





PRI b B 2, Tt g WA Pl s T A

Last eplsode
on Grad Al




What you should know

mmmﬁ-mm A Pty o P L i vy % e B o, ST SR

o IDA* definition
o Propositional logic
o Syntax, truth tables

o models, satisfiability, validity,

entailment, etc.
o equivalence rules (e.g., De Morgan)

o inference rules (e.g., resolution)




What you should know

¥ A Pty " el :!_ e e

NI b o, Ty g WA

L T— B ”""l'.:l_.' P

o Normal forms (e.g., CNF)
o SAT problem

o its search graph

o reductions (e.g., 3-coloring to SAT)
o Structure of a theorem prover

o proof trees, knowledge bases

o compare/contrast search graph w/ SAT







Not-so-useful reduction

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Path planning reduces to SAT

o Variables: is edge e in path?

o Constraints:
o exactly I path-edge touches start
o exactly I path-edge touches goal

o either O or 2 touch each other node




Reduction to 3SAT

T Pty " P B M 0 s S

NI b o, Ty g WA

Lk PGPSR B R SRR

o We saw that search problems can be
reduced to SAT

o 18 CNF formula satisfiable?
o Can reduce even further, to 3SAT
o 18 3CNF formula satisfiable?

o Useful if reducing SAT/3SAT to another
problem (to show other problem hard)







A note on reductions

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o May be many reductions from problem A
to problem B
o May have wildly different properties

o e.g., search on transformed instance
may take seconds vs. days

o Example will show up when we get to
Planning topic







Comparing representatlons

mmmﬁ-mm A iy i’ W b i g ¥ e et S o

- vy
Rdaa 2 0

o All search algorithms presented so far use
a discrete representation of the world

o If world is continuous, they divide it into
blocks

o This works great for some domains,
terribly for others







Position servoing

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o E.g., if state is (x(t) - X:ei(1)), discretization
will allow bang-bang control (or, slightly
better, control with k fixed levels of effort)

o If state is (x(t), X:iei(t)), axis-parallel splits
won't even allow accurate bang-bang
control without very fine discretization







FIOIETERL b A &, Tt g A oot mr DA 04

Theorem
provers

g e T i e e s W




Soundness and completeness

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o An inference procedure is sound if it can
only conclude things entailed by KB

o common sense; we already required it

o A set of rules is complete if it can
conclude everything entailed by KB

o Modus ponens by itself is incomplete




Completeness of resolution

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o Inference procedure: put KB in CNF, add
- B to KB, apply resolution until

o we get a False as a consequence (and
conclude KB = B), or

o we run out of inferences (and conclude
KB ¥ B)

o This inference procedure is complete










Use of Horn clauses

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o People find it easy to write Horn clauses
(listing out conditions under which we can
conclude head)

happy(John) A happy(Mary) =
happy(Sue)

o No negative literals in above formula;
again, easier to think about




Why are Horn clauses important

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Inference in a KB of propositional Horn
clauses is linear

o Forward chaining or backward chaining
(see RN reading, or discussion of unit
resolution below)













Problems w/ certainty factors

PRAETESE b B L, Tt BT Pl s T A P N TR v vt

-“‘-.”‘.R""A;"Fﬂ

o Hard to separate a large KB into mostly-
independent chunks that interact only
through a well-defined interface

o Certainty factors are not probabilities
(i.e., do not obey Bayes’ Rule)




Nonmonotonic logic

E * - L . =i Lt L e -,
HBIS LRt Mt A St g 2 e s d o L fem el Lkl PRSI

o Suppose we believe all birds can fly

o Might add a set of sentences to KB
bird(Polly) = flies(Polly)
bird(Tweety) = flies(Tweety)
bird(Tux) = flies(Tux)
bird(John) = flies(John)




Nonmonotonic logic

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Fails if there are penguins in the KB

o Fix: instead, add
bird(Polly) n —ab(Polly) = flies(Polly)
bird(Tux) A —ab(Tux) = flies(Tux)

o ab(Tux) is an “abnormality predicate”

o Need separate abi(x) for each type of rule




Nonmonotonic logic

b s op - T i K Tt g - ¥4 A Tty i I B "-'-'.tl!.',f_t!:n-'--~=="i"--:...,__..-"ﬂ-i'"‘--“""":l..,“d-_--.,“ P e vl

o Now set as few abnormality predicates as
possible

o Can prove flies(Polly) or flies(Tux) with no
ab(x) assumptions

o If we assert —flies(Tux), must now assume
ab(Tux) to maintain consistency

o Can't prove flies(Tux) any more, but can
still prove flies(Polly)




Nonmonotonic logic

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o Works well as long as we don’t have to
choose between big sets of abnormalities

o IS it better to have 3 flightless birds or 5
professors that don’t wear jackets with
elbow-patches?

o even worse with nested abnormalities:
birds fly, but penguins don’t, but
superhero penguins do, but ...




Dempster-Shater

NI b o, Ty g WA = e Rt £ S 2 e, PP

: -

o Allows additional worst-case uncertainty
beyond probabilities

o Maintains lower, upper bounds on
probabilities; assumes world is
adversarial within those bounds

o Like probabilities, inference is guaranteed
correct

o May be overly conservative










CSP definition

PRI ISR b B 2, Tt WA Pl s A Py N ST I iy T i PRSP = P e T

o No: represent as CSP instead

o CSP = (variables, domains, constraints)
o Variable: a

o Domain: (R, G, B)

o Constraint: a, b € (RG, RB, GR, GB, BR,
BG)

o Constraints usually represented compactly













Well, that’s better

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o But it still doesn’t notice the problem as
soon as it could

o Forward checking: delete conflicting
values from neighbors’ domains

o remember to put them back if we
backtrack

o can do this with reference counts







Can we do even better?

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

: -

o Constraint propagation

o E.g., once we notice a variable has just
one consistent value, delete that value
from its neighbors’ domains

o Even fancier: arc consistency, k-
consistency (see RN)







Constraint learning

NI b o, Ty g WA = e Rt £ S 2 e, PP

o When we reach a dead end, can spend
time analyzing why it is dead

o If there’s a simple reason, distill it into a
constraint and add it to CSP

o Saves backtracking later

o But useless constraints slow us down

o See RN Ch 5 for more detail




Ordermgs

mmw T oty " P bt s o Kty o s Ly et ! PR ,W%w

o Big choices: which variable to try next?
What value to assign to it?

o So far, fixed order—can do better

o Most constrained variable first
o natural generalization of propagation
o tends to find inconsistencies quickly

o cheap to do, often a big win







8eoe
Map Type Arrangement Colors Speed Help

Arrangement: Alphabetical
Constraint checks: assignments only
Color choices: 4

Current assignments: 0

Dead ends: 0

Constraints checked: 0




={vl,v2,v3,v4,v5,v6,v7,v8} D ={B (bomb), S (space) }
C={(viv2):{(B,S),(5B)},(v1v2,v3): {l(B,S,S) . (5,B,S), (S,5B)},...}
%

v2




Random Cell Hint ) ]




Other important CSPs

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Job-shop scheduling
o A bunch of jobs
o each job is a sequence of operations
o drill, polish, paint
o A bunch of resources
o each operation needs several resources

o Is there a schedule of length <k?




. ot e ey o g by e o e P T s P
: ¥: PG T ¥ i A Tt = e

SAT Solvers







Hard instances

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o SAT is NP-complete! How can we handle
problems with 1,000,000 variables?!?

o NP-complete doesn’t mean runtime has to
be exponential for all examples

o e.g,(avb)Aan(cvd)n(evfvg)

o Many practical SAT examples are
apparently not all that hard




S0 where are the hard examples?

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Why are practical examples easy?

o They are over- or under-constrained
o under-constrained = succeed quickly
o over-constrained = fail quickly

o Where are the hard examples?




Random 3CNF formulas

PRI ISR b B 2, Tt WA Pl s A Py N ST I i USRS Y S

o It turns out that random formulas can be
quite hard to solve

o Randomly select variables to be in each
clause, randomize +ve vs. -ve

o If we generate too few clauses, formula is
under-constrained

o Too many: over-constrained










SAT solvers

T Tty " I B o M O s S

Lk PGPSR B R SRR

o Many different search strategies

o Will mention two: WalkSAT (briefly) and
DPLL / Chaff

o Both assume formula input in CNF

o Could do a simplification search before
handing to algorithm

o Chaff paper claims this may not help much




WalkS AT

PRSI b B 2, Tt B ol DA 4 Pty S OV TR v e Nt s B e e e

function WALKS AT (clauses, p, max_flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
max_flips, number of flips allowed before giving up

model < a random assignment of true/false to the symbols in clauses
for i = 1 to max_flips do
if model satisfies clauses then return model
clause < a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure







DPLL

e o e i i tanie PRSP =2 PRt T

o WalkSAT used complete assignments as its
search space

o DPLL uses (partial assignment, formula)

o DPLL stands for Davis, Putnam,
Logemann, and Loveland

o Refers to a family of algorithms; we will
discuss the Chaff implementation










Clause learning

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o An optional feature of DPLL-style
algorithms is clause learning

o When we backtrack, we can analyze
reasons for failure and try to add a clause
that will cause us to notice the same type
of failure sooner on the next branch

o More below




deduce()

MWWWW A Tty " P E e K vy 1 P Mw%‘;fv“‘ww%w

o Does any inference it can do quickly to set
more variables without searching

o Has to be fast, so will miss some
inferences

o E.g, a Sudoku puzzle requires no search,
but most deduce() implementations won't
solve it







Other deduction rules

NI b o, Ty g WA = e Rt £ S 2 e, PP

o RN recommends
Pure literal rule

If a literal appears with only one sign in
all remaining unsatisfied clauses, set it
based on that sign

o In(av b)A(av —b), setsa:T

o Chaff paper says this rule is too slow




Choose-variable

- . : . = G " e - - = -
OISO b A 4 Gt g2 ST a A Tty S e B e s Y i e = BINCR ot i s S i s S ol

o Can'’t use most-constrained variable
heuristic from CSP

o This seems like a real pity

o Could imagine allowing clauses like
exactly-one-of(a, b, c, d)
at-most-k-of(3, a, b, c, d)

o Not sure why this isn’t implemented more
often




Choosing a branch variable

NI b o, Ty g WA = e Rt £ S 2 e, PP

o . 2l

o Want to satisfy lots of clauses immediately

o If we can’t do that, want lots of length-1
clauses

o MOMS heuristic
o find smallest clause (say 3 variables)

o pick a variable that occurs maximally
often in size-3 clauses




MOMS discussion

PRI ISR b B 2, Tt WA Pl s A Py N ST I i USRS Y S

o Chaff authors say: MOMS doesn’t choose
good variables on non-random problems

o Recommend heuristics based on “activity”
of a variable

o Each time a literal seems important,
increment its score; decay all scores at a
constant rate over time







Clause learning

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Try to add clauses which will let us detect
failure sooner on other branches

o LThese clauses are redundant

o So if they don’t help us prune, they slow us
down

o Chaff paper recommends counting how
often a clause is involved in a conflict




Clause learning

TS e i AL G Prmmaa it Ot T8 A s it -0 3 T L L R R P PSR i i Bade e el

o Skipped conflict learning in CSPs; this is
essentially the same idea

o Learned clauses are derived by resolution
from clauses already in formula

o When we fail, there is a conflict clause
which has all literals unsatisfied

o Use conflict cause to focus resolution




Clause learning

- . : . = G " e - - = -
OISO b A 4 Gt g2 ST a A Tty S e B e s Y i e = BINCR ot i s S i s S ol

o Conflict clause has all unsatisfied literals
o (avbv —-c)inmodel (a: F, b: F,c:T)

o Some assignments in model came from
unit resolution—call these implied vars

o Say c is most recent, from clause (b v c)

o all other literals in this clause must be
in conflict too







When should we stop"

mmmﬁ!mm A iy oo’ P Bl ey ¥ gy 1--:_____._'1-“.-.-' M"!I'_:l_.' i T

o As we back up through assignments,
eventually we will hit a decision variable
(i.e., one that wasn'’t assigned)

o Call it x

o Could skip x, continue with next assigned
variable

o But Chaff recommends stopping at x







Intuition

. . : o . St P i S E g LT it Z : : ; 3 T
mmwmm"‘mﬂ Lad B 1 S & e et S o .MHM“;E*“M.MQW

o [Subset of previous decisions | = [setting

for x]

o Didn’t know how to set x on this branch,
so might not know on future branches

o Any time this same subset of decisions
appears on a future branch, won’t have to
search both values of x



















FIOIETERL b A &, Tt g A oot mr DA 04

First-order
logic




First-order logic

WWWu{’H e L 13 L A ST e g ¥ MR b I o

Bertrand Russell
1872-1970

o So far we’ve been using opaque
vars like rains or happy(John)

o Limits us to statements like “it’s raining” or
“if John is happy then Mary is happy”

o Can’t say “all men are mortal” or “if John
is happy then someone else is happy too”




Predicates and objects

TS e i AL G Prmmaa it Ot T8 A s """"“’"""""-f:'i-':.*?:"-""‘-";'"":-u-—r—"““"“"”"'“hugtq-m o et Tl

o Interpret happy(John) or likes(Joe, pizza)
as a predicate applied to some objects

o Object = an object in the world

o Predicate = boolean-valued function of
objects

o predicate(object) plays same role that
variable did before







Functions

: = ; 2 L Lt 0 L s vy e i3 = " a ; 2 i e
mmmﬁ‘mm{lﬂmﬂ Lo - S 5. o e L — T .MWM‘J'#“‘M%W

o Functions map zero or more objects to
another object

o e.g., professor(15-780), last-common-
ancestor(John, Mary)

o Predicates and functions have fixed arity

o Zero-argument function is equivalent to an
object variable







Model

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mul--_w-fn-nrs-.”"ﬂ;z_.u 28

o Models are now much more complicated
o List of objects

o Table of function values for each
function mentioned in formula

o includes referent for each variable

o Table of predicate values for each
predicate mentioned in formula










Aside: typed variables

mmmﬁ-mm A iy i’ W b i g ¥ L g ¥ S

- vy
Rdaa 2 0

o KB illustrates need for data types

o Don’t want to have to specify ear-of(box)
or —in(cat, nil)

o Could design a type system and allow only
formulas which obey type rules (e.g.,

argument of happy() is of type animate)













