15-780: Graduate Artificial Intelligence

Density estimation

Conditional Probability Tables (CPT)

But where do we get them?

Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a Probability

Density estimation

- Estimate the distribution (or conditional distribution) of a random variable
- Types of variables:
- Binary
coin flip, alarm
- Discrete

```
dice, car model year
```

- Continuous
height, weight, temp.,

Not just for Bayesian networks ...

- Density estimators can do many good things...
- Can sort the records by probability, and thus spot weird records (anomaly detection)
- Can do inference: P(E1|E2)

Medical diagnosis / Robot sensors

- Ingredient for Bayes networks

Density estimation

- Binary and discrete variables:

Easy: Just count!

- Continuous variables:

Harder (but just a bit): Fit a model

Learning a density estimator

$$
\hat{P}(x[i]=u)=\frac{\# \text { records in which } x[i]=u}{\text { total number of records }}
$$

A trivial learning algorithm!

Course evaluation

P(summer) = \#Summer / \# records
$=23 / 151=0.15$
$P($ Evaluation $=1)=$ \#Evaluation=1
/ \# records
$=49 / 151=0.32$
$P($ Evaluation $=1 \mid$ summer $)=$ $\mathrm{P}($ Evaluation $=1$ \& summer $) /$
$P($ summer $)=2 / 23=0.09$

But why do we count?

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	3
1	20	1

Computing the joint likelihood of the data

$P($ summer $)=$ \#Summer $/ \#$ records
$=23 / 151=0.15$

Summer?	Size	Evaluation
.	\ldots	

$\hat{P}(\operatorname{dataset} \mid M)=\hat{P}\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2} \ldots \wedge \mathbf{x}_{R} \mid M\right)=\prod_{k=1}^{R} \hat{P}\left(\mathbf{x}_{k} \mid M\right)$
The next slide presents one of the most important ideas in probabilistic inference. It has a huge number of applications in many different and diverse problems

Maximum Likelihood Principle

- We can fit models by maximizing the probability of generating the observed samples:
$L\left(x_{1}, \ldots, x_{n} \mid \Theta\right)=p\left(x_{1} \mid \Theta\right) \ldots p\left(x_{n} \mid \Theta\right)$
- The samples (rows in the table) are assumed to be independent)
- For a binary random variable A with $P(A=1)=q$ $\operatorname{argmax}_{\mathrm{q}}=\# 1 / \#$ samples
-Why?

Maximum Likelihood Principle

-For a binary random variable A with $P(A=1)=q$ $\operatorname{argmax}_{\mathrm{q}}=\# 1 / \#$ samples
-Why?
Data likelihood: $\quad P(D \mid M)=q^{n_{1}}(1-q)^{n_{2}}$
We would like to find: $\quad \arg \max _{q} q^{n_{1}}(1-q)^{n_{2}}$

Maximum Likelihood Principle

Data likelihood: $\quad P(D \mid M)=q^{n_{1}}(1-q)^{n_{2}}$

We would like to find: $\quad \arg \max _{q} q^{n_{1}}(1-q)^{n_{2}}$

$$
\begin{aligned}
& \frac{\partial}{\partial q} q^{n_{1}}(1-q)^{n_{2}}=n_{1} q^{n_{1}-1}(1-q)^{n_{2}}-q^{n_{1}} n_{2}(1-q)^{n_{2}-1} \\
& \frac{\partial}{\partial q}=0 \Rightarrow \\
& n_{1} q^{n_{1}-1}(1-q)^{n_{2}}-q^{n_{1}} n_{2}(1-q)^{n_{2}-1}=0 \Rightarrow \\
& q^{n_{1}-1}(1-q)^{n_{2}-1}\left(n_{1}(1-q)-q n_{2}\right)=0 \Rightarrow \\
& n_{1}(1-q)-q n_{2}=0 \Rightarrow \\
& n_{1}=n_{1} q+n_{2} q \Rightarrow \\
& q=\frac{n_{1}}{n_{1}+n_{2}}
\end{aligned}
$$

Log Probabilities

When working with products, probabilities of entire datasets often get too small. A possible solution is to use the log of probabilities, often termed 'log likelihood'

$$
\log \hat{P}(\operatorname{dataset} \mid M)=\log \prod_{k=1}^{R} \hat{P}\left(\mathbf{x}_{k} \mid M\right)=\sum_{k=1}^{R} \log \hat{P}\left(\mathbf{x}_{k} \mid M\right)
$$

Log values between 0 and 1

Density estimation

- Binary and discrete variables:

Easy: Just count!

- Continuous variables:

Harder (but just a bit): Fit a model

The danger of joint density estimation

$\mathrm{P}($ summer $\&$ size $>20 \&$ evaluation $=3)$
= 0

- No such example in our dataset

Now lets assume we are given a new (often called 'test') dataset. If this dataset contains the line

Summer	Size	Evaluation
1	30	3

Then the probability we would

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	3
1	20	1

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:
Assume that each attribute is distributed independently of any of the other attributes.

Joint estinnation, revisiteo

Assuming independence we can compute each probability independently $P($ Summer $)=0.15$
$P($ Evaluation $=1)=0.32$
$P($ Size $>20)=0.63$

How do we do on the joint?
$P($ Summer \& Evaluation = 1) $=0.09$
$P($ Summer $) P($ Evaluation $=1)=0.05$

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
Not bad!		1
		3
1	20	1

$P($ size > 20 \& Evaluation = 1) $=0.23$
$P($ size $>20) P($ Evaluation $=1)=0.20$

Joint estimation, revisited

Assuming independence we can compute each probability independently
P (Summer) $=0.15$
$P($ Evaluation $=1)=0.32$
$P($ Size $>20)=0.63$

How do we do on the joint?
$\mathrm{P}($ Summer \& Size > 20) $=0.026$
$\mathrm{P}($ Summer $) \mathrm{P}($ Size $>20)=0.094$

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	55	1
0	20	1
1		3

We must be careful when using the Naïve density estimator

Contrast

Joint DE	Naïve DE
Can model anything	Can model only very boring distributions
No problem to model "C is a noisy copy of A"	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine

Dealing with small datasets

- We just discussed one possibility: Naïve estimation
- There is another way to deal with small number of measurements that is often used in practice.
- Assume we want to compute the probability of heads in a coin flip
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails

Pseudo counts

- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails
- In these cases we can use prior belief about the 'fairness' of most coins to influence the resulting model.
- We assume that we have observed 10 flips with 5 tails and 5 heads
- \quad Thus $p($ heads $)=(\# h e a d s+5) /(\# f l i p s+10)$
- Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real distribution (the impact of the pseudo counts will diminish rapidly)

Pseudo counts

- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the he
- In thes
'fairnes
Some distributions (for example, the Beta distribution) can incorporate pseudo counts as part of the model and 5 r
- Thus F
- Advan nodel.

5 tails
int
2. As m real distribution (the impact of the pseudo counts will diminish rapidly)

Density estimation

- Binary and discrete variables:

Easy: Just count!
 $\sqrt{ }$

- Continuous variables:

Harder (but just a bit): Fit a model

Conditional Probability Tables (CPT)

What do we do with continuous variables?

S1 - sensor 1
S2 - sensor 2
D - distance to wall
T-too close

$$
P(S 1 \mid D)=? \quad P(S 2 \mid D)=?
$$

Conditional Probability Tables (CPT)

What do we do with continuous variables?

S1 - sensor 1
S2 - sensor 2
D - distance to wall
T-too close

$$
P(S 1 \mid D)=? \quad P(S 2 \mid D)=?
$$

Elementary Concepts

- Population: the ideal group whose properties we are interested in and from which the samples are drawn e.g., graduate students at CMU
- Random sample: a set of elements drawn at random from the population
e.g., students in grad AI

Elementary Concepts

- Statistic: a number computed from the data
e.g., Average time of sleep

Sample Statistics

- Sample mean:

$$
\bar{\mu}=\frac{1}{n} \sum_{i=1}^{n} \mathcal{X}_{i}
$$

where n is the number of samples.

- Sample variance:

$$
\overline{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{\mu}\right)^{2}
$$

- Sample covariance:

$$
\overline{\operatorname{cov}\left(x_{1}, x_{2}\right)}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{1, i}-\overline{\left.\mu_{1}\right)}\left(x_{2, i}-\overline{\mu_{2}}\right)\right.
$$

How much do grad students sleep?

- Lets try to estimate the distribution of the time graduate students spend sleeping (outside class).

Possible statistics

- X

Sleep time
-Mean of \mathbf{X} :
$E\{X\}$ 7.03

- Variance of X :
$\operatorname{Var}\{X\}=E\left\{(X-E\{X\})^{\wedge} 2\right\}$ 3.05

Covariance: Sleep vs. GPA

-Co-Variance of X1, X2:
Covariance $\{X 1, X 2\}=$

Statistical Models

- Statistical models attempt to characterize properties of the population of interest
- For example, we might believe that repeated measurements follow a normal (Gaussian) distribution with some mean μ and variance $\sigma^{2}, \mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
where

$$
p(x \mid \Theta)=\frac{1}{\sqrt{2 \pi} \sigma^{2}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

and $\Theta=\left(\mu, \sigma^{2}\right)$ defines the parameters (mean and variance) of the model.

The Parameters of Our Model

- A statistical model is a collection of distributions; the parameters specify individual distributions $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- We need to adjust the parameters so that the resulting distribution fits the data well

The Parameters of Our Model

- A statistical model is a collection of distributions; the parameters specify individual distributions $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- We need to adjust the parameters so that the resulting distribution fits the data well

Computing the parameters of our model

- Lets assume a Guassian distribution for our sleep data
- How do we compute the parameters of the model?

Maximum Likelihood Principle

- We can fit statistical models by maximizing the probability of generating the observed samples:
$L\left(x_{1}, \ldots, x_{n} \mid \Theta\right)=p\left(x_{1} \mid \Theta\right) \ldots p\left(x_{n} \mid \Theta\right)$
(the samples are assumed to be independent)
- In the Gaussian case we simply set the mean and the variance to the sample mean and the sample variance:

$$
\overline{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \overline{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{\mu}\right)^{2}
$$

Why?

I will leave these derivation to you ...

Sensor data

What value would we infer for D given S1,S2?

- We will write the general terms and then use the network model to simplify it.
- The important issue is how to
work with Gaussians
$P(D \mid S 1, S 2)=\frac{\widehat{P(S 1 \mid D, S 2) P(D \mid S 2)}}{P(S 1 \mid S 2)}=\frac{P(S 1 \mid D, S 2) P(S 2 \mid D) P(D)}{P(S 1 \mid S 2) P(S 2)}$
Using network structure
Bayes rule
$\arg \max _{D} \frac{P(S 1 \mid D) P(S 2 \mid D) P(D)}{P(S 1 \mid S 2) P(S 2)}=\arg \max _{D} P(S 1 \mid D) P(S 2 \mid D)$

$$
P(S 1 \mid D) P(S 2 \mid D)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} e^{-\frac{(D-S 1)^{2}}{2 \sigma_{1}^{2}}} \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} e^{-\frac{(D-S 2)^{2}}{2 \sigma_{2}^{2}}}
$$

Model for sensor data

$$
\begin{aligned}
& \log \left(\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} e^{-\frac{(D-S 1)^{2}}{2 \sigma_{1}^{2}}} \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} e^{-\frac{(D-S 2)^{2}}{2 \sigma_{2}^{2}}}\right)=\log \left(\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}}\right)-\frac{(D-S 1)^{2}}{2 \sigma_{1}^{2}}--\frac{(D-S 2)^{2}}{2 \sigma_{2}^{2}} \\
& \frac{\partial}{\partial D} \log \left(\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}}\right)-\frac{(D-S 1)^{2}}{2 \sigma_{1}^{2}}--\frac{(D-S 2)^{2}}{2 \sigma_{2}^{2}}=-2 \frac{(D-S 1)}{2 \sigma_{1}^{2}}-2 \frac{(D-S 2)}{2 \sigma_{2}^{2}} \\
& \Rightarrow-2 \frac{(D-S 1)}{2 \sigma_{1}^{2}}-2 \frac{(D-S 2)}{2 \sigma_{2}^{2}}=0 \Rightarrow \\
& D=\frac{S 1 \sigma_{2}^{2}+S 2 \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \Rightarrow \\
& D=\frac{S 1+S 2}{2} \\
& \text { Only if } \sigma_{1}=\sigma_{2}
\end{aligned}
$$

Sensor data

Lets go back to Naïve vs.full model

What should I use?
This can be determined based on:

- Training data size
- Cross validation
- Likelihood ratio test

Cross validation is one of the most useful tricks in
model fitting

Cross validation

Cross validation

Multi-Variate Gaussian

- A multivariate Gaussian model: $\mathbf{x} \sim \mathrm{N}(\mu, \Sigma)$ where

$$
p \boldsymbol{x} \mid \Theta)=\frac{1}{2 \pi^{p / 2}|\Sigma|^{1 / 2}} e^{\left.\left.-\frac{1}{2} \boldsymbol{x}-\mu\right)^{T} \Sigma^{-1} \boldsymbol{x}-\mu\right)}
$$

Here μ is the mean vector and Σ is the covariance matrix

$\mu=\left\{\mu_{1}, \mu_{2}\right\} \quad \Sigma=$| $\operatorname{var}\left(x_{1}\right)$ | $\operatorname{cov}\left(x_{1}, x_{2}\right)$ |
| :--- | :--- |
| $\operatorname{cov}\left(x_{1}, x_{2}\right)$ | $\operatorname{var}\left(x_{2}\right)$ |

- The covariance matrix captures linear dependencies among the variables

Example

Important points

- Maximum likelihood estimations (MLE)
- Pseudo counts
- Types of distributions
- Handling continuous variables

