
15-780: Graduate Artificial
Intelligence

Density estimation



Conditional Probability Tables
(CPT)

A

J M

B E
P(B)=.05

P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15

But where do we get
them?



Density Estimation
• A Density Estimator learns a mapping from a set of

attributes to a Probability

Density
Estimator Probability

Input data for a
variable or a set of

variables



Density estimation
• Estimate the distribution (or conditional distribution) of a

random variable
• Types of variables:
    - Binary
      coin flip, alarm

     - Discrete
       dice, car model year

      - Continuous
      height, weight, temp.,



Not just for Bayesian networks …

• Density estimators can do many good things…
– Can sort the records by probability, and thus spot

weird records (anomaly detection)
– Can do inference: P(E1|E2)

Medical diagnosis / Robot sensors
– Ingredient for Bayes networks



Density estimation
• Binary and discrete variables:

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit
a model



Learning a density estimator
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A trivial learning algorithm!



Course evaluation

1201

3550

1330

2490

3171

3191

EvaluationSizeSummer?P(summer) = #Summer / # records

= 23/151 = 0.15

P(Evaluation = 1) =  #Evaluation=1
/ # records
= 49/151 = 0.32

P(Evaluation = 1 | summer) =
P(Evaluation = 1 & summer) /
P(summer) = 2/23 = 0.09

But why do we count?



Computing the joint likelihood of
the data

1201

3550

1330

2490

3171

3191

EvaluationSizeSummer?P(summer) = #Summer / # records

= 23/151 = 0.15

P(Evaluation = 1) =  #Evaluation=1
/ # records
= 49/151 = 0.32

P(Evaluation = 1 | summer) =
P(Evaluation = 1 & summer) /
P(summer) = 2/23 = 0.09
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The next slide presents one of the most
important ideas in probabilistic inference. It
has a huge number of applications in many
different and diverse problems



Maximum Likelihood Principle

• We can fit models by maximizing the probability of
generating the observed samples:
L(x1, … ,xn | Θ) = p(x1 | Θ) … p(xn  | Θ)
• The samples (rows in the table) are assumed to be
independent)
• For a binary random variable A with P(A=1)=q
        argmaxq = #1/#samples
• Why?



•For a binary random variable A with P(A=1)=q
        argmaxq = #1/#samples
• Why?

Data likelihood:

We would like to find:

Maximum Likelihood Principle
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Data likelihood:

We would like to find:

Maximum Likelihood Principle
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Log Probabilities
When working with products, probabilities of
entire datasets often get too small. A possible
solution is to use the log of probabilities, often
termed ‘log likelihood’
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Log values
between 0 and 1



Density estimation
• Binary and discrete variables:

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit
a model

But what if we
only have very
few samples?



The danger of joint density
estimation

1201

3550

1330

2490

3171

3191

EvaluationSizeSummer?P(summer & size > 20 & evaluation = 3)
= 0

- No such example in our dataset

Now lets assume we are given a
new (often called ‘test’) dataset. If
this dataset contains the line

Summer Size Evaluation

      1 30 3

Then the probability we would
assign to the entire dataset is 0



Naïve Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed
independently of any of the other attributes.



Joint estimation, revisited

1201

3550

1330

2490

3171

3191

EvaluationSizeSummer?Assuming independence we can
compute each probability independently

P(Summer) = 0.15

P(Evaluation = 1) = 0.32

P(Size > 20) = 0.63

How do we do on the joint?

P(Summer & Evaluation = 1) = 0.09

P(Summer)P(Evaluation = 1) = 0.05

P(size > 20 & Evaluation = 1) = 0.23
P(size > 20)P(Evaluation = 1) = 0.20

Not bad !



Joint estimation, revisited

1201

3550

1330

2490

3171

3191

EvaluationSizeSummer?Assuming independence we can
compute each probability independently

P(Summer) = 0.15

P(Evaluation = 1) = 0.32

P(Size > 20) = 0.63

How do we do on the joint?

P(Summer & Size > 20) = 0.026

P(Summer)P(Size > 20) = 0.094

We must be careful when using the Naïve
density estimator



Contrast

Given 100 records and 10,000
multivalued attributes will be fine

Given 100 records and more than 6
Boolean attributes will screw up
badly

Outside Naïve’s scopeNo problem to model “C is a noisy
copy of A”

Can model only very boring
distributions

Can model anything

Naïve DEJoint DE



Dealing with small datasets
• We just discussed one possibility: Naïve estimation
• There is another way to deal with small number of

measurements that is often used in practice.
• Assume we want to compute the probability of heads in a

coin flip
     - What if we can only observe 3 flips?
     - 25% of the times a maximum likelihood estimator will

assign probability of 1 to either the heads or tails



Pseudo counts
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to

either the heads or tails

•  In these cases we can use prior belief about the
‘fairness’ of most coins to influence the resulting model.

•   We assume that we have observed 10 flips with 5 tails
and 5 heads

•  Thus p(heads) = (#heads+5)/(#flips+10)

• Advantages: 1. Never assign a probability of 0 to an event

         2. As more data accumulates we can get very close to the real
distribution (the impact of the pseudo counts will diminish rapidly)



Pseudo counts
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to

either the heads or tails

•  In these cases we can use prior belief about the
‘fairness’ of most coins to influence the resulting model.

•   We assume that we have observed 10 flips with 5 tails
and 5 heads

•  Thus p(heads) = (#heads+5)/(#flips+10)

•  Advantages: 1. Never assign a probability of 0 to an event

         2. As more data accumulates we can get very close to the real
distribution (the impact of the pseudo counts will diminish rapidly)

Some distributions (for example, the
Beta distribution) can incorporate

pseudo counts as part of the model



Density estimation
• Binary and discrete variables:

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit
a model

√



Conditional Probability Tables
(CPT)

P(T| D < 1)=.9

What do we do with
continuous variables?

S1 – sensor 1

S2 – sensor 2

D – distance to wall

T – too close

P(S1 | D) = ?

D

S1 S2

T

P(S2 | D) = ?



Conditional Probability Tables
(CPT)

P(T| D < 1)=.9

What do we do with
continuous variables?

S1 – sensor 1

S2 – sensor 2

D – distance to wall

T – too close

P(S1 | D) = ?

D

S1 S2

T

P(S2 | D) = ?



Elementary Concepts

• Population: the ideal group whose properties we are
interested in and from which the samples are drawn

             e.g., graduate students at CMU

• Random sample: a set of elements drawn at random
from the population

             e.g., students in grad AI



Elementary Concepts

• Statistic: a number computed from the data
             e.g., Average time of sleep



Sample Statistics
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where n is the number of samples.
• Sample variance:

• Sample covariance:
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How much do grad students sleep?

• Lets try to estimate the distribution of the time graduate
students spend sleeping (outside class).



Possible statistics
• X
  Sleep time
•Mean of X:
  E{X}
  7.03
• Variance of X:
  Var{X} = E{(X-E{X})^2}
  3.05

Sleep
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Covariance: Sleep vs. GPA

Sleep / GPA

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10 12

Sleep hours

G
P

A

Sleep / GPA

•Co-Variance of X1,
X2:
  Covariance{X1,X2} =
E{(X1-E{X1})(X2-E{X2})}
  = 0.88



Statistical Models
• Statistical models attempt to characterize properties of the
population of interest

• For example, we might believe that repeated measurements
follow a normal (Gaussian) distribution with some mean µ and
variance σ2 , x ~ N(µ,σ2)

where

and Θ=(µ,σ2) defines the parameters (mean and variance) of the
model.
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• A statistical model is a
collection of distributions; the
parameters specify individual
distributions x ~ N(µ,σ2)
• We need to adjust the
parameters so that the resulting
distribution fits the data well

The Parameters of Our Model



• A statistical model is a
collection of distributions; the
parameters specify individual
distributions x ~ N(µ,σ2)
• We need to adjust the
parameters so that the resulting
distribution fits the data well

The Parameters of Our Model



Computing the parameters of our
model

• Lets assume a Guassian
distribution for our sleep
data

• How do we compute the
parameters of the model?

Sleep
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Maximum Likelihood Principle
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• We can fit statistical models by maximizing the probability of
generating the observed samples:
L(x1, … ,xn | Θ) = p(x1 | Θ) … p(xn  | Θ)
(the samples are assumed to be independent)

• In the Gaussian case we simply set the mean and the
variance to the sample mean and the sample variance:
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Why?

I will leave these derivation to you …



Sensor data

D

S1 S2

T



What value would we infer for D
given S1,S2?

• We will write the general terms
and then use the network
model to simplify it.

• The important issue is how to
work with Gaussians
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Model for sensor data
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Sensor data
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Lets go back to Naïve vs.full
model

What should I use?
This can be determined based on:
• Training data size
• Cross validation
• Likelihood ratio test

Cross validation is one of
the most useful tricks in
model fitting



Cross validation



Cross validation



Multi-Variate Gaussian
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• A multivariate Gaussian model: x ~ N(µ,Σ) where

Here µ is the mean vector and Σ is the covariance matrix
µ = {µ1, µ2}      Σ =

• The covariance matrix captures linear dependencies among the
variables

var(x2)cov(x1,x2)

cov(x1,x2)var(x1)



Example



Important points
• Maximum likelihood estimations (MLE)
• Pseudo counts
• Types of distributions
• Handling continuous variables


