis.

We depart from that work in that we minimize a hinge
loss function on the reduced dimensionality space,
hence doing a form of support vector machine clas-
sification rather than nearest neighbour. Our work
differs also from a typical support vector machine in
that it adds regularization via the reconstruction error
using the low dimensional coordinates of the examples
in the basis learnt. This approach was inspired by
the maximum-margin matrix factorization described
in (Srebro, 2004).
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Guyon et al. (2002) suggested that the weights of a
successful linear discriminant can provide a better in-
dication of a feature’s relevance for classification than
can criteria that rely on the feature by itself. Our work
shares this intuition. However, instead of looking at
the original feature space directly, we learn a classi-
fier on a low-dimensional subspace and propagate the
weights back to the original space. Another difference
between our work and that of Guyon et al. is that
they wish to select a few features by eliminating cor-
related ones, while we wish to combine and summa-
rize the collective activity of correlated features rather
than eliminating them. This difference allows us to
provide a visualization which displays the information
contained in multiple features.

3. Experiments

3.1. Datasets

To evaluate the SVDM, we tested it on data from an
fMRI experiment. In this experiment, the subject ob-
serves a word displayed on a screen for 3 seconds,
followed by 8 seconds of a blank screen. Each word
describes either a type of tool or a type of building,
and the subject’s task is to think about the word and
its properties while it is displayed. During an exper-
iment the task repeats 84 times, and a 3D image of
the fMR signal is acquired every second. Each image
contains 64×64×16 = 65536 voxels, but only approx-
imately 16000 of those contain cortex, hence we only
consider this latter number as features (for more de-
tails about fMRI please refer to (Mitchell et al., 2004)).
The dataset thus contains 84 examples; each example
is the average image during a 4 second span while the
subject is thinking about a word shown a few seconds
earlier. The classification task is to decide which of
the two semantic categories, tool or building, the sub-
ject was thinking about. We trained three separate
SVDMs, one per experimental subject.

Figure 1 shows, for each of the two categories, one
slice of activation in the temporal cortex of a subject,
overlaid on the corresponding structural image. The
data for this figure comes from another experiment,
where the task was done many times in a row and all
the images acquired during that period were averaged.
With the reduction in noise due to averaging it is easy
to see a difference between Tools and Buildings; our
interest is to do the same for the current dataset, which
is noisier since there was less averaging. That is, we
wish to decode the “cognitive state” (Mitchell et al.,
2004) of the subject from a brief interval of fMRI data.

We also tested the SVDM on synthetic datasets cre-

Figure 1. 2D slices from the average 3D fMRI image ac-
quired while the subject was thinking of either “Tools”
(left) or “Buildings” (right) many times in a row (more
red/dark means more active)

ated by generating random matrices Z, W and Θ and
using them to produce X and Y matrices for train-
ing and test sets (Xtrain = ZtrainW with N(0, 1) noise
added to every entry, and Ytrain = sgn(ZtrainΘ) with
a given percentage of the labels flipped to introduce
error). Performance on these datasets was excellent,
better than on real datasets for comparable numbers
of training examples; hence these results are not in-
cluded in order to leave room for discussion of the real
data.

3.2. Parameters

For a given dimensionality l (that is, Z has one col-
umn of 1s and l other columns) we ran a 6-fold cross-
validation, corresponding to a natural division of the
dataset into 6 cycles of task performance by a subject.
Within the training set in each fold, we ran a secondary
cross-validation to set the value of D. The D picked
was the lowest one that produced an accuracy slightly
below 100% on the secondary training sets. We al-
ways left µ fixed at 1. We tried µ = 0.5 (which allows
a smaller margin for each example) but found that the
results were systematically worse.

3.3. Classification experiments

We ran a comparison of several combinations of clas-
sifier, dimensionality reduction method, and number
of dimensions used. We learned features using ei-
ther SVDM, SVD or Independent Component Analy-
sis (ICA) (Hastie et al., 2001), and trained a classifier
using Gaussian Näıve Bayes (GNB) (Mitchell et al.,
2004), a linear Support Vector Machine (linearSVM,
using libSVM (Chang & Lin, 2001)), or an SVDM.
The SVDM always learns both a set of features and
a classifier; in a combination such as GNB+SVDM,
we discarded the SVDM classifier and trained a GNB
classifier on SVDM’s features. We varied the number
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Figure 2. Classification accuracy of SVDM against other
classifiers/dimensionality reduction methods, for subjects
A, B and C, averaged over three subjects.

of features learned from 1 to 15 for the SVDM, and
from 1 to 50 for the other dimensionality reduction
methods.

Figure 2 displays the results. Each line shows the ac-
curacy of one method averaged over all subjects; the
numbers for SVDM are in addition averaged over 10
restarts of the algorithm per subject using different
random seeds. (We obtained virtually the same result
for all seeds.) Error bars are omitted to reduce visual
clutter; however, the performance difference between
the SVDM-based methods and the non-SVDM-based
methods is statistically significant, while differences
within either of the two groups of methods are gen-
erally not significant.

Table 1 shows the best accuracies obtained using each
combination of classifier and dimensionality reduction
method, together with the number of features used,
again averaged over subjects. One point to note here
is the rather good score obtained using linearSVM with
all the voxels in the image. This is partly due to one of
the subjects scoring much higher (82) than the other
two (70/75); the SVDM’s scores are more consistent.
The high score of linearSVM indicates that the SVM’s
built-in regularization is helping it learn a reasonable
discriminant despite the high dimensionality of the fea-
ture space; to evaluate the quality of the regularization
imposed by different methods, in the next section we
will examine the learned discriminants.

classifier+method accuracy # components
SVDM 78 8

GNB+SVD 60 6
GNB+ICA 66 40

linearSVM+SVD 60 6
linearSVM+ICA 71 50

GNB+SVDM 78 13
linearSVM+SVDM 77 12

GNB 66 all voxels
linearSVM 76 all voxels

Table 1. Best accuracies obtained using each combination
of classifier and dimensionality reduction method, together
with the number of features used, averaged over three sub-
jects.

3.4. Decompositions learnt

In order to interpret the learned discriminants, we
mapped them back into equivalent discriminants on
the original feature space, then plotted them to see
which voxels they assigned the highest weights to. An
example is shown in Figure 3. The four slices depict
the size of the weight at each voxel for discriminants
learnt with SVDM, GNB, or linearSVM. Each dis-
criminant was scaled to have norm 1 prior to taking
the absolute value, hence the weight magnitudes are
comparable. The three discriminants all place weight
in locations that have previously been identified as rel-
evant to similar tasks, including the parahippocam-
pal gyrus and the precentral gyrus (Kanwisher, 2003)
among others (note that the Kanwisher study used pic-
ture rather than text stimuli). The difference between
the SVDM discriminant and the other two is that it
places more weight in those locations, while placing
very little weight elsewhere.

4. Discussion and Conclusions

The experimental results in Figure 2 demonstrate that
we can achieve better accuracy by learning a low-
dimensional representation and a classifier simultane-
ously than we can by learning the two separately. The
SVDM either achieves the best accuracy among com-
peting dimensionality reduction methods, or achieves
comparable accuracy using fewer components. Com-
peting dimensionality reduction methods also seem to
show fluctuations in accuracy when we add or remove
even a single feature.

Moreover, the low-dimensional representation learnt
with SVDM is more informative about the vari-
able being predicted than that produced by SVD or
ICA (compare the accuracies of GNB and linearSVM
trained on the SVDM representation (GNB SVDM,
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SVDM

GNB

linearSVM

Figure 3. The four slices shown in each row depict the absolute value of discriminant weights at each voxel, for a discrim-
inant learnt with each classifier on the same typical dataset. Slices start at the height of temporal cortex (left) and go
from inferior to superior, with the back of the head at the top of each slice. Darker shades of red/gray correspond to
higher values.

linearSVM SVDM) against those obtained training on
ICA/SVD (GNB SVD, GNB ICA, linearSVM SVD,
linearSVM ICA)). The accuracy of the classifiers
learnt on SVDM features tracks the SVDM results very
closely, indicating that the features learnt, rather than
the classifier, are responsible for the accuracy.

The optimization problem proposed is non-convex
(Boyd & Vandenberghe, 2004). However, in practice
the SVDM converges to the same solution regardless
of the random matrices it is initialized with, hence it
may turn out that the non-convexity is not a serious
issue. This is a topic we plan to investigate further.

In related work (Pereira et al., 2006), we selected a
few hundred voxels using an accuracy measure com-
puted over a small region around each voxel. The best-
scoring combinations of features yielded accuracies
around 80% for our three subjects. The voxels thus
identified are in the same regions that the SVDM’s dis-
criminant assigns the most weight to. This, together
with the relative noisiness of the SVDM’s discrimi-
nant (it is less noisy than the alternatives), leads us to
think that the algorithm would fare better with priors
favouring spatial smoothness and sparsity over voxels.
It is conceptually easy to add such priors in the step
where the W matrix is learnt, though not so simple in

practice and thus work in progress.

Finally, upcoming datasets will have words from sev-
eral different semantic categories. There are reasons to
believe the spatial pattern of activation over temporal
cortex is structured according to certain semantic fea-
tures, and that different categories have different in-
volvements of those features, while at the same time re-
lated categories will share some of them (Hanson et al.,
2004). We expect that the ability to learn components
useful for multiple classification problems will allow us
to find components corresponding to semantic features
and further constrain the learnt components.

5. Further work

We are currently working on a version of the algorithm
where sparsity and smoothness constraints are added
in the basis matrix W learning step. Simultaneously,
we are developing an alternative formulation of the
optimization problem that makes the subproblems in
Section 2.4 become canonical SVM problems, allowing
the use of off-the-shelf packages and the tackling of
larger problems.

We also intend to run a comparison between classifi-
cation results and weightings over features in the dis-
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tance metric methods referred to in Section 2.6 and
our own results and learnt components/discriminants.
Amir Globerson has kindly run the method described
in (Globerson & Roweis, 2005) over the data for a sin-
gle subject and found that the classification accuracy
was comparable to our results, for the most favourable
setting of parameters of his method.

Finally, it has been brought to our attention by Nathan
Srebro that a relaxation of this problem (with the di-
mensionality constraints on Z, W and Θ replaced by
trace norm penalties) is a convex problem expressible
as a semidefinite program, albeit possibly not tractable
for the solvers we currently use. We shall pursue this
direction as well.
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