Admin

- Reminder: project milestone reports due today
- Reminder: HW5 out
Review: numerical integration

- Parallel importance sampling
 - allows $Z R(x)$ instead of $R(x)$
 - biased, but asymptotically unbiased
- Sequential sampling (for chains, trees)
- Parallel IS + **resampling** for sequential problems = **particle filter**
Review: MCMC

- Metropolis-Hastings: randomized search procedure for high $R(x)$
- Leads to *stationary distribution* $= R(x)$
- Repeatedly tweak current x to get x'
 - If $R(x') \geq R(x)$, move to x'
 - If $R(x') << R(x)$, stay at x
- Requires good one-step proposal $Q(x' \mid x)$ to get acceptable acceptance rate and mixing rate
Review: Gibbs

- Special case of MH for \mathbf{X} divided into blocks

- Proposal Q:
 - pick a block i uniformly (or round robin, or any other schedule)
 - sample $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} | \mathbf{X}_{\neg B(i)})$

- Acceptance rate = 100%
Review: Learning

- \(P(M \mid X) = \frac{P(X \mid M) \cdot P(M)}{P(X)} \)
- \(P(M \mid X, Y) = \frac{P(Y \mid X, M) \cdot P(X \mid M)}{P(Y \mid M)} \)
- Example: framlings
- Version space algorithm: when prior is uniform and likelihood is 0 or 1
Bayesian Learning
Recall iris example

- \mathcal{H} = factor graphs of given structure
- Need to specify entries of ϕs
Factors

<table>
<thead>
<tr>
<th></th>
<th>(\phi_0)</th>
<th>(\phi_{1-4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>setosa</td>
<td>(p)</td>
<td>(p_i)</td>
</tr>
<tr>
<td>versicolor</td>
<td>(q)</td>
<td>(q_i)</td>
</tr>
<tr>
<td>virginica</td>
<td>(1-p-q)</td>
<td>(1-p_i-q_i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(l-r_i-s_i)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(l-u_i-v_i)</td>
</tr>
</tbody>
</table>
Continuous factors

\[
\Phi_1(\ell, s) = \exp\left(-\frac{(\ell - \ell_s)^2}{2\sigma^2}\right)
\]

parameters \(\ell_{\text{set}}, \ell_{\text{vers}}, \ell_{\text{vir}}\); constant \(\sigma^2\)

<table>
<thead>
<tr>
<th></th>
<th>lo</th>
<th>m</th>
<th>hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>set.</td>
<td>(p_1)</td>
<td>(q_1)</td>
<td>(l-p_1-q_1)</td>
</tr>
<tr>
<td>vers.</td>
<td>(r_1)</td>
<td>(s_1)</td>
<td>(l-r_1-s_1)</td>
</tr>
<tr>
<td>vir.</td>
<td>(u_1)</td>
<td>(v_1)</td>
<td>(l-u_1-v_1)</td>
</tr>
</tbody>
</table>

Discretized petal length

Continuous petal length
Simpler example

Coin toss
Parametric model class

- \mathcal{H} is a **parametric** model class: each H in \mathcal{H} corresponds to a vector of parameters $\theta = (p)$ or $\theta = (p, q, p_1, q_1, r_1, s_1, \ldots)$

- $H_\theta: X \sim P(X | \theta)$ (or, $Y \sim P(Y | X, \theta)$)

- Contrast to **discrete** \mathcal{H}, as in version space

- Could also have **mixed** \mathcal{H}: discrete choice among parametric (sub)classes
Continuous prior

- E.g., for coin toss, $p \sim \text{Beta}(a, b)$:

$$P(p \mid a, b) = \frac{1}{B(a, b)} p^{a-1} (1 - p)^{b-1}$$

- Specifying, e.g., $a = 2, b = 2$:

$$P(p) = 6p(1 - p)$$
Prior for p
Joint dist’n of parameter p and data x_i:

\[
P(p, x) = P(p) \prod_i P(x_i \mid p)
\]

\[
= 6p(1 - p) \prod_i p^{x_i} (1 - p)^{1 - x_i}
\]
Coin flip posterior

\[P(p \mid x) = P(p) \prod_{i} P(x_i \mid p)/P(x) \]

\[= \frac{1}{Z} p(1 - p) \prod_{i} p^{x_i} (1 - p)^{1-x_i} \]

\[= \frac{1}{Z} p^{1+\sum_i x_i} (1 - p)^{1+\sum_i (1-x_i)} \]

\[= \text{Beta}(2 + \sum_i x_i, 2 + \sum_i (1 - x_i)) \]
Posterior after 4 H, 7 T
Posterior after 10 H, 19 T
Predictive distribution

- Posterior is nice, but doesn’t tell us directly what we need to know
- We care more about \(P(x_{N+1} \mid x_1, \ldots, x_N) \)
- By law of total probability, conditional independence:

\[
P(x_{N+1} \mid D) = \int P(x_{N+1}, \theta \mid D) d\theta
\]

\[
= \int P(x_{N+1} \mid \theta) P(\theta \mid D) d\theta
\]
Coin flip example

- After 10 H, 19 T: $p \sim \text{Beta}(12, 21)$
- $E(x_{N+1} \mid p) = p$
- $E(x_{N+1} \mid \theta) = E(p \mid \theta) = a/(a+b) = 12/33$
- So, predict 36.4% chance of H on next flip
Approximate Bayes
Approximate Bayes

- Coin flip example was easy
- In general, computing posterior (or predictive distribution) may be hard
- Solution: use the approximate integration techniques we’ve studied!
Bayes as numerical integration

- Parameters θ, data D
- $P(\theta \mid D) = P(D \mid \theta) \, P(\theta) / P(D)$
- Usually, $P(\theta)$ is simple; so is $Z \, P(D \mid \theta)$
- So, $P(\theta \mid D) \propto Z \, P(D \mid \theta) \, P(\theta)$
- Perfect for MH
\[P(y \mid x) = \sigma(ax + b) \]

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]
Posterior

\[P(a, b \mid x_i, y_i) = \]

\[Z \, P(a, b) \prod_{i} \sigma(ax_i + b)^{y_i} \sigma(-ax_i - b)^{1-y_i} \]

\[P(a, b) = N(0, I) \]
Sample from posterior

![Sample from posterior](image-url)
Expanded factor graph

original factor graph:
Cheaper approximations
Getting cheaper

- Maximum a posteriori (MAP)
- Maximum likelihood (MLE)
- Conditional MLE / MAP

- Instead of true posterior, just use single most probable hypothesis
arg \max_{\theta} P(D \mid \theta) P(\theta)

- Summarize entire posterior density using the maximum
MLE

\[\arg \max_{\theta} P(D \mid \theta) \]

- Like MAP, but ignore prior term
Conditional MLE, MAP

\[
\arg\max_{\theta} P(y \mid x, \theta) \\
\arg\max_{\theta} P(y \mid x, \theta)P(\theta)
\]

- Split \(D = (x, y)\)
- Condition on \(x\), try to explain only \(y\)
Iris example: MAP vs. posterior
Irises: MAP vs. posterior
Too certain

- This behavior of MAP (or MLE) is typical: we are too sure of ourselves
- But, often gets better with more data
- Theorem: MAP and MLE are consistent estimates of true θ, if “data per parameter” $\rightarrow \infty$
Sequential Decisions
Markov decision process: influence diagram

- States, actions, costs $C(s,a) \in [C_{\text{min}}, C_{\text{max}}]$, transitions $T(s' \mid s, a)$, initial state s_1
Influence diagrams

- Like a Bayes net, except:
 - diamond nodes are costs/rewards
 - must have no children
 - square nodes are decisions
 - we pick the CPTs (before seeing anything)
 - minimize expected cost
- Circles are ordinary r.v.s as before
Markov decision process: state space diagram

- States, actions, costs $C(s,a) \in [C_{\text{min}}, C_{\text{max}}]$
- Transitions $T(s' \mid s, a)$, initial state s_1

goal: all costs = 0, self-transition 100%
Choosing actions

- Execution trace: $\tau = (s_1, a_1, c_1, s_2, a_2, c_2, \ldots)$
 - $c_1 = C(s_1, a_1)$, $c_2 = C(s_2, a_2)$, etc.
 - $s_2 \sim T(s | s_1, a_1)$, $s_3 \sim T(s | s_2, a_2)$, etc.

- Policy $\pi: S \rightarrow A$
 - or randomized, $\pi(a | s)$

- Trace from π: $a_1 \sim \pi(a | s_1)$, etc.
 - τ is then an r.v. with known distribution
 - we’ll write $\tau \sim \pi$ (rest of MDP implicit)
Choosing **good** actions

- **Value of a policy:**

\[J^\pi = \frac{1 - \gamma}{\gamma} \mathbb{E} \left[\sum_t \gamma^t c_t \mid \tau \sim \pi \right] \]

- **Objective:**

\[J^* = \min_{\pi} J^\pi \]

\[\pi^* \in \arg\min_{\pi} J^\pi \]
Why a discount factor?
Why a discount factor?

- A1: to make the sums finite
Why a discount factor?

- A1: to make the sums finite
- A2: interest rate $1/\gamma - 1$ per period
Why a discount factor?

- A1: to make the sums finite
- A2: interest rate $1/\gamma - 1$ per period
- A3: model mismatch
 - probability $(1-\gamma)$ that something unexpected happens on each step and my plan goes out the window
Tree search

$\gamma = 0.5$

transitions = 0.5

- Root node = current state
- Alternating levels: action and outcome
 - min and expectation
- Build out tree until goal or until γ^t small enough
Interpreting the result

- Number at each ◯ node: optimal cost if starting from state s instead of s₁
 - call this $J^*(s)$—so, $J^* = J^*(s₁)$
 - *state-value* function

- Number at each ⋅ node: optimal cost if starting from parent’s s, choosing incoming a
 - call this $Q^*(s,a)$
 - *action-value* function

- Similarly, $J^π(s)$ and $Q^π(s, a)$
The update equations

- For \cdot node
 \[
 Q^*(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^*(s') \mid s' \sim T(\cdot \mid s, a)]
 \]

- For \circ node
 \[
 J^*(s) = \min_a Q^*(s, a)
 \]

 \[(1-\gamma) \times \text{immediate cost} + \gamma \times \text{future cost}\]
Updates for a fixed policy

- For · node
 \[Q^\pi(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^\pi(s') \mid s' \sim T(\cdot \mid s, a)] \]

- For ○ node
 \[J^\pi(s) = \mathbb{E}[Q^\pi(s, a) \mid a \sim \pi(\cdot \mid s)] \]

 \((1 - \gamma) \times \text{immediate cost} + \gamma \times \text{future cost}\)
Speeding it up

- Can’t do DPLL-style pruning: outcome node depends on all children
- Can do some pruning: e.g., low-probability outcomes when branch is already clearly bad
- Or, use scenarios: subsample outcomes at each expectation node
Receding-horizon planning

- Stop building tree at 2k levels, evaluate leaf nodes with **heuristic** $h(s)$
 - or at 2k–1 levels, evaluate with $h(s, a)$
- Minimal guarantees, but often works well in practice
- Can also use adaptive horizon
- Just as in deterministic search, a good heuristic is essential!
Good heuristic

- Good heuristic: \(h(s) \approx J^*(s) \) or \(h(s, a) \approx Q^*(s,a) \)
- If we have \(h(s) = J^*(s) \), only need to build first two levels of tree (action and outcome) to choose optimal action at \(s_1 \)
- With \(h(s, a) = Q^*(s,a) \), only need to build first (action) level
- Often try to use \(h \approx J^\pi \) or \(Q^\pi \) for some good \(\pi \)
Dynamic programming

- If there are a small number of states and actions, makes sense to **memoize** tree search
 - compute an entire level of the tree at a time, working from bottom up
 - store only $S \times A$ numbers r.t. b^d
DP example: should I stay or should I go?

\[Q(A, \text{stay}) \quad Q(A, \text{go}) \quad J(A) \]
DP example 2

- each step costs 1
- discount 0.8
DP example 2
DP example 2
DP example 2
DP example 2

![Graphs showing Q(s, left) and Q(s, right) values for different states.](image)
DP example 2
Discussion

- Terminology: backup, sweep, value iteration
- VI makes max error converge linearly to 0 at rate γ per sweep
- Works well for up to 1,000,000s of states, as long as we can evaluate min and expectation efficiently (e.g., few actions, sparse outcomes)
 - tricks: replace $J(s)$ by backed up value immediately (not at end of sweep); schedule backups by **priority** = estimate of how much $J(s)$ will change
Curse of dimensionality

- Sadly, 1,000,000s of states don’t necessarily get us very far
- E.g., 10 state variables, each with 10 values: 10^{10} states
Alternate algorithms for "small" systems—policy evaluation

\[
Q^\pi(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^\pi(s') \mid s' \sim T(\cdot \mid s, a)]
\]

\[
J^\pi(s) = \mathbb{E}[Q^\pi(s, a) \mid a \sim \pi(\cdot \mid s)]
\]

- Linear equations: so, Gaussian elimination, biconjugate gradient, Gauss-Seidel iteration, …
 - DP is essentially the Jacobi iterative method for matrix inversion
- SARSA: stochastic-gradient-descent-like
 - and related methods: TD(\(\lambda\)), Q-learning
Alternate algorithms for “small” systems—policy optimization

- Policy iteration: alternately
 - use any above method to evaluate current π
 - replace π with greedy policy: at each state s, $\pi(s) := \arg \max_a Q(s,a)$

- Actor-critic: like policy iteration, but *interleave* solving for J^π and updating π
 - e.g., run biconjugate gradient for a few steps
 - warm start: each J^π probably similar to next

- SARSA = AC w/ SARSA critic, ϵ-greedy policy
Alternate algorithms for “small” systems—policy optimization

- (Stochastic) policy gradient
 - pick a parameterized policy class $\pi_\theta(a \mid s)$
 - compute or estimate $g = \nabla_\theta J^{\pi}(s_1)$
 - $\theta \leftarrow \theta - \eta g$, repeat

- More detail:
 - can estimate g quickly by simulating a few trajectories
 - can also use \textit{natural} gradient to get faster convergence
Alternate algorithms for “small” systems—policy optimization

- Linear programming
 - analogy: use an LP to compute min(3, 6, 5)
 - note min v. max

\[
\begin{align*}
\text{max } J & \quad \text{s.t.} \\
J & \leq 3 \\
J & \leq 6 \\
J & \leq 5
\end{align*}
\]
Linear programming

\[
\begin{align*}
\text{max} & \quad J(s_1) \quad \text{s.t.} \\
Q(s, a) &= (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J(s')] \mid s' \sim T(\cdot \mid s, a) \\
J(s) &\leq Q(s, a) \quad \forall s, a
\end{align*}
\]

- Variables \(J(s) \) and \(Q(s, a) \) for all \(s, a \)
- Note: dual of this LP is interesting
 - generalizes single-source shortest paths
Model requirements

- What we have to know about the MDP in order to plan?
 - full model
 - simulation model
 - no model: only the real world
Model requirements

- VI and LP require full model
- PI and actor-critic inherit requirements of policy-evaluation subroutine
- SARSA, policy gradient: OK with simulation model or no model
 - horribly data-inefficient if used directly on real world with no model
A word on performance measurements

- Multiple criteria we might care about:
 - data (from real world)
 - runtime
 - calls to model (under some API)

- Measure convergence rate of:
 - $J(s)$ or $Q(s, a)$
 - $\pi(s)$
 - actual (expected total discounted) cost
Building a model

- How to handle lack of model without horrible data inefficiency? Build one!
 - hard inference problem; getting it wrong is bad
- What do we do with posterior over models?
 - just use MAP model (“certainty equivalent”)
 - compute posterior over π^*: slow, still wrong
 - even slower: $\max_{\pi} \mathbb{E}(J^\pi(s) \mid \text{data, model class})$
 - unless we’re doing policy gradient (Ng’s helicopter)
Algorithms for large systems

- Policy gradient: no change
- Any value-based method: can’t even write down $J(s)$ or $Q(s,a)$
- So,

\[J(s) = \sum_i w_i \phi_i(s) \]

\[Q(s,a) = \sum_i w_i \phi_i(s,a) \]
Algorithms for large systems

- Evaluation: SARSA, LSTD

- Optimization:
 - policy iteration or actor-critic
 - e.g., LSTD → LSPI
 - approximate LP
 - value iteration: only special cases, e.g., finite-element grid
Least-squares temporal differences (LSTD)

\[Q^\pi(s, a) = (1 - \gamma)C(s, a) + \gamma \mathbb{E}[J^\pi(s') \mid s' \sim T(\cdot \mid s, a)] \]

\[J^\pi(s) = \mathbb{E}[Q^\pi(s, a) \mid a \sim \pi(\cdot \mid s)] \]

- Data: \(\tau = (s_1, a_1, c_1, s_2, a_2, c_2, \ldots) \sim \pi \)
- Want \(Q(s_t, a_t) \approx (1 - \gamma)c_t + \gamma Q(s_{t+1}, a_{t+1}) \)
 - \(w^T\Phi(s_t, a_t) \approx (1 - \gamma)c_t + \gamma w^T\Phi(s_{t+1}, a_{t+1}) \)
 - \(\Phi = \text{vector of } k \text{ features}, w = \text{weight vector} \)
LSTD

- $w^T \Phi(s_t, a_t) \approx (1-\gamma)c_t + \gamma w^T \Phi(s_{t+1}, a_{t+1})$

- Vector notation:
 - $Fw \approx (1-\gamma)c_t + \gamma F_{\perp}w$

- Overconstrained: multiply both sides by F
 - $F^T Fw = (1-\gamma)F^T c_t + \gamma F^T F_{\perp}w$
LSTD: example

- 100 states in a line; move left or right at cost 1 per state; goals at both ends; discount 0.99
LSTD: example

- 100 states in a line; move left or right at cost 1 per state; goals at both ends; discount 0.99
LSPI

\[\phi_i(s) \]

\[J(s) \]
LSPI

\[\phi_i(s) \]

\[J(s) \]
LSPI

\[\phi_i(s) \]

\[J(s) \]