15-780: Graduate AI
Lecture 3. FOL proofs

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman
Admin
HW1

- Out today
- Due Tue, Feb. 1 (two weeks)
 - hand in hardcopy at beginning of class
- Covers propositional and FOL
- Don’t leave it to the last minute!
Collaboration policy

- **OK to discuss general strategies**
- **What you hand in must be your own work**
 - written with no access to notes from joint meetings, websites, etc.
- **You must acknowledge all significant discussions, relevant websites, etc., on your HW**
Late policy

- 5 late days to split across all HWs
 - these account for conference travel, holidays, illness, or any other reasons
- After late days, out of 70th %ile for next 24 hrs, 40th %ile for next 24, no credit thereafter (but still must turn in)
- Day = 24 hrs or part thereof, HWs due at 10:30AM
Office hours

- *My office hours this week (usually 12–1 Thu) are canceled*

- *Email if you need to discuss something with me*
Review
NP

- Decision problems
- Reductions: A reduces to B means B at least as hard as A
 - Ex: k-coloring to SAT, SAT to CNF-SAT
 - Sometimes a practical tool
- $NP = \text{reduces to SAT}$
- NP-complete = both directions to SAT
- $P \stackrel{?}{=} NP$
Propositional logic

- Proof trees, proof by contradiction
- Inference rules (e.g., resolution)
- Soundness, completeness
- First nontrivial SAT algorithm
- Horn clauses, MAXSAT, nonmonotonic logic
FOL

- **Models**
 - objects, function tables, predicate tables
- **Compositional semantics**
 - object constants, functions, predicates
 - terms, atoms, literals, sentences
 - quantifiers, variables, free/bound, variable assignments
Proofs in FOL

- Skolemization, CNF
- Universal instantiation
- Substitution lists, unification
- MGU (unique up to renaming, exist efficient algorithms to find it)
Proofs in FOL
Quiz

○ Can we unify

\[\text{knows}(John, x) \quad \text{knows}(x, Mary)\]

○ What about

\[\text{knows}(John, x) \quad \text{knows}(y, Mary)\]
Quiz

- Can we unify

 $\text{knows}(\text{John}, x) \land \text{knows}(x, \text{Mary})$

 No!

- What about

 $\text{knows}(\text{John}, x) \land \text{knows}(y, \text{Mary})$

 $x \rightarrow \text{Mary}, y \rightarrow \text{John}$
Standardize apart

- **But** \(\text{knows}(x, \text{Mary})\) is logically equivalent to \(\text{knows}(y, \text{Mary})\)!

- **Moral**: standardize apart before unifying
First-order resolution

- Given clauses \((\alpha \lor c), (\neg d \lor \beta),\) and a substitution list \(L\) unifying \(c\) and \(d\)

- Conclude \((\alpha \lor \beta) : L\)

- In fact, only ever need \(L\) to be MGU of \(c, d\)
Example

\[\text{rains \text{ outside}(x) } \Rightarrow \text{wet}(x) \]
\[\text{wet}(x) \Rightarrow \text{rusty}(x) \lor \text{rustproof}(x) \]
\[\text{robot}(x) \equiv \neg \text{rustproof}(x) \]
\[\text{rains} \]
\[\text{guidebot}(\text{Robby}) \]
\[\text{guidebot}(x) \equiv \text{robot}(x) \lor \text{outside}(x) \]
\[\text{rain} \land \text{outside}(x) \implies \text{wet}(x) \]
\[\text{wet}(x) \implies \text{rusty}(x) \lor \text{rustproof}(x) \]
\[\text{robot}(x) \equiv \neg \text{rustproof}(x) \]
\[\neg \text{rain} \]
\[\text{guidebot}(R) \]
\[\text{guidebot}(x) \equiv \text{robot}(x) \lor \text{outside}(x) \]

1. \(\exists x. \text{rusty}(x) \) \(\implies \text{rusty}(x) \)
2. \(\text{robot}(R) \)
3. \(\text{outside}(R) \)
4. \(\neg \text{rustproof}(R) \)
5. \(\text{robot}(R) \)
6. \(\text{outside}(R) \)
7. \(\text{outside}(x) \lor \text{wet}(x) \)
8. \(\text{wet}(x) \)
9. \(\text{rusty}(R) \lor \text{rustproof}(R) \)
10. \(\text{rusty}(R) \lor \text{rustproof}(R) \)
11. \(\text{rusty}(R) \lor \text{rustproof}(R) \)
12. \(\text{rusty}(R) \)
13. \(\text{rustproof}(R) \)
14. \(\exists x. \text{rusty}(x) \)
15. \(F \)
First-order factoring

- When removing redundant literals, we have the option of unifying them first
- Given clause \((a \lor b \lor \theta)\), substitution \(L\)
- If \(a : L\) and \(b : L\) are syntactically identical
- Then we can conclude \((a \lor \theta) : L\)
- Again \(L = MGU\) is enough
Completeness

- First-order resolution (w/ FO factoring) is sound and complete for FOL w/o equality (famous theorem due to Herbrand and Robinson)

- Unlike propositional case, may be infinitely many possible conclusions

- So, FO entailment is semidecidable (entailed statements are recursively enumerable)
Algorithm for FOL

- Put $KB \land \neg S$ in CNF
- Pick an application of resolution or factoring (using MGU) by some fair rule
 - standardize apart premises
- Add consequence to KB
- Repeat
Variations
Equality

- **Paramodulation** is sound and complete for FOL+equality (see RN)

- Or, **resolution + factoring + axiom schema**

\[
\forall P. \forall x, y. (x = y) \Rightarrow P(x) \iff P(y)
\]
\[
\forall P. \forall x, y, z. (x = y) \Rightarrow P(x, z) \iff P(y, z)
\]
\[
\Rightarrow P(z, x) \iff P(z, y)
\]
Restricted semantics

- Only check one finite, propositional KB
 - NP-complete much better than RE
- Unique names: objects with different names are different (John ≠ Mary)
- Domain closure: objects without names given in KB don’t exist
- Known functions: only have to infer predicates
Uncertainty

- Same trick as before: many independent random choices by Nature, logical rules for their consequences
- Two new difficulties
 - ensuring satisfiability (not new, harder)
 - describing set of random choices
Markov logic

- Assume unique names, domain closure, known fns: only have to infer propositions

- Each FO statement now has a known set of ground instances
 - e.g., loves(x,y) \(\Rightarrow \) happy(x) has \(n^2 \) instances if there are \(n \) people

- One random choice per rule instance: enforce w/p \(p \) (KBs that violate the rule are \((1-p) \) times less likely)
Independent Choice Logic

- Generalizes Bayes nets, Markov logic, Prolog programs—incomparable to FOL
- Use only acyclic KBs (always feasible), minimal model (cf. nonmonotonicity)
- Assume all syntactically distinct terms are distinct (so we know what objects are in our model—perhaps infinitely many)
- Label some predicates as choices: values selected independently for each grounding
Inference under uncertainty

- **Wide open topic: lots of recent work!**
- **We’ll cover only the special case of propositional inference under uncertainty**
- **The extension to FO is left as an exercise for the listener**
Second order logic

- SOL adds quantification over predicates
- E.g., principle of mathematical induction:
 - \(\forall P. P(0) \land (\forall x. P(x) \implies P(S(x))) \implication \forall x. P(x) \)
- There is no sound and complete inference procedure for SOL (Gödel’s famous incompleteness theorem)
Others

- Temporal and modal logics ("P(x) will be true at some time in the future," "John believes P(x)")

- Nonmonotonic FOL

- First-class functions (lambda operator, application)

- ...
Who? What? Where?
Wh-questions

- We’ve shown how to answer a question like “is Socrates mortal?”
- What if we have a question whose answer is not just yes/no, like “who killed JR?” or “where is my robot?”
- Simplest approach: prove $\exists x. \text{killed}(x, \text{JR})$, hope the proof is constructive
 - may not work even if constr. proof exists
Answer literals

- Instead of $\neg P(x)$, add $(\neg P(x) \lor \text{answer}(x))$
 - answer is a new predicate
- If there’s a proof of $P(\text{foo})$, can eliminate $\neg P(x)$ by resolution and unification, leaving $\text{answer}(x)$ with x bound to foo
Example

\[\text{kills (Jack, Cat)} \lor \text{kills (Curiosity, Cat)} \]

2. \[\neg \text{kills (Jack, Cat)} \]

3. \[\neg \text{kills (x, Cat)} \]

1, 3 \models \text{kills (J, C)} \quad (x \Rightarrow \text{Curiosity})

4, 2 \models F
Example

1. \(\text{kills} (\text{Jack, Cat}) \lor \text{kills} (\text{Curiosity, Cat}) \)
2. \(\neg \text{kills} (\text{Jack, Cat}) \)
3. \(\neg \text{kills} (x, \text{Cat}) \)
4. \((x \rightarrow y) \rightarrow \text{kills} (\text{Curiosity, Cat}) \)
5. \((x \rightarrow \text{Cu}) \models \models \)
Example

1. \(\text{kills}(\text{Jack}, \text{Cat}) \lor \text{kills}(\text{Curiosity}, \text{Cat}) \)

2. \(\neg \text{kills}(\text{Jack}, \text{Cat}) \)

3. \(\neg \text{kills}(x, \text{Cat}) \lor \text{Answer}(x) \)

1,3 \implies \text{kills}(\text{Jack}, \text{Cat}) \lor \text{answer}(\text{Curiosity})

2,4 \implies \text{answer}(\text{Curiosity})
Instance Generation
Bounds on KB value

- If we find a model M of KB, then KB is satisfiable.

- If L is a substitution list, and if $(KB: L)$ is unsatisfiable, then KB is unsatisfiable.
 - e.g., $\text{mortal}(x) \rightarrow \text{mortal(uncle}(x))$
Bounds on KB value

- $KB_0 = KB$ with each *syntactically distinct* atom replaced by a different 0-arg proposition
 - $\text{likes}(x, \text{kittens}) \lor \neg \text{likes}(y, x) \rightarrow A \lor \neg B$

- KB ground and KB_0 unsatisfiable \Rightarrow KB unsatisfiable
Propositionalizing

- Let L be a **ground** substitution list
- Consider $KB' = (KB: L)_0$
 - KB' unsatisfiable \Rightarrow KB unsatisfiable
 - KB' is propositional
- Try to show contradiction by handing KB' to a SAT solver: if KB' unsatisfiable, done
- Which L? $x \not\in \{0\} \quad y \not\in \{0\} \quad z \not\in \{0\}$
Example

\[\text{kills (Jack, Cat)} \lor \text{kills (Curiosity, Cat)} \]

\[\neg \text{kills (Jack, Cat)} \]

\[\neg \text{kills (x, Cat)} \implies \neg \text{kills (foo, Cat)} \]

\[
\begin{array}{c}
A \lor B \\
\neg A \\
\neg C
\end{array}
\]

\[
\begin{array}{c}
M^C \\
M \\
M
\end{array}
\]

\[
\begin{array}{c}
A = F \\
B = T \\
C = F \\
\neg \text{kills (foo, Cat)}
\end{array}
\]

\[
\begin{array}{c}
\neg \text{kills (Curiosity, Cat)} = T \\
\neg \text{kills (x, Cat)} = F \\
\neg \text{kills (foo, Cat)} = F \\
\neg \text{kills (foo, Cat)} = F
\end{array}
\]

\[
x \in \{\neg \text{kills (Jack, Cat)}\}
\]
Lifting

- Suppose KB' satisfiable by model M'
- Try to lift M' to a model M of KB
 - assign each atom in M the value of its corresponding proposition in M'
 - break ties by specificity where possible
 - break any further ties arbitrarily
Example

\[\text{kills}(Jack, \text{Cat}) \lor \text{kills}(\text{Curiosity}, \text{Cat}) \]
\[\neg \text{kills}(Jack, \text{Cat}) \]
\[\neg \text{kills}(x, \text{Cat}) \]

\[\neg \text{kills}(\text{Jack, Cat}) \]
\[\text{kills}(\text{Curiosity, Cat}) \]
\[\neg \text{kills}(\text{Foo, Cat}) \]

\[M' \]
Discordant pairs

- **Atoms** \(\text{kills}(x, \text{Cat}), \text{kills}(\text{Curiosity}, \text{Cat}) \)
 - each **tight** for its clause in \(M' \)
 - assigned opposite values in \(M' \)
 - **unify**: MGU is \(x \rightarrow \text{Curiosity} \)
- **Such pairs of atoms are discordant**
- They suggest useful ways to instantiate
Example

\(\text{kills (Jack, Cat)} \lor \text{kills (Curiosity, Cat)} \)

\(\neg \text{kills (Jack, Cat)} \)

\(\neg \text{kills (x, Cat)} \)

\(\neg \text{kills (Curiosity, Cat)} \)

\(A \lor B \)

\(\neg A \)

\(\neg B \)
InstGen

- Propositionalize $KB \rightarrow KB'$, run SAT solver
- If KB' unsatisfiable, done
- Else, get model M', lift to M
- If M satisfies KB, done
- Else, pick a discordant pair according to a fair rule; use to instantiate clauses of KB
- Repeat
Soundness and completeness

- We’ve already argued soundness

- Completeness theorem: if KB is unsatisfiable but KB’ is satisfiable, must exist a discordant pair wrt M’ which generates a new instantiation of a clause from KB—and, a finite sequence of such instantiations will find an unsatisfiable propositional formula
Agent Architectures
Situated agent

Agent → Environment

Perception

Action
Inside the agent
Inside the agent
Knowledge Representation
Knowledge Representation

- *is the process of*
 - Identifying relevant objects, functions, and predicates
 - Encoding general background knowledge about domain (reusable)
 - Encoding specific problem instance
- Sometimes called knowledge engineering
Common themes

- RN identifies many common idioms and problems for knowledge representation
- Hierarchies, fluents, knowledge, belief, …
- We’ll look at a couple
Taxonomies

- \textit{isa}(Mammal, Animal)
- \textit{disjoint}(Animal, Vegetable)
- \textit{partition}({Animal, Vegetable, Mineral, Intangible}, Everything)
Inheritance

- **Transitive**: $\text{isa}(x, y) \land \text{isa}(y, z) \Rightarrow \text{isa}(x, z)$

- **Attach properties anywhere in hierarchy**
 - $\text{isa}(\text{Pigeon}, \text{Bird})$
 - $\text{isa}(x, \text{Bird}) \Rightarrow \text{flies}(x)$
 - $\text{isa}(x, \text{Pigeon}) \Rightarrow \text{gray}(x)$

- **So**, $\text{isa}(\text{Tweety}, \text{Pigeon})$ tells us Tweety is gray and flies
Physical composition

- `partOf(Wean4625, WeanHall)`
- `partOf(water37, water3)`

Note distinction between **mass** and **count** nouns: any `partOf` a mass noun also `isa` that mass noun
Fluents

- Fluent = property that changes over time
 - $\text{at}($Robot, Wean4623, 11AM$)$

- Actions change fluents

- Fluents chain together to form possible worlds

- $\text{at}(x, p, t) \land \text{adj}(p, q) \Rightarrow \text{poss}(\text{go}(x, p, q), t)$
 - $\land \text{at}(x, q, \text{result}(\text{go}(x, p, q), t))$
Frame problem

- Suppose we execute an unrelated action (e.g., talk(Professor, FOL))

- Robot shouldn’t move:
 - if at(Robot, Wean4623, t), want at(Robot, Wean4623, result(talk(Professor, FOL)))

- But we can’t prove it without adding appropriate rules to KB!
The frame problem is that it’s a pain to list all of the things that don’t change when we execute an action.

Naive solution: frame axioms

- for each fluent, list actions that can’t change fluent

KB size: $O(AF)$ for A actions, F fluents
Frame problem

- **Better solution**: *successor-state* axioms

 - *For each fluent, list actions that can change it (typically fewer)*: if go(x, p, q) is possible,

 \[
 \text{at}(x, q, \text{result}(a, t)) \iff \\
 a = \text{go}(x, p, q) \lor (\text{at}(x, q, t) \land a \neq \text{go}(x, q, z))
 \]

 - *Size O(AE+F)* if each action has E effects
Debugging KB

- Sadly always necessary…
 - Severe bug: logical contradictions
 - Less severe: undesired conclusions
 - Least severe: missing conclusions
- First 2: trace back chain of reasoning until reason for failure is revealed
- Last: trace desired proof, find what’s missing
Examples
A simple data structure

- \((\text{ABB}) \equiv \text{cons}(A, \text{cons}(B, \text{cons}(B, \text{nil})))\)
- \(\text{input}(x) \iff r(x, \text{nil})\)
- \(r(\text{cons}(x, y), z) \iff r(y, \text{cons}(x, z))\)
- \(r(\text{nil}, x) \iff \text{output}(x)\)
Caveat

- \(\text{input}(x) \iff r(x, \text{nil}) \)
- \(r(\text{cons}(x, y), z) \iff r(y, \text{cons}(x, z)) \)
- \(r(\text{nil}, x) \iff \text{output}(x) \)
A context-free grammar

- $S := NP \ VP$
- $NP := D \ Adjs \ N$
- $VP := Advs \ V \ PPs \ | \ Advs \ V \ DO \ PPs \ | \ Advs \ V \ IO \ DO \ PPs$
- $PP := Prep \ NP$
- $DO := NP$
- $IO := NP$
- $Adjs := Adj \ Adjs \ | \ {}$
- $Advs := Adv \ Advs \ | \ {}$
- $PPs := PP \ PPs \ | \ {}$
- $D := a \ | \ an \ | \ the \ | \ {}$
- $Adj := errant \ | \ atonal \ | \ squishy \ | \ piquant \ | \ desultory$
- $Adv := quickly \ | \ excruciatingly$
- $V := throws \ | \ explains \ | \ slithers$
- $Prep := to \ | \ with \ | \ underneath$
- $N := aardvark \ | \ avocado \ | \ accordion \ | \ professor \ | \ pandemonium$
A context-free grammar

- \(S := NP \text{ VP} \)
- \(NP := D \text{ Adjs} N \)
- \(VP := \text{ Advs} V \text{ PPs} \text{ DO PPs} \text{ IO PPs} \)
- \(PP := \text{ Prep} NP \)
- \(DO := NP \)
- \(IO := NP \)
- \(Adjs := \text{ Adj} \text{ Adjs} \text{ } \{\} \)
- \(Advs := \text{ Adv} \text{ Advs} \text{ } \{\} \)
- \(PPs := \text{ PP} \text{ PPs} \text{ } \{\} \)
- \(D := a | an | the \text{ } \{\} \)
- \(Adj := \text{ errant} | \text{ atonal} | \text{ squishy} | \text{ piquant} | \text{ desultory} \)
- \(Adv := \text{ quickly} | \text{ excruciatingly} \)
- \(V := \text{ throws} | \text{ explains} | \text{ slithers} \)
- \(Prep := \text{ to} | \text{ with} | \text{ underneath} \)
- \(N := \text{ aardvark} | \text{ avocado} | \text{ accordion} | \text{ professor} | \text{ pandemonium} \)

- the errant professor explains the desultory avocado to the squishy aardvark
- a piquant accordion quickly excruciatingly slithers underneath the atonal pandemonium
Shift-reduce parser

\[\text{input}(x) \Rightarrow \text{parse}(x, \text{nil}) \]
\[\text{parse}(\text{cons}(x, y), z) \Rightarrow \text{parse}(y, \text{cons}(x, z)) \]
\[\text{parse}(x, (\text{VP NP . y})) \Rightarrow \text{parse}(x, (\text{S . y})) \]
\[\text{parse}(x, (\text{N Adjs D . y})) \Rightarrow \text{parse}(x, (\text{NP . y})) \]
\[\text{parse}(x, y) \Rightarrow \text{parse}(x, (\text{Adjs . y})) \]
\[\text{parse}(x, (\text{aardvark . y})) \Rightarrow \text{parse}(x, (\text{N . y})) \]
\[\ldots \]
\[\text{parse}(\text{nil}, (\text{S})) \Rightarrow \text{parsed} \]
An example parse

- `input((the professor slithers))`
More careful

\[\text{input}(x) \land \text{input}(y) \Rightarrow (x = y) \]

\[\text{NP} \neq \text{VP} \land \text{NP} \neq \text{S} \land \text{NP} \neq \text{the} \land \text{avocado} \neq \text{aardvark} \land \text{avocado} \neq \text{the} \land \ldots \]

\[\text{terminal}(x) \iff x = \text{avocado} \lor x = \text{the} \lor \ldots \]

\[\text{input}(x) \iff \text{parse}(x, \text{nil}) \]

\[\text{parse}(\text{nil}, (S)) \iff \text{parsed} \]
More careful (cont’d)

terminal(x) ⇒

[parse(cons(x, y), z) ↔ parse(y, cons(x, z))]

[parse(x, (aardvark . y)) ∨ parse(x, (avocado . y))
 ∨ …] ↔ parse(x, (N . y))

[parse(x, y) ∨ parse(x, (Adjs Adj . y)]
 ↔ parse(x, (Adjs . y))

…
Extensions

- Probabilistic CFG
- Context-sensitive features (e.g., coreference: John and Mary like to sail. His yacht is red, and hers is blue.)