
15-780: Graduate AI
Lecture 4. Logic, SAT, and CSPs

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu

Admin

15-780 and 16-731 are the same course,
cross listed in CS and Robotics
If your email address is not
yourID@cs.cmu.edu, please contact the
TAs to make sure you’re on the mailing list

Last episode,
on Grad AI

What you should know

IDA* definition
Propositional logic

syntax, truth tables
models, satisfiability, validity,
entailment, etc.
equivalence rules (e.g., De Morgan)
inference rules (e.g., resolution)

What you should know

Normal forms (e.g., CNF)
SAT problem

its search graph
reductions (e.g., 3-coloring to SAT)

Structure of a theorem prover
proof trees, knowledge bases
compare/contrast search graph w/ SAT

Direction of reduction

If A reduces to B then
if we can solve B, we can solve A
so B must be at least as hard as A

E.g., could take an easy problem and
reduce it to a hard one

Not-so-useful reduction

Path planning reduces to SAT
Variables: is edge e in path?
Constraints:

exactly 1 path-edge touches start
exactly 1 path-edge touches goal
either 0 or 2 touch each other node

Reduction to 3SAT

We saw that search problems can be
reduced to SAT

is CNF formula satisfiable?
Can reduce even further, to 3SAT

is 3CNF formula satisfiable?
Useful if reducing SAT/3SAT to another
problem (to show other problem hard)

Reduction to 3SAT

Must get rid of long clauses
E.g., (a ∨ ¬b ∨ c ∨ d ∨ e ∨ ¬f)

Replace with
(a ∨ ¬b ∨ x) ∧ (¬x ∨ c ∨ y) ∧
(¬y ∨ d ∨ z) ∧ (¬z ∨ e ∨ ¬f)

A note on reductions

May be many reductions from problem A
to problem B
May have wildly different properties

e.g., search on transformed instance
may take seconds vs. days

Example will show up when we get to
Planning topic

Citation

“Using Inaccurate Models in
Reinforcement Learning.” Pieter Abbeel,
Morgan Quigley, Andrew Y. Ng
http://www.icml2006.org/icml_documents/
camera-ready/001_Using_Inaccurate_Mod.pdf

Comparing representations

All search algorithms presented so far use
a discrete representation of the world
If world is continuous, they divide it into
blocks
This works great for some domains,
terribly for others

Real vs. discrete

Discrete works well, e.g., for deciding
which way to go around an obstacle
But it would be really bad to discretize to
the level required for precision position
servoing

Position servoing

E.g., if state is (x(t) - xtgt(t)), discretization
will allow bang-bang control (or, slightly
better, control with k fixed levels of effort)
If state is (x(t), xtgt(t)), axis-parallel splits
won’t even allow accurate bang-bang
control without very fine discretization

Smooth control

Couldn’t implement a smooth controller
like PID without a really fine grid
Probably so fine as to make it infeasible to
search for control recommended by logical
formula

Theorem
provers

Soundness and completeness

An inference procedure is sound if it can
only conclude things entailed by KB

common sense; we already required it
A set of rules is complete if it can
conclude everything entailed by KB
Modus ponens by itself is incomplete

Completeness of resolution

Inference procedure: put KB in CNF, add
¬B to KB, apply resolution until

we get a False as a consequence (and
conclude KB ⊨ B), or

we run out of inferences (and conclude
KB ⊭ B)

This inference procedure is complete

Variations

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic (say more
about this later)

Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of
which is positive
Positive literal = head, rest = body

Use of Horn clauses

People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) ∧ happy(Mary) ⇒
happy(Sue)

No negative literals in above formula;
again, easier to think about

Why are Horn clauses important

Inference in a KB of propositional Horn
clauses is linear
Forward chaining or backward chaining
(see RN reading, or discussion of unit
resolution below)

Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more in Part II
Dempster-Shafer theory

Certainty factors

Instead of just T/F, a model assigns a
certainty factor in [0, 1] to each
proposition
And, KB assigns a certainty to each rule
Interpret as “degree of belief”

Certainty factors

Logical connectives are interpreted as
arithmetic operations, e.g., ∧ as min, ∨ as
max, and ¬ as (1-x)

E.g., if KB has (¬rains ∨ pours) @ 0.8
and rains @ 0.7, conclude

max(0.3, pours) ≥ 0.8
pours ≥ 0.8

Problems w/ certainty factors

Hard to separate a large KB into mostly-
independent chunks that interact only
through a well-defined interface
Certainty factors are not probabilities
(i.e., do not obey Bayes’ Rule)

Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly)

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…

Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly)

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule

Nonmonotonic logic

Now set as few abnormality predicates as
possible
Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions
If we assert ¬flies(Tux), must now assume
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can
still prove flies(Polly)

Nonmonotonic logic

Works well as long as we don’t have to
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?
even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but …

Dempster-Shafer

Allows additional worst-case uncertainty
beyond probabilities
Maintains lower, upper bounds on
probabilities; assumes world is
adversarial within those bounds
Like probabilities, inference is guaranteed
correct
May be overly conservative

CSPs

Constraint satisfaction

Recall 3-coloring
Turned map into graph (same size) then
into SAT problem (constant factor blowup)
Did we have to do that?

=

CSP definition

No: represent as CSP instead
CSP = (variables, domains, constraints)
Variable: a
Domain: (R, G, B)
Constraint: a, b ∈ (RG, RB, GR, GB, BR,
BG)
Constraints usually represented compactly

Search

Obviously a search problem
Let’s try DFS—top to bottom, RGB

DFS looks stupid

OK, that wasn’t the right way
Blindingly obvious: consistency checking
Don’t assign a variable to a value that
conflicts with a neighbor

Search

DFS with consistency checking

Well, that’s better

But it still doesn’t notice the problem as
soon as it could
Forward checking: delete conflicting
values from neighbors’ domains

remember to put them back if we
backtrack
can do this with reference counts

Search

Try again with forward checking

Can we do even better?

Constraint propagation
E.g., once we notice a variable has just
one consistent value, delete that value
from its neighbors’ domains
Even fancier: arc consistency, k-
consistency (see RN)

Search

Constraint propagation solves it without
backtracking!

Constraint learning

When we reach a dead end, can spend
time analyzing why it is dead
If there’s a simple reason, distill it into a
constraint and add it to CSP
Saves backtracking later
But useless constraints slow us down
See RN Ch 5 for more detail

Orderings

Big choices: which variable to try next?
What value to assign to it?
So far, fixed order—can do better
Most constrained variable first

natural generalization of propagation
tends to find inconsistencies quickly
cheap to do, often a big win

Orderings

Least-constraining value first
Give ourselves more flexibility later on
Delay decisions
Less important, but sometimes helpful

Example

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/
6-034Artificial-IntelligenceFall2002/Tools/detail/mapresalloc.htm

Other important CSPs

Minesweeper (courtesy Andrew Moore)

“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}

0 0

0 0

0 0

1

1

1

211

v1

v2

v3

v4

v5v6v7v8

v1

v2

v3

v4

v5
v6

v7

v8

The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP
to find a unique set of labelings. Important step to
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT : Constra int Propagat ion a lways works perfec t ly .

+

+

+

++

+

+

+

++

-

-
--

--

-

-
--

-

-

Other important CSPs

Sudoku
http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Other important CSPs

Job-shop scheduling
A bunch of jobs

each job is a sequence of operations
drill, polish, paint

A bunch of resources
each operation needs several resources

Is there a schedule of length ≤ k?

SAT Solvers

SAT solvers

There are SAT solvers which routinely
handle problems with 1,000,000 variables
Such a SAT solver is a subroutine in one of
the planning algorithms we’ll discuss soon
So, here’s how to write one

Hard instances

SAT is NP-complete! How can we handle
problems with 1,000,000 variables?!?
NP-complete doesn’t mean runtime has to
be exponential for all examples

e.g., (a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f ∨ g)

Many practical SAT examples are
apparently not all that hard

So where are the hard examples?

Why are practical examples easy?
They are over- or under-constrained

under-constrained ⇒ succeed quickly

over-constrained ⇒ fail quickly

Where are the hard examples?

Random 3CNF formulas

It turns out that random formulas can be
quite hard to solve
Randomly select variables to be in each
clause, randomize +ve vs. -ve
If we generate too few clauses, formula is
under-constrained
Too many: over-constrained

Just right

Random formulas w/ n=50 vars, m clauses
Clauses have 3 distinct vars, 50% negated

Section 7.7. Agents Based on Propositional Logic 225

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
(s

at
is

fi
ab

le
)

Clause/symbol ratio m/n

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8

R
u
n
ti

m
e

Clause/symbol ratio m/n

DPLL
WalkSAT

(a) (b)

Figure 7.18 (a) Graph showing the probability that a random 3-CNF sentence with n =50
symbols is satisfiable, as a function of the clause/symbol ratiom/n. (b) Graph of the median
runtime of DPLL and WALKSAT on 100 satisfiable random 3-CNF sentences with n =50,
for a narrow range ofm/n around the critical point.

7.7 AGENTS BASED ON PROPOSITIONAL LOGIC

In this section, we bring together what we have learned so far in order to construct agents

that operate using propositional logic. We will look at two kinds of agents: those which

use inference algorithms and a knowledge base, like the generic knowledge-based agent in

Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We

will demonstrate both kinds of agents in the wumpus world, and will find that both suffer

from serious drawbacks.

Finding pits and wumpuses using logical inference

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and

safe squares. It begins with a knowledge base that states the “physics” of the wumpus world.

It knows that [1,1] does not contain a pit or a wumpus; that is, ¬P1,1 and ¬W1,1. For every

square [x, y], it knows a sentence stating how a breeze arises:

Bx,y ⇔ (Px,y+1 ∨ Px,y−1 ∨ Px+1,y ∨ Px−1,y) . (7.1)

For every square [x, y], it knows a sentence stating how a stench arises:

Sx,y ⇔ (Wx,y+1 ∨ Wx,y−1 ∨ Wx+1,y ∨ Wx−1,y) . (7.2)

Finally, it knows that there is exactly one wumpus. This is expressed in two parts. First, we

have to say that there is at least one wumpus:

W1,1 ∨ W1,2 ∨ · · · ∨ W4,3 ∨ W4,4 .

Then, we have to say that there is at most one wumpus. One way to do this is to say that

for any two squares, one of them must be wumpus-free. With n squares, we get n(n − 1)/2

4.3

It turns out m/n = 4.3 (and change) is the
hard area, for any sufficiently large n
What’s special about 4.3? I don’t know.
Unfortunately real formulas don’t look like
random ones, so it’s not so easy to check
hardness

SAT solvers

Many different search strategies
Will mention two: WalkSAT (briefly) and
DPLL / Chaff
Both assume formula input in CNF
Could do a simplification search before
handing to algorithm
Chaff paper claims this may not help much

WalkSAT
Section 7.6. Effective propositional inference 223

functionWALKSAT(clauses ,p,max flips) returns a satisfying model or failure
inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips , number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max flips do
if model satisfies clauses then returnmodel
clause ← a randomly selected clause from clauses that is false in model
with probability p flip the value inmodel of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.17 The WALKSAT algorithm for checking satisfiability by randomly flipping

the values of variables. Many versions of the algorithm exist.

used by the MIN-CONFLICTS algorithm for CSPs (page 151). All these algorithms take steps

in the space of complete assignments, flipping the truth value of one symbol at a time. The

space usually contains many local minima, to escape from which various forms of random-

ness are required. In recent years, there has been a great deal of experimentation to find a

good balance between greediness and randomness.

One of the simplest and most effective algorithms to emerge from all this work is called

WALKSAT (Figure 7.17). On every iteration, the algorithm picks an unsatisfied clause and

picks a symbol in the clause to flip. It chooses randomly between two ways to pick which

symbol to flip: (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in

the new state, and (2) a “random walk” step that picks the symbol randomly.

Does WALKSAT actually work? Clearly, if it returns a model, then the input sentence

is indeed satisfiable. What if it returns failure? Unfortunately, in that case we cannot tell
whether the sentence is unsatisfiable or we need to give the algorithm more time. We could

try settingmax flips to infinity. In that case, it is easy to show that WALKSATwill eventually
return a model (if one exists), provided that the probability p > 0. This is because there is
always a sequence of flips leading to a satisfying assignment, and eventually the random

walk steps will generate that sequence. Alas, if max flips is infinity and the sentence is
unsatisfiable, then the algorithm never terminates!

What this suggests is that local-search algorithms such as WALKSAT are most useful

when we expect a solution to exist—for example, the problems discussed in Chapters 3 and 5

usually have solutions. On the other hand, local search cannot always detect unsatisfiability,

which is required for deciding entailment. For example, an agent cannot reliably use local

search to prove that a square is safe in the wumpus world. Instead, it can say, “I thought about

it for an hour and couldn’t come up with a possible world in which the square isn’t safe.” If

the local-search algorithm is usually really fast at finding a model when one exists, the agent

might be justified in assuming that failure to find a model indicates unsatisfiability. This isn’t

the same as a proof, of course, and the agent should think twice before staking its life on it.

Discussion

Pros: easy to implement, very fast on
satisfiable formulas
Cons: can’t ever prove unsatisfiable

DPLL

WalkSAT used complete assignments as its
search space
DPLL uses (partial assignment, formula)
DPLL stands for Davis, Putnam,
Logemann, and Loveland
Refers to a family of algorithms; we will
discuss the Chaff implementation

DPLL

DPLL(formula, model)

model = deduce(formula, model)
if (all-assigned(formula, model))

return evaluate(formula, model)
x = choose-variable(formula, model)
if (DPLL(formula, model / x: T))

return T
else

return DPLL(formula, model / x: F)

Simple subroutines

all-assigned: checks whether all clauses
have all variables assigned
evaluate: evaluates a fully-assigned
formula

Clause learning

An optional feature of DPLL-style
algorithms is clause learning
When we backtrack, we can analyze
reasons for failure and try to add a clause
that will cause us to notice the same type
of failure sooner on the next branch
More below

deduce()

Does any inference it can do quickly to set
more variables without searching
Has to be fast, so will miss some
inferences
E.g, a Sudoku puzzle requires no search,
but most deduce() implementations won’t
solve it

deduce()

Chaff uses only the following rule:
Unit resolution

If a clause contains just one unknown
variable, set it to satisfy the clause

In (a ∨ b ∨ ¬c):

with (a: F, b: F), will set c: F
with (a: F, c: T), will set b: T

Other deduction rules

RN recommends
Pure literal rule

If a literal appears with only one sign in
all remaining unsatisfied clauses, set it
based on that sign

In (a ∨ b) ∧ (a ∨ ¬b), sets a: T

Chaff paper says this rule is too slow

Choose-variable

Can’t use most-constrained variable
heuristic from CSP
This seems like a real pity
Could imagine allowing clauses like

exactly-one-of(a, b, c, d)
at-most-k-of(3, a, b, c, d)

Not sure why this isn’t implemented more
often

Choosing a branch variable

Want to satisfy lots of clauses immediately
If we can’t do that, want lots of length-1
clauses
MOMS heuristic

find smallest clause (say 3 variables)
pick a variable that occurs maximally
often in size-3 clauses

MOMS discussion

Chaff authors say: MOMS doesn’t choose
good variables on non-random problems
Recommend heuristics based on “activity”
of a variable
Each time a literal seems important,
increment its score; decay all scores at a
constant rate over time

Important literals

“Important” literals are
ones in added clauses
ones in conflict clauses

Chaff increments on conflict, restricts
choice to literals in most recently added
clause

Clause learning

Try to add clauses which will let us detect
failure sooner on other branches
These clauses are redundant
So if they don’t help us prune, they slow us
down
Chaff paper recommends counting how
often a clause is involved in a conflict

Clause learning

Skipped conflict learning in CSPs; this is
essentially the same idea
Learned clauses are derived by resolution
from clauses already in formula
When we fail, there is a conflict clause
which has all literals unsatisfied
Use conflict cause to focus resolution

Clause learning

Conflict clause has all unsatisfied literals
(a ∨ b ∨ ¬c) in model (a: F, b: F, c: T)

Some assignments in model came from
unit resolution—call these implied vars

say c is most recent, from clause (b ∨ c)

all other literals in this clause must be
in conflict too

Clause learning

So, resolving these two clauses yields
another conflict clause

in this case (a ∨ b)

Keep doing resolutions for all implied
variables, in reverse chronological order

When should we stop?

As we back up through assignments,
eventually we will hit a decision variable
(i.e., one that wasn’t assigned)
Call it x
Could skip x, continue with next assigned
variable
But Chaff recommends stopping at x

Why is this a good idea?

Next backtrack will unset x
Learned clause will have x as its only
unsatisfied literal
Will immediately set x via a unit resolution

Intuition

[Subset of previous decisions] ⇒ [setting
for x]
Didn’t know how to set x on this branch,
so might not know on future branches
Any time this same subset of decisions
appears on a future branch, won’t have to
search both values of x

Randomness

Both WalkSAT and Chaff are random
more randomness in WalkSAT

Result is a significant variance in solution
times for same formula (Chaff authors
report seconds vs. days)

We can be very lucky or unlucky

Simple idea

Try different random seeds for breaking
ties in variable ordering heuristic
Let each seed run longer than the last
Seems to help a lot

Randomization cont’d

Randomization works well if search times
are sometimes short but have heavy tail

Clause learning

For DPLL-style algorithms, if clause
learning was active, random restarts don’t
totally lose effort from previous tries

First-order
logic

First-order logic

So far we’ve been using opaque
vars like rains or happy(John)
Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”
Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”

Bertrand Russell
1872-1970

Predicates and objects

Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of
objects
predicate(object) plays same role that
variable did before

Distinguished predicates

We will assume three distinguished
predicates with fixed meanings:

True, False
Equal(x, y)

We will also write (x = y) and (x ≠ y)
Equality satisfies usual axioms

Functions

Functions map zero or more objects to
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Predicates and functions have fixed arity
Zero-argument function is equivalent to an
object variable

The nil object

Functions are untyped: must have a value
for any set of arguments
Typically add a nil object to use as value
when other answers don’t make sense

Model

Models are now much more complicated
List of objects
Table of function values for each
function mentioned in formula

includes referent for each variable
Table of predicate values for each
predicate mentioned in formula

For example

KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …

Aside: typed variables

KB illustrates need for data types
Don’t want to have to specify ear-of(box)
or ¬in(cat, nil)

Could design a type system and allow only
formulas which obey type rules (e.g.,
argument of happy() is of type animate)

Model of example

Objects: C, B, E, N
Assignments:

cat: C, box: B, ear: E, nil: N
ear-of(C): E, ear-of(B): N, ear-of(E): N,
ear-of(N): N

Predicate values:
in(C, B), ¬in(C, C), ¬in(C, N), …

Failed model

Objects: C, E, N
Fails because there’s no way to satisfy
inequality constraints with only 3 objects

Another possible model

Objects: C, B, E, N, X
Extra object X could have arbitrary
properties since it’s not mentioned in KB
E.g., X could be its own ear

