15-780: Graduate AI Lecture 4. Logic, SAT, and CSPs

Geoff Gordon (this lecture) Ziv Bar-Joseph TAs Michael Benisch, Yang Gu

Admin

- 15-780 and 16-731 are the same course, cross listed in CS and Robotics
- If your email address is not yourID@cs.cmu.edu, please contact the TAs to make sure you're on the mailing list

Last episode, on Grad AI

What you should know

- IDA* definition
- Propositional logic
 - o syntax, truth tables
 - models, satisfiability, validity, entailment, etc.
 - o equivalence rules (e.g., De Morgan)
 - o inference rules (e.g., resolution)

What you should know

- Normal forms (e.g., CNF)
- SAT problem
 - o its search graph
 - reductions (e.g., 3-coloring to SAT)
- Structure of a theorem prover
 - o proof trees, knowledge bases
 - compare/contrast search graph w/ SAT

Direction of reduction

- o If A reduces to B then
 - o if we can solve B, we can solve A
 - o so B must be at least as hard as A
- E.g., could take an easy problem and reduce it to a hard one

Not-so-useful reduction

- Path planning reduces to SAT
- Variables: is edge e in path?
- Constraints:
 - o exactly 1 path-edge touches start
 - exactly 1 path-edge touches goal
 - o either 0 or 2 touch each other node

Reduction to 3SAT

- We saw that search problems can be reduced to SAT
 - is CNF formula satisfiable?
- Can reduce even further, to 3SAT
 - is 3CNF formula satisfiable?
- Useful if reducing SAT/3SAT to another problem (to show other problem hard)

Reduction to 3SAT

- Must get rid of long clauses
- \circ E.g., $(a \lor \neg b \lor c \lor d \lor e \lor \neg f)$
- Replace with

$$(a \lor \neg b \lor x) \land (\neg x \lor c \lor y) \land (\neg y \lor d \lor z) \land (\neg z \lor e \lor \neg f)$$

A note on reductions

- May be many reductions from problem A to problem B
- May have wildly different properties
 - e.g., search on transformed instance may take seconds vs. days
- Example will show up when we get to Planning topic

Citation

 "Using Inaccurate Models in Reinforcement Learning." Pieter Abbeel, Morgan Quigley, Andrew Y. Ng

http://www.icml2006.org/icml_documents/ camera-ready/001_Using_Inaccurate_Mod.pdf

Comparing representations

- All search algorithms presented so far use a discrete representation of the world
- If world is continuous, they divide it into blocks
- This works great for some domains, terribly for others

Real vs. discrete

- Discrete works well, e.g., for deciding which way to go around an obstacle
- But it would be really bad to discretize to the level required for precision position servoing

Position servoing

- E.g., if state is $(x(t) x_{tgt}(t))$, discretization will allow bang-bang control (or, slightly better, control with k fixed levels of effort)
- If state is $(x(t), x_{tgt}(t))$, axis-parallel splits won't even allow accurate bang-bang control without very fine discretization

Smooth control

- Couldn't implement a smooth controller like PID without a really fine grid
- Probably so fine as to make it infeasible to search for control recommended by logical formula

Theorem

provers

Soundness and completeness

- An inference procedure is sound if it can only conclude things entailed by KB
 - o common sense; we already required it
- A set of rules is **complete** if it can conclude everything entailed by KB
- Modus ponens by itself is incomplete

Completeness of resolution

- Inference procedure: put KB in CNF, add
 ¬B to KB, apply resolution until
 - we get a False as a consequence (and conclude $KB \models B$), or
 - we run out of inferences (and conclude KB ≠ B)
- This inference procedure is complete

Variations

- Horn clause inference (faster)
- Ways of handling uncertainty (slower)
- CSPs (sometimes more convenient)
- Quantifiers / first-order logic (say more about this later)

Horn clauses

- Horn clause: $(a \land b \land c \Rightarrow d)$
- Equivalently, $(\neg a \lor \neg b \lor \neg c \lor d)$
- Disjunction of literals, at most one of which is positive
- \circ Positive literal = head, rest = body

Use of Horn clauses

 People find it easy to write Horn clauses (listing out conditions under which we can conclude head)

 $happy(John) \land happy(Mary) \Rightarrow happy(Sue)$

No negative literals in above formula;
 again, easier to think about

Why are Horn clauses important

- Inference in a KB of propositional Horn clauses is linear
- Forward chaining or backward chaining (see RN reading, or discussion of unit resolution below)

Handling uncertainty

- Fuzzy logic / certainty factors
 - o simple, but don't scale
- Nonmonotonic logic
 - o also doesn't scale
- Probabilities
 - may or may not scale—more in Part II
 - Dempster-Shafer theory

Certainty factors

- Instead of just T/F, a model assigns a certainty factor in [0, 1] to each proposition
- o And, KB assigns a certainty to each rule
- Interpret as "degree of belief"

Certainty factors

- Logical connectives are interpreted as arithmetic operations, e.g., ∧ as min, ∨ as max, and ¬ as (1-x)
- E.g., if KB has (¬rains ∨ pours) @ 0.8
 and rains @ 0.7, conclude

 $max(0.3, pours) \ge 0.8$

pours ≥ 0.8

Problems w/ certainty factors

- Hard to separate a large KB into mostlyindependent chunks that interact only through a well-defined interface
- Certainty factors are not probabilities
 (i.e., do not obey Bayes' Rule)

- o Suppose we believe all birds can fly
- Might add a set of sentences to KB

```
bird(Polly) \Rightarrow flies(Polly)
```

 $bird(Tweety) \Rightarrow flies(Tweety)$

 $bird(Tux) \Rightarrow flies(Tux)$

 $bird(John) \Rightarrow flies(John)$

. . .

- o Fails if there are penguins in the KB
- Fix: instead, add $bird(Polly) \land \neg ab(Polly) \Rightarrow flies(Polly)$

 $bird(Tux) \land \neg ab(Tux) \Rightarrow flies(Tux)$

...

- ab(Tux) is an "abnormality predicate"
- Need separate $ab_i(x)$ for each type of rule

- Now set as few abnormality predicates as possible
- Can prove flies(Polly) or flies(Tux) with no ab(x) assumptions
- o If we assert ¬flies(Tux), must now assume ab(Tux) to maintain consistency
- Can't prove flies(Tux) any more, but can still prove flies(Polly)

- Works well as long as we don't have to choose between big sets of abnormalities
 - is it better to have 3 flightless birds or 5 professors that don't wear jackets with elbow-patches?
 - even worse with nested abnormalities:
 birds fly, but penguins don't, but
 superhero penguins do, but ...

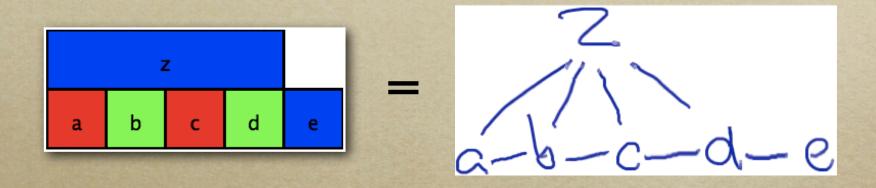
Dempster-Shafer

- Allows additional worst-case uncertainty beyond probabilities
- Maintains lower, upper bounds on probabilities; assumes world is adversarial within those bounds
- Like probabilities, inference is guaranteed correct
- May be overly conservative

CSPs

Control of the profession of the second of t

Constraint satisfaction

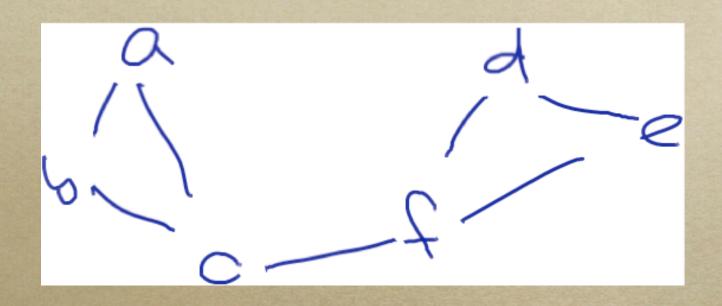


- Recall 3-coloring
- Turned map into graph (same size) then into SAT problem (constant factor blowup)
- Did we have to do that?

CSP definition

- No: represent as CSP instead
- CSP = (variables, domains, constraints)
- o Variable: a
- *Domain*: (R, G, B)
- Constraint: a, b \in (RG, RB, GR, GB, BR, BG)
- Constraints usually represented compactly

Search

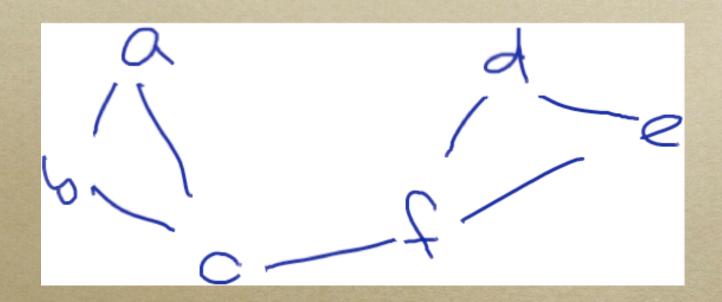


- Obviously a search problem
- Let's try DFS—top to bottom, RGB

DFS looks stupid

- o OK, that wasn't the right way
- Blindingly obvious: consistency checking
- Don't assign a variable to a value that conflicts with a neighbor

Search

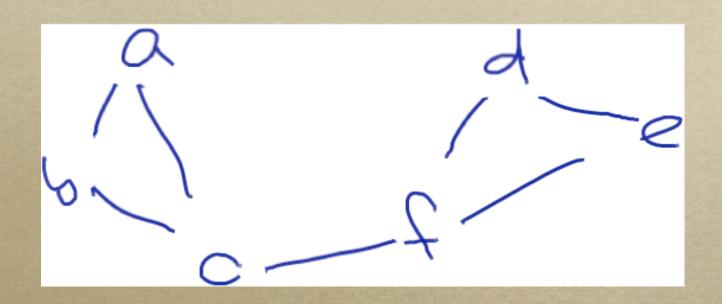


• DFS with consistency checking

Well, that's better

- But it still doesn't notice the problem as soon as it could
- Forward checking: delete conflicting values from neighbors' domains
 - remember to put them back if we backtrack
 - can do this with reference counts

Search

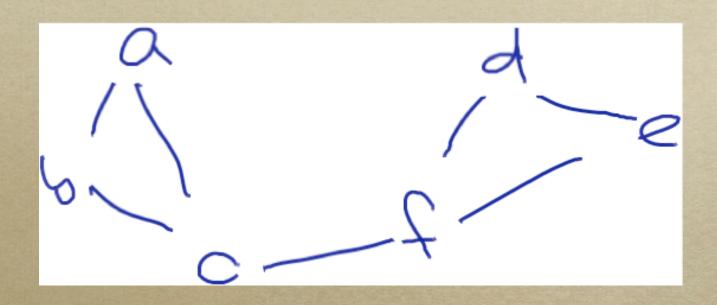


• Try again with forward checking

Can we do even better?

- Constraint propagation
- E.g., once we notice a variable has just one consistent value, delete that value from its neighbors' domains
- Even fancier: arc consistency, k-consistency (see RN)

Search



• Constraint propagation solves it without backtracking!

Constraint learning

- When we reach a dead end, can spend time analyzing why it is dead
- If there's a simple reason, distill it into a constraint and add it to CSP
- Saves backtracking later
- o But useless constraints slow us down
- See RN Ch 5 for more detail

Orderings

- Big choices: which variable to try next?
 What value to assign to it?
- So far, fixed order—can do better
- Most constrained variable first
 - natural generalization of propagation
 - o tends to find inconsistencies quickly
 - o cheap to do, often a big win

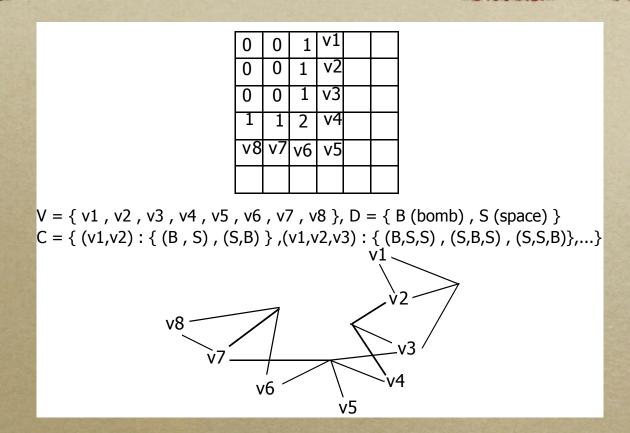
Orderings

- Least-constraining value first
- o Give ourselves more flexibility later on
- Delay decisions
- Less important, but sometimes helpful

Example

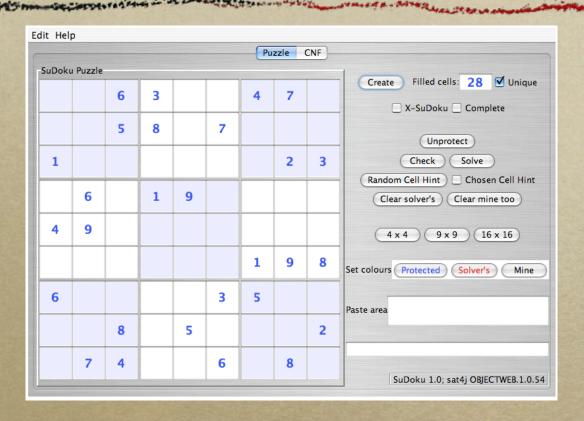
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-034Artificial-IntelligenceFall2002/Tools/detail/mapresalloc.htm

Other important CSPs



Minesweeper (courtesy Andrew Moore)

Other important CSPs



Sudoku

http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Other important CSPs

- Job-shop scheduling
- A bunch of jobs
 - each job is a sequence of operations
 - o drill, polish, paint
- A bunch of resources
 - each operation needs several resources
- ∘ *Is there a schedule of length* $\leq k$?

SAT Solvers

SAT solvers

- There are SAT solvers which routinely handle problems with 1,000,000 variables
- Such a SAT solver is a subroutine in one of the planning algorithms we'll discuss soon
- o So, here's how to write one

Hard instances

- SAT is NP-complete! How can we handle problems with 1,000,000 variables?!?
- NP-complete doesn't mean runtime has to be exponential for all examples
 - \circ e.g., $(a \lor b) \land (c \lor d) \land (e \lor f \lor g)$
- Many practical SAT examples are apparently not all that hard

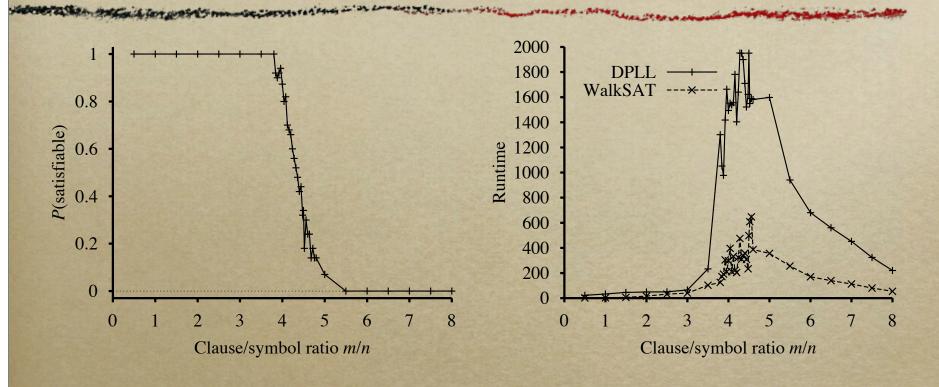
So where are the hard examples?

- Why are practical examples easy?
- They are over- or under-constrained
 - \circ under-constrained \Rightarrow succeed quickly
 - \circ over-constrained \Rightarrow fail quickly
- Where are the hard examples?

Random 3CNF formulas

- It turns out that **random** formulas can be quite hard to solve
- Randomly select variables to be in each clause, randomize +ve vs. -ve
- If we generate too few clauses, formula is under-constrained
- Too many: over-constrained

Just right



- Random formulas w/n=50 vars, m clauses
- o Clauses have 3 distinct vars, 50% negated

4.3

- It turns out m/n = 4.3 (and change) is the hard area, for any sufficiently large n
- What's special about 4.3? I don't know.
- Unfortunately real formulas don't look like random ones, so it's not so easy to check hardness

SAT solvers

- Many different search strategies
- Will mention two: WalkSAT (briefly) and DPLL / Chaff
- o Both assume formula input in CNF
- Could do a simplification search before handing to algorithm
- o Chaff paper claims this may not help much

WalkSAT

function WALKSAT(clauses, p, max_flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move, typically around 0.5
max_flips, number of flips allowed before giving up

 $model \leftarrow$ a random assignment of true/false to the symbols in clauses for i=1 to max_flips do

if model satisfies clauses then return model $clause \leftarrow \text{a randomly selected clause from } clauses \text{ that is false in } model$ with probability p flip the value in model of a randomly selected symbol from clauseelse flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Discussion

- Pros: easy to implement, very fast on satisfiable formulas
- Cons: can't ever prove unsatisfiable

DPLL

- WalkSAT used complete assignments as its search space
- DPLL uses (partial assignment, formula)
- DPLL stands for Davis, Putnam, Logemann, and Loveland
- Refers to a family of algorithms; we will discuss the Chaff implementation

DPLL

```
DPLL(formula, model)

model = deduce(formula, model)

if (all-assigned(formula, model))

return evaluate(formula, model)

x = choose-variable(formula, model)

if (DPLL(formula, model / x: T))

return T

else
```

return DPLL(formula, model / x: F)

Simple subroutines

- all-assigned: checks whether all clauses have all variables assigned
- evaluate: evaluates a fully-assigned formula

- An optional feature of DPLL-style algorithms is clause learning
- When we backtrack, we can analyze reasons for failure and try to add a clause that will cause us to notice the same type of failure sooner on the next branch
- More below

deduce()

- Does any inference it can do quickly to set more variables without searching
- Has to be fast, so will miss some inferences
- E.g, a Sudoku puzzle requires no search, but most deduce() implementations won't solve it

deduce()

o Chaff uses only the following rule:

Unit resolution

If a clause contains just one unknown variable, set it to satisfy the clause

- \circ In $(a \lor b \lor \neg c)$:
 - with (a: F, b: F), will set c: F
 - with (a: F, c: T), will set b: T

Other deduction rules

• RN recommends

Pure literal rule

If a literal appears with only one sign in all remaining unsatisfied clauses, set it based on that sign

- \circ In $(a \lor b) \land (a \lor \neg b)$, sets a: T
- Chaff paper says this rule is too slow

Choose-variable

- Can't use most-constrained variable heuristic from CSP
- o This seems like a real pity
- Could imagine allowing clauses like exactly-one-of(a, b, c, d)
 at-most-k-of(3, a, b, c, d)
- Not sure why this isn't implemented more often

Choosing a branch variable

- Want to satisfy lots of clauses immediately
- If we can't do that, want lots of length-1 clauses
- MOMS heuristic
 - find smallest clause (say 3 variables)
 - pick a variable that occurs maximally often in size-3 clauses

MOMS discussion

- Chaff authors say: MOMS doesn't choose good variables on non-random problems
- Recommend heuristics based on "activity" of a variable
- Each time a literal seems important, increment its score; decay all scores at a constant rate over time

Important literals

- o "Important" literals are
 - o ones in added clauses
 - o ones in conflict clauses
- Chaff increments on conflict, restricts choice to literals in most recently added clause

- Try to add clauses which will let us detect failure sooner on other branches
- These clauses are redundant
- So if they don't help us prune, they slow us down
- Chaff paper recommends counting how often a clause is involved in a conflict

- Skipped conflict learning in CSPs; this is essentially the same idea
- Learned clauses are derived by resolution from clauses already in formula
- When we fail, there is a conflict clause which has all literals unsatisfied
- Use conflict cause to focus resolution

- Conflict clause has all unsatisfied literals
 - \circ (a \vee b \vee \neg c) in model (a: F, b: F, c: T)
- Some assignments in model came from unit resolution—call these implied vars
 - say c is most recent, from clause (b v c)
 - all other literals in this clause must be in conflict too

Clause learning

- So, resolving these two clauses yields another conflict clause
 - in this case (a v b)
- Keep doing resolutions for all implied variables, in reverse chronological order

When should we stop?

- As we back up through assignments, eventually we will hit a decision variable (i.e., one that wasn't assigned)
- Call it x
- Could skip x, continue with next assigned variable
- But Chaff recommends stopping at x

Why is this a good idea?

- Next backtrack will unset x
- Learned clause will have x as its only unsatisfied literal
- Will immediately set x via a unit resolution

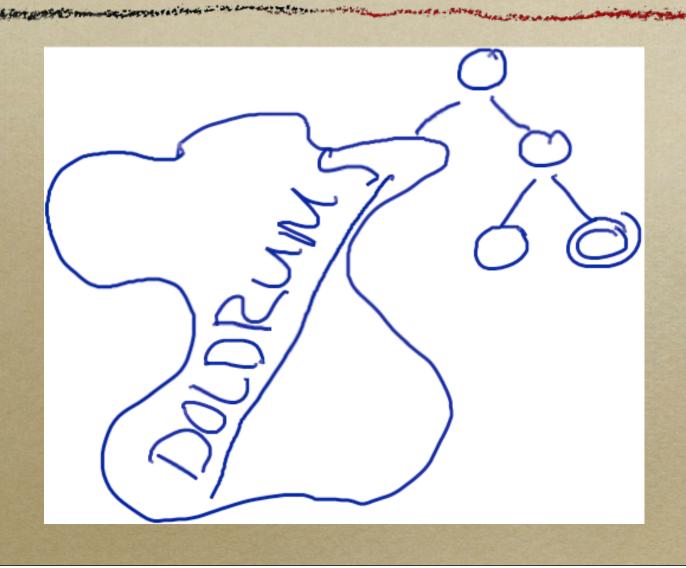
Intuition

- [Subset of previous decisions] \Rightarrow [setting for x]
- Didn't know how to set x on this branch,
 so might not know on future branches
- Any time this same subset of decisions appears on a future branch, won't have to search both values of x

Randomness

- Both WalkSAT and Chaff are random
 - more randomness in WalkSAT
- Result is a significant variance in solution times for same formula (Chaff authors report seconds vs. days)

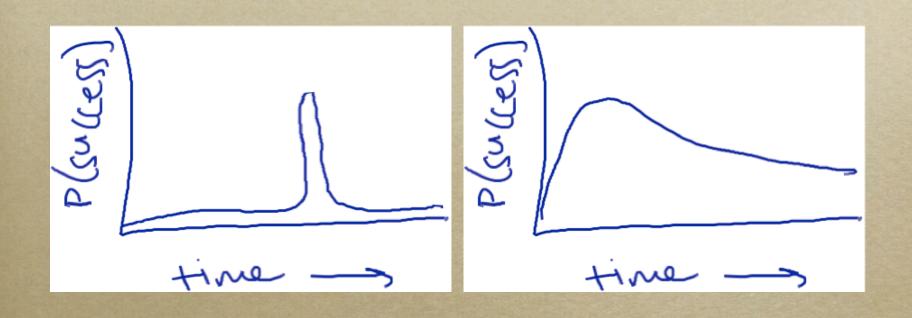
We can be very lucky or unlucky



Simple idea

- Try different random seeds for breaking ties in variable ordering heuristic
- Let each seed run longer than the last
- Seems to help a lot

Randomization cont'd



 Randomization works well if search times are sometimes short but have heavy tail

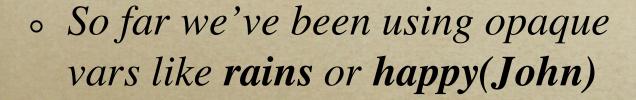
Clause learning

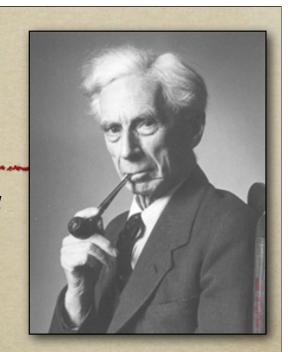
 For DPLL-style algorithms, if clause learning was active, random restarts don't totally lose effort from previous tries

First-order logic

First-order logic

Bertrand Russell 1872-1970





- Limits us to statements like "it's raining" or "if John is happy then Mary is happy"
- Can't say "all men are mortal" or "if John is happy then someone else is happy too"

Predicates and objects

- Interpret happy(John) or likes(Joe, pizza)
 as a predicate applied to some objects
- Object = an object in the world
- Predicate = boolean-valued function of objects
- predicate(object) plays same role that variable did before

Distinguished predicates

- We will assume three distinguished predicates with fixed meanings:
 - o True, False
 - \circ Equal(x, y)
- We will also write (x = y) and $(x \neq y)$
- Equality satisfies usual axioms

Functions

- Functions map zero or more objects to another object
 - e.g., professor(15-780), last-commonancestor(John, Mary)
- Predicates and functions have fixed arity
- Zero-argument function is equivalent to an object variable

The nil object

- Functions are untyped: must have a value for any set of arguments
- Typically add a **nil** object to use as value when other answers don't make sense

Model

- Models are now much more complicated
 - List of objects
 - Table of function values for each function mentioned in formula
 - o includes referent for each variable
 - Table of predicate values for each predicate mentioned in formula

For example



KB describing example

- alive(cat)
- \circ ear-of(cat) = ear
- \circ in(cat, box) \land in(ear, box)
- $\circ \neg in(box, cat) \land \neg in(cat, nil) \dots$
- \circ ear-of(box) = ear-of(ear) = ear-of(nil) = nil
- \circ cat \neq box \land cat \neq ear \land cat \neq nil ...

Aside: typed variables

- KB illustrates need for data types
- Don't want to have to specify ear-of(box)
 or ¬in(cat, nil)
- Could design a type system and allow only formulas which obey type rules (e.g., argument of happy() is of type animate)

Model of example

- o Objects: C, B, E, N
- Assignments:
 - o cat: C, box: B, ear: E, nil: N
 - ear-of(C): E, ear-of(B): N, ear-of(E): N,
 ear-of(N): N
- Predicate values:
 - \circ in(C, B), \neg in(C, C), \neg in(C, N), ...

Failed model

- Objects: C, E, N
- Fails because there's no way to satisfy inequality constraints with only 3 objects

Another possible model

- o Objects: C, B, E, N, X
- Extra object X could have arbitrary properties since it's not mentioned in KB
- E.g., X could be its own ear