Recognition

Recognition by Templates Classifiers

Probabilistic Formulation

How to represent and learn $p\left(\right.$ feature object $\left._{j}\right)$ or decision boundary?
How to approach Bayes risk given small number of samples?
What features to use?
How to reduce the feature space?

Approaches

- Every single pattern classification/learning approach has been applied to this problem
- Pick your favorite:
- Naïve Bayes
- Boosting
- Neural networks
- SVMs
- NNs
- PCA/LDA/ICA dimensionality reduction
-

Your favorite buzzword goes here.

Approaches

- Every single pattern classification/learning approach has been applied to this problem
- Pick your favorite:
- Naïve Bayes
- Boosting
- Neural networks
- SVMs
- NNs
- PCA/LDA/ICA dimensionality reduction
-

Histogram Representation

Features: $m=$ magnitude of $1^{\text {st }}$ derivatives of Gaussian + Laplacian at 3 different scales (6-component feature)
Representation: $p(m \mid 0)=$ histogram of features from training data (24 levels per axis)

Return object that maximizes:
$P\left(\right.$ object $_{n} \mid$ image $) \propto \prod_{i} P\left(m_{i} \mid\right.$ object $\left._{n}\right) P\left(\right.$ object $\left._{n}\right)$
[Example from Bernt Schiele]

For complex scenes: Scan the image and evaluate "probability" at scanned window locations

Object n is in the image if many windows "vote" for the image, e.g., by evaluating vote $\left(\boldsymbol{o b j e c t}_{n}\right)=\sum_{k} \boldsymbol{P}\left(\boldsymbol{o b j e c t}_{n} \mid \boldsymbol{W}_{k}\right)$

Note: This is not necessarily the best way to do this....see later

A

first match for A

B

first match for B

C

third match for C

D

first match for D

[^0]

- Feature $=$ Set of coefficients $S=\left(C_{1}, . ., C_{N}\right)$
- Given features $\boldsymbol{S}_{1}, . ., \boldsymbol{S}_{\mathrm{r}}$ computed from a window, threshold the likelihood ratio

$$
\begin{aligned}
& \log \frac{\boldsymbol{P}\left(\boldsymbol{S}_{1} \cdots \boldsymbol{S}_{\boldsymbol{r}} \mid \omega_{1}\right)}{\boldsymbol{P}\left(\boldsymbol{S}_{1} \cdots \boldsymbol{S}_{\boldsymbol{r}} \mid \omega_{2}\right)}=\boldsymbol{P}_{\begin{array}{c}
\text { Assume independence } \\
\text { (Naïve Bayes) }
\end{array}}^{\substack{\boldsymbol{P}\left(\boldsymbol{S}_{1} \mid \omega_{1}\right) \\
\boldsymbol{P}\left(\boldsymbol{S}_{1} \mid \omega_{2}\right)} \log \frac{\boldsymbol{P}\left(\boldsymbol{S}_{2} \mid \omega_{1}\right)}{\boldsymbol{P}\left(\boldsymbol{S}_{2} \mid \omega_{2}\right)}+\ldots+\log \frac{\boldsymbol{P}\left(\boldsymbol{S}_{\boldsymbol{r}} \mid \omega_{1}\right)}{\boldsymbol{P}\left(\boldsymbol{S}_{\boldsymbol{r}} \mid \omega_{2}\right)}>\lambda ?} \\
& \text { Example from Henry Schneiderman } \\
& \begin{array}{c}
\text { How can we compute these } \\
\text { probabilities? }
\end{array}
\end{aligned}
$$

Estimating the Probabilities

- Collect the values of the features for training data in histograms that approximate the probabilities

~10,000,000 examples
Example from Henry Schneiderman

Compute the values of all the features in the window For each feature, compute the probabilities of coming from the object or non-object class
Aggregate into likelihood ratio

From Windows to Images

Search in position

- Move a window to all possible positions and all possible scales
- At each (position,scale) evaluate the classifier

- Return detection if above threshold

Feature Selection Problem

- Each feature is a set of variables (wavelet coefficients) $S=\left\{C_{1}, . ., C_{N}\right\}$
- Problem:
- If N is large, the feature is very discriminative (S is equivalent to the entire window if N is the total number of variables) but representing the corresponding distribution is very expensive
- If N is small, the feature is not discriminative but classification is very fast

Solution: Classifier Cascade

- Standard problem:
- We can have either discriminative or efficient features but not both!
- Cannot do classification in one shot
- Standard solution: Classifier Cascade
- Apply first a classifier with simple features \rightarrow Fast and will eliminate the most obvious non-object locations
- Then apply a classifier with more complex features \rightarrow More expensive but applied only to these locations that survived the previous stage

Cascade Example

Apply classifier with very simple (and fast) features
\rightarrow Eliminates most of the image

Apply classifier with more complex features on what is left

Cascade Stage 3

Apply classifier with more complex features on what is left

False Detections

Approaches

- Every single pattern classification/learning approach has been applied to this problem
- Pick your favorite:
- Naïve Bayes
- Boosting
- Neural networks
- SVMs
- NNs
- PCA/LDA/ICA dimensionality reduction
\qquad

- Don't try to design strong features from the beginning, just use really stupid but really fast features (and a lot of them)
- Weak learner = Very fast (but very inaccurate) classifier
- Example: Multiply input window by a very simple box operator and threshold output
(Example from Paul Viola, Distributed by Intel as part of the OpenCV library)

Feature Selection

- Operators defined over all possible shapes and positions within the window
- For a 24×24 window $\rightarrow 45,396$ combinations!!
- How to select the "useful" features?
- How to combine them into classifiers?
(Example from Paul Viola)
- Input: Training examples $\left\{x_{i}\right\}$ with labels ("face" or "non-face" $=+/-1$) $\left\{y_{i}\right\}+$ weights w_{i} (initially $w_{i}=1$)
- Choose the feature (weak classifier h_{t}) with minimum error: $\varepsilon_{t}=\sum_{i} \boldsymbol{w}_{i}\left[h_{t}\left(\boldsymbol{x}_{i}\right) \neq \boldsymbol{y}_{i}\right]$
- Update the weights such that
$-w_{i}$ is increased if x_{i} is misclassified
$-w_{i}$ is decreased if x_{i} is correctly classified
- Compute a weight α_{t} for classifier h_{t}
- α_{t} large if ε_{t} is small
- Final classifier:

$$
\boldsymbol{H}(\boldsymbol{x})=\operatorname{sgn}\left(\sum_{t} \alpha_{t} \boldsymbol{h}_{t}(\boldsymbol{x})\right)
$$

$$
\left.\left.\begin{array}{l}
\text { This is a general description of a boosting } \\
\text { algorithm. Well-defined rules for updating } w \\
\text { and for computing } \alpha \text { guarantee convergence }
\end{array}\right\} \text { 种 }\right\} \text { with labels }
$$ and "good" classification performance.

Repeat T times

- Update the ma:igmis such that
$-w_{i}$ is increased if x_{i} ic micrlaccifiod
$-w_{i}$ is decreased if $x \begin{gathered}\text { Features that yield good classification } \\ \text { performance receive higher weights }\end{gathered}$
- Compute a weight α_{t} ior classirier h_{t}
- α_{t} large if ε_{t} is small
- Final classifier:

$$
\boldsymbol{H}(\boldsymbol{x})=\operatorname{sgn}\left(\sum_{t} \alpha_{t} \boldsymbol{h}_{t}(\boldsymbol{x})\right)
$$

The automatic selection process selects "natural" features (Example from Paul Viola)

Using a Cascade (Again)

- Same problem as before: It is too hard (or impossible) to build a single accurate classifier
- Key reason: An image containing one face may have 10^{5} possible locations but only 1 "correct" location \rightarrow rare event detection \rightarrow Would require an enormous number of features
- Solution: Use a cascade of classifiers. Each classifier eliminates more of the non-object locations while retaining the "object" locations.

- In this example, the cascade and the single classifier have similar accuracy, but the cascade is 10 times faster

Approaches

- Every single pattern classification/learning approach has been applied to this problem
- Pick your favorite:
- Naïve Bayes
- Boosting
- Neural networks
- SVMs
- NNs
- PCA/LDA/ICA dimensionality reduction
\qquad

$$
\boldsymbol{y}(\boldsymbol{z})=\left[\phi\left(\boldsymbol{w}_{11} \cdot \boldsymbol{z}\right), \phi\left(\boldsymbol{w}_{12} \cdot \boldsymbol{z}\right), \ldots \phi\left(\boldsymbol{w}_{1 m} \cdot \boldsymbol{z}\right), 1\right]
$$

$$
\boldsymbol{z}(\boldsymbol{x})=\left[x_{1}, x_{2}, \ldots, x_{p}, 1\right]
$$

$f(x)=$ orientation of template sampled at 10° intervals
$f(x)=$ face detection posterior

Example from Rowley et al.

3681796691
6757863485
$21797 / 2845$
4819018894
7618641560
7592658197
2222234480
0138073857
0146460243
$7 / 28769861$

Convolutional Networks: Lecun et al. http://yann.lecun.com/exdb/lenet/

Approaches

- Every single pattern classification/learning approach has been applied to this problem
- Pick your favorite:
- Naïve Bayes
- Boosting
- Neural networks
- SVMs
- NNs
- PCA/LDA/ICA dimensionality reduction
\qquad

Discriminative Approaches

Linear Discriminant

Feature Space

General: Large-Margin Classifiers, SVMs

Feature Space

- Difficult to represent the distribution in high-dimensional feature spaces \rightarrow Find decision boundary directly
- General idea: Much less training data is needed to construct the decision boundary than the distributions
- Maximize separation between the classes for better generalization
- Fewer parameters: 2 Gaussians with equal covariance $=7$ params, line $=2$ params

Approaches

- Every single pattern classification/learning approach has been applied to this problem
- Pick your favorite:
- Naïve Bayes
- Boosting
- Neural networks
- SVMs
- NNs
- PCA/LDA/ICA dimensionality reduction
\qquad

Nearest Neighbors

Feature Space

- Does not require recovery of distributions or decision surfaces
- Asymptotically twice Bayes risk at most
- Choice of distance metric critical
- Indexing may be difficult

Large Feature Spaces: PCA

$\mathbf{X}=$ feature vector of high dimension
\rightarrow Difficult indexing in high-dimensional space
\rightarrow Most of the dimensions are probably not useful
$\uparrow \lambda_{\text {min }}$

Principal Component: Dominant eigenvectors of scatter matrix

$$
\begin{aligned}
& \tilde{\mathbf{X}}=\mathbf{X}-\overline{\mathbf{X}} \\
& \sum_{i} \tilde{\mathbf{X}}_{i} \tilde{\mathbf{X}}_{i}^{T}=\left[\begin{array}{ccc}
\sum_{i} x_{i 1}^{2} & \cdots & \sum_{i} x_{i 1} x_{i n} \\
\vdots & \ddots & \vdots \\
\sum_{i} x_{i 1} x_{i n} & \cdots & \sum_{i} x_{i n}^{2}
\end{array}\right]
\end{aligned}
$$

Most of the information is contained in the Space spanned by $\left(\mathbf{V}_{1}, \ldots, \mathbf{V}_{\mathrm{k}}\right)$

$$
\widetilde{\mathbf{X}} \approx \lambda_{1} \mathbf{V}_{1} \bullet \tilde{\mathbf{X}}+\cdots+\lambda_{k} \mathbf{V}_{k} \bullet \tilde{\mathbf{X}}
$$

PCA: Project first in the lower-dimensional space spanned by the principal component
\rightarrow Indexing in much lower dimensional space
\rightarrow Feature selection

Example Eigenvectors:

[Example from Draper et al.]

Extreme case: $\mathrm{X}=$ image itself
Example: EigenFaces

http://www-white.media.mit.edu/vismod/demos/facerec/basic.html

EigenFeatures		
	0	\bigcirc
${ }_{\text {ramememem }}$		5masme
	(8)	(6)
Features trained on 128 face images, retaining the first 10 eigenvectors		(8)

Problems

- Assume "linear" distribution of features
- Best choice for compression may not be the best choice for discrimination

Example from Belhumeur et al.

[^0]: [Example from Bernt Schiele]

