
Iterative improvement algorithms

Prof. Tuomas Sandholm

Carnegie Mellon University

Computer Science Department

Iterative improvement algorithms
= iterative refinement = local search

Usable when the solution are states, not paths.

Start with a complete configuration and make Start with a complete configuration and make
modifications to improve its quality.

Hill-climbing Search

Iterative improvement algorithms try to find peaks on a surface of states where height is
defined by the evaluation function

Hill-climbing Search…
function HILL-CLIMBING(problem) returns a solution state

inputs: problem, a problem
static: current, a node

next, a node

current � MAKE-NODE(INITIAL-STATE[problem])
loop do

next � a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current � next

endend

Best-swap vs. first-swap

Hill-climbing Search…
Problems:
1. Local maxima

• No progress
2. Plateaux (essentially flat evaluation fn)

• Random walk
3. Ridges

• Search may oscillate from side to side, making little progress

Potential solutions: random restarts
• Eventually finds the optimal solution
• On NP-complete problems it is likely that there are

exponentially many local optima

Usually good solutions can be found quickly.
Performance depends on the “state-space surface”.

How to find feasible neighbors?

E.g. 2-swap in TSP

3-swaps…

Simulated Annealing

Simulated Annealing…
function SIMULATED-ANNEALING(problem,schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

static: current, a node
next, a node
T, a “temperature” controlling the probability of downward steps

current � MAKE-NODE(INITIAL-STATE[problem])
for t � 1 to ∞ do

T � schedule[t]
if T=0 then return currentif T=0 then return current
next � a randomly selected successor of current
∆E � VALUE[next] – VALUE[current]
if ∆E > 0 then current � next
else current � next only with probability e ∆E/T

Does not always find an optimal solution, and
does not know whether it has found an optimal solution.
[Theoretical results show that if T is lowered slowly enough
(extremely slowly), the optimum will be found]

Heuristic Repair

Iterative improvement in CSPs called heuristic repair.

Min-conflicts heuristic: choose a value that results in a Min-conflicts heuristic: choose a value that results in a
minimum number of conflicts with other variables.

Heuristic Repair (cont.)

A two-step solution for an 8-queen problem using min-conflicts. At each stage, a queen is
chosen for reassignment in its column. The number of conflicts (in this case, the number of
attacking queens) is shown in each square. The algorithm moves the queen to the min-
conflict square, breaking ties randomly.

Surprisingly effective
- 106 queens in 50 steps on average
- Hubble space telescope scheduling
(3 weeks � 10 minutes for scheduling a week of observations)

