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Overview

HUGE literature of experiments on conditioning in animals

HUGE literature on optimal statistical inference

but relatively little overlap between them

which is a pity since conditioning is probably an attempt to ap-

proximate optimal statistical inference

Will describe research that attempts to make a connection



Conditioning

Most famous example: Pavlov’s dogs

Learned to associate stimulus (bell) with reward (food)

Can get much more elaborate:

Name Stimulus 1 Stimulus 2 Test

classical B → R — B → •
sharing B, L → R — B → ◦, L → ◦

forward blocking B → R B, L → R B → •, L → ·
backward blocking B, L → R B → R B → •, L → ·

• = expectation of reward ◦ = weak expectation · = no expectation



Statistical explanations

Simple models can explain some conditioning results

We’ll discuss 2: gradient descent, Kalman filter

Models ignore (important) details:

• animals learn in continuous time

• animals have to sense stimuli and rewards

• animals filter out lots of irrelevant percepts

• . . .

But they’re still interesting as a simplification or an explanation
of a piece of a larger system



Assumptions in both models

Trials presented as (stimulus, reward) pairs

Goal is to predict reward from stimulus

Learning is updating prediction rule

Stimulus ∈ Rn (in our case, 2 binary vars B and L)

Reward ∈ R

Reward is linear fn of stimulus, plus Gaussian error



Gradient descent

Define

xt input on trial t

yt reward on trial t

wt internal state (weights) after trial t

η arbitrary learning rate

Write expected reward ŷt = xt · wt, error εt = yt − ŷt

Gradient descent model says:

wt+1 = wt + ηxtεt



Conditioning explained by gradient descent

In classical conditioning or sharing, +ve correlation between in-

puts and outputs causes relevant components of xy to be +ve,

so those components of w become +ve

In forward blocking, stimulus 2 is explained perfectly by weights

learned from stimulus 1, so no learning happens in phase 2 (error

signal ε is 0)



Backward blocking

Gradient descent fails to explain backward blocking!

In stimulus 2 of backward blocking, the element of xt correspond-

ing to the light is always 0

So gradient descent predicts that the learned weight for the light

won’t change

Contradicted by experiments



Kalman filter explanation

Sutton (1992) proposed that classical conditioning could be ex-

plained as optimal Bayesian inference in a simple statistical model

The model:

• trial stimuli represented by vectors as before

• reward is linear function of stimuli plus Gaussian error

• in absence of information, weights of linear function drift

over time in a Gaussian random walk

Inference in this model is called Kalman filtering



Kalman filter

Recall

xt input on trial t

yt reward on trial t

wt weights after trial t

Assume

• w0 ∼ N(0,Σ0)

• wt+1|wt ∼ N(wt, σ2I)

• yt ∼ N(xt · wt, τ2)



Kalman filter cont’d

Write expected reward ŷt = xt · wt, error εt = yt − ŷt

Calculate “learning rate” ηt = 1/(τ2 + xT
t Σtxt)

Equations for new weights wt+1 and their covariance Σt+1:

zt = Σtxt

wt+1 = wt + ηtεtzt

Σt+1 = Σt + σ2I − ηtztzT
t



Comparison to GD

Update wt+1 = wt + ηtεtzt looks like GD, except:

ηt is a variable learning rate determined by variances of yt and wt

zt instead of xt plays role of input vector



Whitening

How to interpret z? (Recall z = Σx)

z is a whitened or decorrelated version of x

To see why: fixed point of update for Σ is

σ2I = ηzzT

which can only be true on average if z has spherical covariance



Conditioning

[Dayan&Kakade, 2000]: Kalman filter model explains all condi-

tioning results from above

Classical, sharing, and forward blocking all work exactly as they

did with the gradient descent model

But now backward blocking works too



Backward blocking
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In sharing, +ve correlation be-

tween components of xt makes off-

diagonal elements of Σ become -ve

in order to whiten

Interpretation: don’t know whether it’s B or L that’s causing R

I.e., if we find out one weight is large, other must be small

I.e., evidence for B → R is evidence against L → R

“Explaining away”



Incremental version

D&K propose a network architecture using only fast computa-

tions which approximates the Kalman filter

Uses a whitening network from [Goodall, 1960] to get Σ and z,

then z and error signal to get changes to w

Requires distribution of xt to change only slowly (so whitening

network converges)

Gets direction but not magnitude of update



Experimental results

D&K implemented the Kalman filter as well as the incremental

network

Presented backward blocking stimulus: 20 trials of B,L → R,

then 20 trials of B → R

Exact and incremental results qualitatively similar

Both show strong blocking effect



Discussion

What is essential difference between GD, KF?

• GD could simulate backwards blocking by using weight decay

to “forget” L→ ◦
• But KF allows blocking and forgetting to happen on 2 dif-

ferent time scales (blocking is much faster)

• Works because KF can represent uncertainty separately for

different directions in weight space



Discussion

What’s important about KF?

• Gaussian assumption is clearly false, so that’s not it

• Instead, idea that animals believe concept to be learned is
changing over time

Improvements to KF:

• Use non-Gaussian distributions

• Use “punctuated equilibrium” rather than steady drift: con-
cept is likely to stay same for a while, then change quickly
to a new concept

• Use mixture models to remember previous concepts, switch
between them



Conclusions

Simple statistical models can help explain experimental results

on conditioning in animals (even if they gloss over important

details)

Kalman filter is a better model than gradient descent: it con-

structs decorrelated features, so it can do backward blocking

Kalman filter is not best possible model, but provides guide to

what characteristics a model needs to have


