
15-780: Grad AI
Lecture 19: Graphical models, 

Monte Carlo methods

Geoff Gordon (this lecture)
Tuomas Sandholm 

TAs Erik Zawadzki, Abe Othman



Admin

Reminder: midterm March 29

Reminder: project milestone reports due 
March 31



Review: factor graphs

Undirected, bipartite graph

! one set of nodes represents variables

! other set represents factors in probability 
distributionÑtables of nonnegative numbers

! need to compute normalizer in order to do 
anything useful

Can convert back and forth to Bayes nets

Hard v. soft constraints



Review: factor graphs

Graphical test for independence

! different results from Bayes net, even if we 
are representing the same distribution

Inference by dynamic programming

! instantiate evidence, eliminate nuisance 
nodes, normalize, answer query

! elimination order matters

! treewidth

Relation to logic



Review: HMMs, DBNs

Inference over time

! same graphical template 
repeated once for each 
time stepÑconceptually 
inÞnite

Inference: forward-
backward algorithm (special 
case of belief propagation)



Review: numerical integration

Integrate a difÞcult function over a high-
dimensional volume

! narrow, tall peaks contribute most of the 
integralÑdifÞcult search problem

Central problem for approximate inference

! e.g., computing normalizing constant in a 
factor graph



Uniform sampling
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Importance sampling
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Variance

How does this help us control variance?

Suppose f big ==> Q big

And Q small ==> f small

Then h = f/Q never gets too big

Variance of each sample is lower ==> need fewer 
samples

A good Q makes a good IS



Importance sampling, part II

Suppose

f (x) = R(x)g(x)
!

f (x)dx =
!

R(x)g(x)dx

= ER[g(x)]



Importance sampling, part II

Use importance sampling w/ proposal Q(X):

! Pick N samples xi from Q(X)

! Average wi g(xi), where wi = R(xi)/Q(xi) is 
importance weight

EQ (Wg(X )) =
!

Q(x)
R(x)
Q(x)

g(x)

=
!

R(x)g(x)dx

=
!

f (x)dx



Parallel IS

Now suppose R(x) is unnormalized (e.g., 
represented by factor graph)Ñknow only Z R(x)

Pick N samples xi from proposal Q(X)

If we knew wi = R(xi)/Q(xi), could do IS

Instead, set 

öwi = ZR(xi )/Q (xi )



Parallel IS

So,                            is an unbiased estimate of Zøw =
1
N

!

i

öwi

E(Ŵ ) =
!

Q(x)
ZR (x)
Q(x)

dx

=
!

ZR (x)dx

= Z



Parallel IS

So,            is an estimate of wi, computed without 
knowing Z

Final estimate:

öwi / øw

!
f (x)dx ! 1

n

"
i

öwi
øw g(xi)



Parallel IS is biased
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Posterior E (X, Y, ! ) = (0 .496, 0.350, 0.084)



MCMC



Integration problem

Recall: wanted

And therefore, wanted good importance 
distribution Q(x) (close to R)

!
f (x)dx =

!
R(x)g(x)dx



Back to high dimensions

Picking a good importance distribution is hard 
in high-D

Major contributions to integral can be hidden 
in small areas

! recall, want (R big ==> Q big)

Would like to search for areas of high R(x)

But searching could bias our estimates



Markov-Chain Monte Carlo

Design a randomized search procedure M over 
values of x, which tends to increase R(x) if it is small

Run M for a while, take resulting x as a sample

Importance distribution Q(x)?



Markov-Chain Monte Carlo

Design a randomized search procedure M over 
values of x, which tends to increase R(x) if it is small

Run M for a while, take resulting x as a sample

Importance distribution Q(x)?

! Q = stationary distribution of MÉ



Stationary distribution

Run HMM or DBN 
for a long time; 
stop at a random 
point

Do this again and 
again

Resulting samples 
are from stationary 
distribution



Designing a search chain

Would like Q(x) = R(x)

! makes importance weight = 1

Turns out we can get this exactly, using 
Metropolis-Hastings

!
f (x)dx =

!
R(x)g(x)dx



Metropolis-Hastings

Way of designing chain w/ Q(x) = R(x)

Basic strategy: start from arbitrary x

Repeatedly tweak x to get xÕ

If R(xÕ) ! R(x), move to xÕ

If R(xÕ) << R(x), stay at x

In intermediate cases, randomize



Proposal distribution

Left open: what does ÒtweakÓ mean?

Parameter of MH: Q(xÕ | x)

! one-step proposal distribution

Good proposals explore quickly, but remain in 
regions of high R(x)

Optimal proposal?



MH algorithm

Sample xÕ ~ Q(xÕ | x)

Compute p =

With probability min(1, p), set x := xÕ

Repeat for T steps; sample is x1, É, x T (will 
usually contain duplicates)

R(x!)
R(x)

Q(x! | x)
Q(x | x!)



MH algorithm

Sample xÕ ~ Q(xÕ | x)

Compute p =

With probability min(1, p), set x := xÕ

Repeat for T steps; sample is x1, É, x T (will 
usually contain duplicates)

note: we donÕt need 
to know Z

R(x!)
R(x)

Q(x! | x)
Q(x | x!)



MH example

�ï! �ï"#$ " "#$ !
�ï!

�ï"#$

"

"#$

!



Acceptance rate

Moving to new xÕ is accepting

Want acceptance rate (avg p) to be large, so 
we donÕt get big runs of the same x

Want Q(xÕ | x) to move long distances (to 
explore quickly)

Tension between Q and P(accept):

p =
R(x!)
R(x)

Q(x! | x)
Q(x | x!)



Mixing rate, mixing time

If we pick a good proposal, we will move 
rapidly around domain of R(x)

After a short time, wonÕt be able to tell where 
we started

This is short mixing time = # steps until we 
canÕt tell which starting point we used

Mixing rate = 1 / (mixing time)



MH estimate

Once we have our samples x1, x2, É

Optional: discard initial Òburn-inÓ range

! allows time to reach stationary distÕn

Estimated integral: 1
N

N!

i =1

g(xi )



In example

g(x) = x2

True E(g(X)) = 0.28É

Proposal: 

Acceptance rate 55Ð60%

After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Q(x! | x) = N (x! | x, 0.252I )



Gibbs sampler

Special case of MH

Divide X into blocks of r.v.s B(1), B(2), É

Proposal Q:

! pick a block i uniformly (or round robin, or 
any other schedule)

! sample XB(i) ~ P(XB(i) | XÂB(i))



Gibbs example
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Gibbs example
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Why is Gibbs useful?

For Gibbs, p = P (x!
i , x

!
¬i )

P (xi , x¬i )
P (xi | x!

¬i )
P (x!

i | x¬i )



Gibbs derivation

P(x �
i , x �

Âi )
P(xi , xÂi )

P(xi | x �
Âi )

P(x �
i | xÂi )

=
P(x �

i , xÂi )
P(xi , xÂi )

P(xi | xÂi )
P(x �

i | xÂi )

=
P(x �

i , xÂi )
P(xi , xÂi )

P(xi , xÂi )/P (xÂi )
P(x �

i , xÂi )/P (xÂi )
= 1



Gibbs in practice

Proof of p=1 means Gibbs is often easy to 
implement

Often works well

! if we choose good blocks (but there may be 
no good blocking!)

Fancier version: adaptive blocks, based on 
current x



Gibbs failure example
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Sequential sampling

In an HMM or DBN, to sample P(XT), start from 
X1 and sample forward step by step

! Xt+1 ~ P(Xt+1 | Xt)

P(X1:T) = P(X1) P(X2 | X1) P(X3 | X2) É



Particle Þlter

Can sample Xt+1 ~ P(Xt+1 | Xt) using any 
algorithm from above

If we use parallel importance sampling to get 
N samples at once from each P(Xt), we get a 
particle Þlter

! also need one more trick: resampling

Write xt,i (i = 1ÉN) for sample at time t



Particle Þlter

Want one sample from each of P(Xt+1 | xt,i)

Have only Z P(Xt+1 | xt,i)

For each i, pick xt+1,i from proposal Q(x)

Compute unnormalized importance weight

öwi = ZP (x t+1 ,i | x t,i)/Q(x t+1 ,i)



Particle Þlter

Normalize weights:

Now, (wi, xt+1,i) is an approximate weighted 
sample from P(Xt+1)

To get an unweighted sample, resample

øw =
1
N

!

i

öwi wi = öwi / øw



Resampling

Sample N times (with replacement) from xt+1,i 
with probabilities wi/N

! alternately: deterministically take ßoor(wi) 
copies of xt+1,i and sample only from 
fractional part [wi Ð ßoor(wi)]

Each xt+1,i appears wi times on average, so 
weÕre still a sample from P(Xt+1)



Particle Þlter example



Learning



Learning

Basic learning problem: given some 
experience, Þnd a new or improved model

Experience: a sample x1, É, xN

Model: want to predict xN+1, É



Example

Experience = range sensor readings & odometry 
from robot

Model = map of the world



Example

Experience = physical measurements of 
surveyed specimens & expert judgements of 
their true species

Model = factor graph relating species to 
measurements



Sample data
sepal 
length

sepal 
width

petal 
length

petal 
width species

5.1 3.5 1.4 0.2 Iris setosa

5.6 3.0 4.5 1.5 Iris 
versicolor

4.9 3.0 1.4 0.2 Iris setosa

6.4 2.8 5.6 2.1 Iris 
virginica

5.8 2.7 4.1 1.0 Iris 
versicolor



Factor graph

One of many possible factor graphs

Values of " s not shown, but part of model

# 0

# 4
# 3

# 2

# 1



Factor graph
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Factor graph
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In general

For our purposes, a model M is exactly a 
distribution P(X | M) over possible samples

When is M better than  MÕ?  When P(X | M) 
is more accurate than P(X | MÕ).

Bayes rule encodes this: from prior  P(M) and 
evidence X , compute posterior  P(M | X)

! P(M | X) = P(X | M) P(M) / P(X)

! better predictions (higher P(X | M)) yield 
higher posterior



Conditional model

Split variables into (X, Y)

Suppose we always observe X

Two ways P(X, Y) and PÕ(X, Y) can differ:

! P(X) " PÕ(X),  and/or

! P(Y | X) " PÕ(Y | X)

First way doesnÕt matter for decisions

Conditional model : only speciÞes P(Y | X, M)



Conditional model example

Experience = samples of (X, Y)

X = features of object

Y = whether object is a ÒframlingÓ

Model = rule for deciding whether a new 
object is a framling



Sample data & possible model

tall pointy blue framling

T T F T

T F F T

F T F F

T T T F

T F F T

H = tall ∧ Âblue



Hypothesis space

Hypothesis space H  = set of models we are 
willing to consider

! for philosophical or computational reasons

E.g., all factor graphs of a given structure

Or, all conjunctions of up to two literals

Prior is a distribution over H



A simple learning algorithm

Conditional learning: samples (xi, yi)

Let H  be a set of propositional formulae

! H  = { H1, H2, É  }

H is consistent  if H(xi) = yi for all i

Version space  V = { all consistent H } ⊆ H

Version space algorithm : predict y = majority 
vote of H(x) over all H ∈ V



Framlings

H  = { conjunctions of up to 2 literals } = { T, F, tall, 
pointy, blue, Âtall, Âpointy, Âblue, tall ∧ pointy, tall ∧ 
blue, pointy ∧ blue, Âtall ∧ pointy, É }

tall pointy blue framling

T T F T

T F F T

F T F F

T T T F

T F F T



Framlings

tall pointy blue framling

T T F T

T F F T

F T F F

T T T F

T F F T



Analysis

Mistake  = make wrong prediction

If some H ∈ H  is always right, eventually weÕll 
eliminate all competitors, and make no more 
mistakes

If no H ∈ H  is always right, eventually V will 
become empty

! e.g., if label noise  or feature noise



Analysis

Suppose | H  | = N

How many mistakes could we make?



Analysis

Suppose | H  | = N

How many mistakes could we make?

Since we predict w/ majority  of V, after any 
mistake, we eliminate half (or more) of V

CanÕt do that more than log2(N) times



Discussion

In example, N = 20, log2(N) = 4.32

Made only 2 mistakes

Mistake bound: limits wrong decisions, as 
desired

But, required strong assumptions (no noise, 
true H contained in H )

Could be very slow!



Bayesian 
Learning



Recall iris example

H  = factor graphs of given structure

Need to specify entries of # s
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Factors

lo m hi

set.

vers.

vir.

pi qi 1ÐpiÐqi

ri si 1ÐriÐsi

ui vi 1ÐuiÐvi

setosa p

versicolor q

virginica 1ÐpÐq

# 0 # 1Ð#4



Continuous factors

lo m hi

set.

vers.

vir.

p1 q1 1Ðp1Ðq1

r1 s1 1Ðr1Ðs1

u1 v1 1Ðu1Ðv1

# 1

Discretized petal length Continuous petal length

! 1(! , s) =

exp(−(! − ! s)2/ 2" 2)

parameters ! set , ! vers , ! vir ;
constant " 2



Simpler example

H

T

p

1Ðp

Coin toss



Parametric model class

H  is a parametric  model class: each H in H  
corresponds to a vector of parameters $ = (p) 
or $ = (p, q, p1, q1, r1, s1, É)

H! : X ~ P(X | $) (or, Y ~ P(Y | X, $))

Contrast to discrete  H, as in version space

Could also have mixed  H: discrete choice among 
parametric (sub)classes



Continuous prior

E.g., for coin toss, p ~ Beta(a, b):

Specifying, e.g., a = 2, b = 2:

P (p | a, b) =
1

B(a, b)
pa! 1(1 ! p)b! 1

P(p) = 6 p(1 ! p)



Prior for p
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Coin toss, contÕd

Joint distÕn of parameter p and data xi:

P(p,x) = P(p)
!

i

P(xi | p)

= 6p(1 ! p)
!

i

px i (1 ! p)1! x i



Coin ßip posterior

P(p | x) = P(p)
!

i

P(xi | p)/P (x)

=
1
Z

p(1 ! p)
!

i

px i (1 ! p)1! x i

=
1
Z

p1+
P

i x i (1 ! p)1+
P

i (1! x i )

= Beta(2 +
"

i xi , 2 +
"

i (1 ! xi ))



Prior for p
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Posterior after 4 H, 7 T
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Posterior after 10 H, 19 T
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Predictive distribution

Posterior is nice, but doesnÕt tell us directly what 
we need to know

We care more about P(xN+1 | x1, É, x N)

By law of total probability, conditional 
independence:

P(xN +1 | D ) =
!

P(xN +1 , ! | D )d!

=
!

P(xN +1 | ! )P(! | D )d!



Coin ßip example

After 10 H, 19 T: p ~ Beta(12, 21)

E(xN+1 | p) = p

E(xN+1 | $) = E(p | $) = a/(a+b) = 12/33

So, predict 36.4% chance of H on next ßip



Approximate 
Bayes



Approximate Bayes

Coin ßip example was easy

In general, computing posterior (or predictive 
distribution) may be hard

Solution: use the approximate integration 
techniques weÕve studied!



Bayes as numerical integration

Parameters $, data D

P($ | D) = P(D | $) P($) / P(D)

Usually, P($) is simple; so is Z P(D | $)

So, P($ | D) ∝ Z P(D | $) P($)

Perfect for MH



P(y | x) = ! (ax + b)

! (z) = 1 / (1 + exp(! z))

petal length

P
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Posterior

P(a, b | xi , yi ) =

ZP (a, b)
!

i

! (axi + b)yi ! (! axi ! b)1! yi

P(a, b) = N (0, I )



a

b

Sample from posterior

a

b
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Expanded factor graph

original factor graph:



Cheaper 
approximations



Getting cheaper

Maximum a posteriori (MAP)

Maximum likelihood (MLE)

Conditional MLE / MAP

Instead of true posterior, just use single most 
probable hypothesis



MAP

Summarize entire posterior density using the 
maximum

arg max
!

P(D | ! )P(! )



MLE

Like MAP, but ignore prior term

arg max
!

P(D | ! )



Conditional MLE, MAP

Split D = (x, y)

Condition on x, try to explain only y

arg max
!

P(y | x , θ)

arg max
!

P(y | x , θ)P(θ)



a

b

Iris example: MAP vs. posterior
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Irises: MAP vs. posterior
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Too certain

This behavior of MAP (or MLE) is typical: we 
are too sure of ourselves

But, often gets better with more data

Theorem: MAP and MLE are consistent 
estimates of true $, if Òdata per parameterÓ % 
#


