I5-780: Grad Al Lecture 21: Bayesian learning, (PO)MDPs

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Reminder: project milestone reports due today
- Reminder: HW5 out

Review: numerical integration

- Parallel importance sampling
 - allows ZR(x) instead of R(x)
 - biased, but asymptotically unbiased
- Sequential sampling (for chains, trees)
- Parallel IS + resampling for sequential problems = particle filter

Review: MCMC

- Metropolis-Hastings: randomized search procedure for high R(x)
- \circ Leads to **stationary distribution** = R(x)
- Repeatedly tweak current x to get x'
 - If $R(x') \ge R(x)$, move to x'
 - If $R(x') \le R(x)$, stay at x
- Requires good one-step proposal Q(x' | x) to get acceptable acceptance rate and mixing rate

Review: Gibbs

- Special case of MH for X divided into blocks
- Proposal Q:
 - pick a block i uniformly (or round robin, or any other schedule)
 - \blacktriangleright sample $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$
- Acceptance rate = 100%

Review: Learning

- $P(M \mid X) = P(X \mid M) P(M) / P(X)$
- $P(M \mid X, Y) = P(Y \mid X, M) P(X \mid M) / P(Y \mid M)$
- Example: framlings
- Version space algorithm: when prior is uniform and likelihood is 0 or 1

Bayesian Learning

Recall iris example

- \circ \mathscr{H} = factor graphs of given structure
- Need to specify entries of фs

Factors

 Φ_0

setosa	Þ
versicolor	q
virginica	I-p-q

 φ_1 - φ_4

	lo	m	hi
set.	Þi	q i	I—pi—qi
vers.	r i	Si	I—ri—si
vir.	Ui	Vi	I—u _i —v _i

Continuous factors

 ϕ_1

	lo	m	hi
set.	Þι	91	I-pı-qı
vers.	rı	Sı	1-r ₁ -s ₁
vir.	UI	٧ı	I—u _I —v _I

$$\Phi_1(\ell, s) = \exp(-(\ell - \ell_s)^2 / 2\sigma^2)$$

parameters $\ell_{\rm set}$, $\ell_{\rm vers}$, $\ell_{\rm vir}$; constant σ^2

Discretized petal length

Continuous petal length

Simpler example

Coin toss

Parametric model class

- \mathcal{H} is a **parametric** model class: each H in \mathcal{H} corresponds to a vector of parameters $\theta = (p, q, p_1, q_1, r_1, s_1, ...)$
- \circ H_{θ}: **X** ~ P(**X** | θ) (or,Y ~ P(Y | **X**, θ))
- \circ Contrast to **discrete** \mathcal{H} , as in version space
- Could also have $mixed \mathcal{H}$: discrete choice among parametric (sub)classes

Continuous prior

E.g., for coin toss, p ~ Beta(a, b):

$$P(p \mid a, b) = \frac{1}{B(a, b)} p^{a-1} (1 - p)^{b-1}$$

 \circ Specifying, e.g., a = 2, b = 2:

$$P(p) = 6p(1-p)$$

Prior for p

Coin toss, cont'd

Joint dist'n of parameter p and data x_i:

$$P(p, \mathbf{x}) = P(p) \prod_{i} P(x_i \mid p)$$

$$= 6p(1-p) \prod_{i} p^{x_i} (1-p)^{1-x_i}$$

Coin flip posterior

$$P(p \mid \mathbf{x}) = P(p) \prod_{i} P(x_{i} \mid p) / P(\mathbf{x})$$

$$= \frac{1}{Z} p(1-p) \prod_{i} p^{x_{i}} (1-p)^{1-x_{i}}$$

$$= \frac{1}{Z} p^{1+\sum_{i} x_{i}} (1-p)^{1+\sum_{i} (1-x_{i})}$$

$$= \text{Beta}(2 + \sum_{i} x_{i}, 2 + \sum_{i} (1-x_{i}))$$

Prior for p

Posterior after 4 H, 7 T

Posterior after 10 H, 19 T

Predictive distribution

- Posterior is nice, but doesn't tell us directly what we need to know
- We care more about $P(x_{N+1} | x_1, ..., x_N)$
- By law of total probability, conditional independence:

$$P(x_{N+1} \mid \mathbf{D}) = \int P(x_{N+1}, \theta \mid \mathbf{D}) d\theta$$
$$= \int P(x_{N+1} \mid \theta) P(\theta \mid \mathbf{D}) d\theta$$

Coin flip example

- After I0 H, I9 T: p ~ Beta(I2, 2I)
- $\circ E(x_{N+1} | p) = p$
- \circ E(x_{N+1} | θ) = E(p | θ) = a/(a+b) = 12/33
- So, predict 36.4% chance of H on next flip

Approximate

Bayes

Approximate Bayes

- Coin flip example was easy
- In general, computing posterior (or predictive distribution) may be hard
- Solution: use the approximate integration techniques we've studied!

Bayes as numerical integration

- \circ Parameters θ , data **D**
- $P(\theta \mid \mathbf{D}) = P(\mathbf{D} \mid \theta) P(\theta) / P(\mathbf{D})$
- \circ Usually, P(θ) is simple; so is Z P($\mathbf{D} \mid \theta$)
- \circ So, P($\theta \mid \mathbf{D}$) \propto Z P($\mathbf{D} \mid \theta$) P(θ)
- Perfect for MH

petal length

$$P(y \mid x) = \sigma(ax + b)$$

$$\sigma(z) = 1/(1 + exp(-z))$$

Posterior

$$P(a, b \mid x_i, y_i) =$$

$$ZP(a, b) \prod_i \sigma(ax_i + b)^{y_i} \sigma(-ax_i - b)^{1-y_i}$$

$$P(a, b) = N(0, I)$$

Sample from posterior

Expanded factor graph

Cheaper approximations

Getting cheaper

- Maximum a posteriori (MAP)
- Maximum likelihood (MLE)
- Conditional MLE / MAP

 Instead of true posterior, just use single most probable hypothesis

MAP

$$\arg\max_{\theta} P(D\mid\theta)P(\theta)$$

Summarize entire posterior density using the maximum

MLE

$$\arg \max_{\theta} P(D \mid \theta)$$

Like MAP, but ignore prior term

Conditional MLE, MAP

$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta)$$

$$\arg \max_{\theta} P(\mathbf{y} \mid \mathbf{x}, \theta) P(\theta)$$

- \circ Split D = (\mathbf{x}, \mathbf{y})
- Condition on x, try to explain only y

Iris example: MAP vs. posterior

Irises: MAP vs. posterior

Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- But, often gets better with more data
- Theorem: MAP and MLE are consistent
 estimates of true θ, if "data per parameter" →

Sequential Decisions

Markov decision process: influence diagram

∘ States, actions, costs $C(s,a) \in [C_{min}, C_{max}]$, transitions $T(s' \mid s, a)$, initial state s_1

Influence diagrams

- Like a Bayes net, except:
 - diamond nodes are costs/rewards
 - must have no children
 - > square nodes are decisions
 - we pick the CPTs (before seeing anything)
 - minimize expected cost
- Circles are ordinary r.v.s as before

Markov decision process: state space diagram

∘ States, actions, costs $C(s,a) \in [C_{min}, C_{max}]$, transitions $T(s' \mid s, a)$, initial state s_1

Choosing actions

- \circ Execution trace: $T = (s_1, a_1, c_1, s_2, a_2, c_2, ...)$
 - $ightharpoonup c_1 = C(s_1, a_1), c_2 = C(s_2, a_2), etc.$
 - $ightharpoonup s_2 \sim T(s \mid s_1, a_1), s_3 \sim T(s \mid s_2, a_2), etc.$
- ∘ Policy π : S → A
 - \blacktriangleright or randomized, $\pi(a \mid s)$
- Trace from π : $a_1 \sim \pi(a \mid s_1)$, etc.
 - T is then an r.v. with known distribution
 - we'll write $\tau \sim \pi$ (rest of MDP implicit)

Choosing good actions

discount factor in (0,1)

Value of a policy:

$$J^{\pi} = \frac{1-\gamma}{\gamma} \mathbb{E} \left[\sum_{t} \gamma^{t} c_{t} \mid \tau \sim \pi \right]$$

Objective:

$$J^* = \min_{\pi} J^{\pi}$$

$$\pi^* \in \underset{\pi}{\operatorname{arg}} \min_{\pi} J^{\pi}$$

Al: to make the sums finite

- Al: to make the sums finite
- \circ A2: interest rate $I/\gamma I$ per period

- Al: to make the sums finite
- \circ A2: interest rate $I/\gamma I$ per period
- A3: model mismatch
 - probability (I-γ) that something unexpected happens on each step and my plan goes out the window

Tree search

- Root node = current state
- Alternating levels: action and outcome
 - min and expectation
- Build out tree until goal or until Y^t small enough

Interpreting the result

- \circ Number at each \circ node: optimal cost if starting from state s instead of s_1
 - \blacktriangleright call this $J^*(s)$ —so, $J^* = J^*(s_1)$
 - > state-value function
- Number at each · node: optimal cost if starting from parent's s, choosing incoming a
 - call this Q*(s,a)
 - action-value function
- \circ Similarly, $J^{\Pi}(s)$ and $Q^{\Pi}(s, a)$

The update equations

For · node

$$Q^*(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^*(s') \mid s' \sim T(\cdot \mid s, a)]$$

For ○ node

$$J^*(s) = \min_{a} Q^*(s, a)$$

 $(I-\gamma)$ × immediate cost + γ × future cost

Updates for a fixed policy

For · node

$$Q^{\pi}(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J^{\pi}(s') \mid s' \sim T(\cdot \mid s,a)]$$

For ○ node

$$J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s, a) \mid a \sim \pi(\cdot \mid s)]$$

 $(I-\gamma)$ × immediate cost + γ × future cost

Speeding it up

- Can't do DPLL-style pruning: outcome node depends on *all* children
- Can do some pruning: e.g., low-probability outcomes when branch is already clearly bad
- Or, use scenarios: subsample outcomes at each expectation node

Receding-horizon planning

- Stop building tree at 2k levels, evaluate leaf nodes with *heuristic* h(s)
 - ▶ or at 2k-I levels, evaluate with h(s, a)
- Minimal guarantees, but often works well in practice
- Can also use adaptive horizon
- Just as in deterministic search, a good heuristic is essential!

Good heuristic

- ∘ Good heuristic: $h(s) \approx J^*(s)$ or $h(s, a) \approx Q^*(s, a)$
- If we have $h(s) = J^*(s)$, only need to build first two levels of tree (action and outcome) to choose optimal action at s_1
- With h(s, a) = Q*(s,a), only need to build first (action) level
- ∘ Often try to use $h \approx J^{\pi}$ or Q^{π} for some good π

Dynamic programming

- If there are a small number of states and actions, makes sense to memoize tree search
 - compute an entire level of the tree at a time, working from bottom up
 - store only S × A numbers r.t. b^d

DP example: should I stay or should I go?

Q(A, stay) Q(A, go) J(A)

$$\begin{array}{cccc}
1 & & & & & & \\
2 & & & & & & \\
\hline
A & & & & & & \\
\end{array}$$

- each step costs I
- discount 0.8

Discussion

- Terminology: backup, sweep, value iteration
- VI makes max error converge linearly to 0 at rate γ per sweep
- Works well for up to 1,000,000s of states, as long as we can evaluate min and expectation efficiently (e.g., few actions, sparse outcomes)
 - tricks: replace J(s) by backed up value immediately (not at end of sweep); schedule backups by **priority** = estimate of how much J(s) will change

Curse of dimensionality

- Sadly, I,000,000s of states don't necessarily get us very far
- E.g., 10 state variables, each with 10 values:
 10¹⁰ states

Alternate algorithms for "small" systems—policy evaluation

$$Q^{\pi}(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J^{\pi}(s') \mid s' \sim T(\cdot \mid s,a)]$$
$$J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s,a) \mid a \sim \pi(\cdot \mid s)]$$

- Linear equations: so, Gaussian elimination, biconjugate gradient, Gauss-Seidel iteration, ...
 - DP is essentially the Jacobi iterative method for matrix inversion
- SARSA: stochastic-gradient-descent-like
 - and related methods: $TD(\lambda)$, Q-learning

Alternate algorithms for "small" systems—policy optimization

- Policy iteration: alternately
 - use any above method to evaluate current π
 - replace π with **greedy** policy: at each state $s, \pi(s) := arg max_a Q(s,a)$
- \circ Actor-critic: like policy iteration, but **interleave** solving for J^{π} and updating Π
 - e.g., run biconjugate gradient for a few steps
 - warm start: each J^{π} probably similar to next
- SARSA = AC w/ SARSA critic, €-greedy policy

Alternate algorithms for "small" systems—policy optimization

- (Stochastic) policy gradient
 - pick a parameterized policy class $\pi_{\theta}(a \mid s)$
 - compute or estimate $g = \nabla_{\theta} J^{\pi}(s_1)$
 - ▶ $\theta \leftarrow \theta \eta g$, repeat
- More detail:
 - can estimate g quickly by simulating a few trajectories
 - can also use *natural* gradient to get faster convergence

Alternate algorithms for "small" systems—policy optimization

- Linear programming
 - analogy: use an LP to compute min(3, 6, 5)
 - note min v. max

 $\max J$ s.t.

$$J \leq 3$$

$$J \leq 6$$

Linear programming

max $J(s_1)$ s.t. $Q(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J(s') \mid s' \sim T(\cdot \mid s,a)]$

Variables J(s) and Q(s,a) for all s, a

 $J(s) \le Q(s, a) \quad \forall s, a$

- Note: dual of this LP is interesting
 - generalizes single-source shortest paths

Model requirements

- What we have to know about the MDP in order to plan?
 - full model
 - simulation model
 - no model: only the real world

Model requirements

- VI and LP require full model
- Pl and actor-critic inherit requirements of policy-evaluation subroutine
- SARSA, policy gradient: OK with simulation model or no model
 - horribly data-inefficient if used directly on real world with no model

A word on performance measurements

- Multiple criteria we might care about:
 - data (from real world)
 - runtime
 - calls to model (under some API)
- Measure convergence rate of:
 - ► J(s) or Q(s, a)
 - ► π(s)
 - actual (expected total discounted) cost

Building a model

- How to handle lack of model without horrible data inefficiency? Build one!
 - hard inference problem; getting it wrong is bad
- What do we do with posterior over models?
 - just use MAP model ("certainty equivalent")
 - \blacktriangleright compute posterior over π^* : slow, still wrong
 - even slower: $\max_{\pi} \mathbb{E}(J^{\pi}(s) \mid \text{data, model class})$
 - unless we're doing policy gradient (Ng's helicopter)

Algorithms for large systems

- Policy gradient: no change
- Any value-based method: can't even write down J(s) or Q(s,a)
- So,

$$J(s) = \sum_{i} w_i \phi_i(s)$$

$$Q(s,a) = \sum_{i} w_i \phi_i(s,a)$$

Algorithms for large systems

- Evaluation: SARSA, LSTD
- Optimization:
 - policy iteration or actor-critic
 - ▶ e.g., LSTD → LSPI
 - approximate LP
 - value iteration: only special cases, e.g., finiteelement grid

Least-squares temporal differences (LSTD)

$$Q^{\pi}(s,a) = (1-\gamma)C(s,a) + \gamma \mathbb{E}[J^{\pi}(s') \mid s' \sim T(\cdot \mid s,a)]$$
$$J^{\pi}(s) = \mathbb{E}[Q^{\pi}(s,a) \mid a \sim \pi(\cdot \mid s)]$$

- \circ Data: $T = (s_1, a_1, c_1, s_2, a_2, c_2, ...) ~ \pi$
- ∘ Want $Q(s_t, a_t) \approx (I \gamma)c_t + \gamma Q(s_{t+1}, a_{t+1})$

 - Φ = vector of k features, w = weight vector

LSTD

$$\circ \ \mathbf{w}^T \Phi(\mathbf{s}_t, \mathbf{a}_t) \approx (\mathbf{I} - \mathbf{y}) \mathbf{c}_t + \mathbf{y} \mathbf{w}^T \Phi(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$$

- Vector notation:
 - Fw $\approx (I-\gamma)c_t + \gamma F_1 w$
- Overconstrained: multiply both sides by F

$$F^{\mathsf{T}} F w = (I - \gamma) F^{\mathsf{T}} c_{t} + \gamma F^{\mathsf{T}} F_{I} w$$

LSTD: example

 100 states in a line; move left or right at cost I per state; goals at both ends; discount 0.99

LSTD: example

 100 states in a line; move left or right at cost I per state; goals at both ends; discount 0.99

