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What you should know

IDA* definition
Propositional logic

syntax, truth tables
models, satisfiability, validity, 
entailment, etc.
equivalence rules (e.g., De Morgan)
inference rules (e.g., resolution)



What you should know

Normal forms (e.g., CNF)
SAT problem

its search graph
reductions (e.g., 3-coloring to SAT)

Structure of a theorem prover
proof trees, knowledge bases
compare/contrast search graph w/ SAT



Direction of reduction

If A reduces to B then
if we can solve B, we can solve A
so B must be at least as hard as A

E.g., could take an easy problem and 
reduce it to a hard one



Not-so-useful reduction

Path planning reduces to SAT
Variables: is edge e in path?
Constraints:

exactly 1 path-edge touches start
exactly 1 path-edge touches goal
either 0 or 2 touch each other node



Reduction to 3SAT

We saw that search problems can be 
reduced to SAT

is CNF formula satisfiable?
Can reduce even further, to 3SAT

is 3CNF formula satisfiable?
Useful if reducing SAT/3SAT to another 
problem (to show other problem hard)



Reduction to 3SAT

Must get rid of long clauses
E.g., (a ∨ ¬b ∨ c ∨ d ∨ e ∨ ¬f)

Replace with
(a ∨ ¬b ∨ x) ∧ (¬x ∨ c ∨ y) ∧ 
(¬y ∨ d ∨ z) ∧ (¬z ∨ e ∨ ¬f)



A note on reductions

May be many reductions from problem A 
to problem B
May have wildly different properties

e.g., search on transformed instance 
may take seconds vs. days

Example will show up when we get to 
Planning topic



Citation

“Using Inaccurate Models in 
Reinforcement Learning.” Pieter Abbeel, 
Morgan Quigley, Andrew Y. Ng
http://www.icml2006.org/icml_documents/
camera-ready/001_Using_Inaccurate_Mod.pdf



Comparing representations

All search algorithms presented so far use 
a discrete representation of the world
If world is continuous, they divide it into 
blocks
This works great for some domains, 
terribly for others



Real vs. discrete

Discrete works well, e.g., for deciding 
which way to go around an obstacle
But it would be really bad to discretize to 
the level required for precision position 
servoing



Position servoing

E.g., if state is (x(t) - xtgt(t)), discretization 
will allow bang-bang control (or, slightly 
better, control with k fixed levels of effort)
If state is (x(t), xtgt(t)), axis-parallel splits 
won’t even allow accurate bang-bang 
control without very fine discretization



Smooth control

Couldn’t implement a smooth controller 
like PID without a really fine grid
Probably so fine as to make it infeasible to 
search for control recommended by logical 
formula



Theorem 
provers



Soundness and completeness

An inference procedure is sound if it can 
only conclude things entailed by KB

common sense; we already required it
A set of rules is complete if it can 
conclude everything entailed by KB
Modus ponens by itself is incomplete



Completeness of resolution

Inference procedure: put KB in CNF, add 
¬B to KB, apply resolution until

we get a False as a consequence (and 
conclude KB ⊨ B), or

we run out of inferences (and conclude 
KB ⊭ B)

This inference procedure is complete



Variations

Horn clause inference (faster)
Ways of handling uncertainty (slower)
CSPs (sometimes more convenient)
Quantifiers / first-order logic (say more 
about this later)



Horn clauses

Horn clause: (a ∧ b ∧ c ⇒ d)

Equivalently, (¬a ∨ ¬b ∨ ¬c ∨ d)

Disjunction of literals, at most one of 
which is positive
Positive literal = head, rest = body



Use of Horn clauses

People find it easy to write Horn clauses 
(listing out conditions under which we can 
conclude head)

happy(John) ∧ happy(Mary) ⇒ 
happy(Sue)

No negative literals in above formula; 
again, easier to think about



Why are Horn clauses important

Inference in a KB of propositional Horn 
clauses is linear
Forward chaining or backward chaining 
(see RN reading, or discussion of unit 
resolution below)



Handling uncertainty

Fuzzy logic / certainty factors
simple, but don’t scale

Nonmonotonic logic
also doesn’t scale

Probabilities
may or may not scale—more in Part II
Dempster-Shafer theory



Certainty factors

Instead of just T/F, a model assigns a 
certainty factor in [0, 1] to each 
proposition
And, KB assigns a certainty to each rule
Interpret as “degree of belief”



Certainty factors

Logical connectives are interpreted as 
arithmetic operations, e.g., ∧ as min, ∨ as 
max, and ¬ as (1-x)

E.g., if KB has (¬rains ∨ pours) @ 0.8 
and rains @ 0.7, conclude

max(0.3, pours) ≥ 0.8
pours ≥ 0.8



Problems w/ certainty factors

Hard to separate a large KB into mostly-
independent chunks that interact only 
through a well-defined interface
Certainty factors are not probabilities 
(i.e., do not obey Bayes’ Rule)



Nonmonotonic logic

Suppose we believe all birds can fly
Might add a set of sentences to KB

bird(Polly) ⇒ flies(Polly) 

bird(Tweety) ⇒ flies(Tweety)

bird(Tux) ⇒ flies(Tux)
bird(John) ⇒ flies(John)

…



Nonmonotonic logic

Fails if there are penguins in the KB
Fix: instead, add

bird(Polly) ∧ ¬ab(Polly) ⇒ flies(Polly) 

bird(Tux) ∧ ¬ab(Tux) ⇒ flies(Tux)

…
ab(Tux) is an “abnormality predicate”
Need separate abi(x) for each type of rule



Nonmonotonic logic

Now set as few abnormality predicates as 
possible
Can prove flies(Polly) or flies(Tux) with no 
ab(x) assumptions
If we assert ¬flies(Tux), must now assume 
ab(Tux) to maintain consistency
Can’t prove flies(Tux) any more, but can 
still prove flies(Polly)



Nonmonotonic logic

Works well as long as we don’t have to 
choose between big sets of abnormalities

is it better to have 3 flightless birds or 5 
professors that don’t wear jackets with 
elbow-patches?
even worse with nested abnormalities: 
birds fly, but penguins don’t, but 
superhero penguins do, but …



Dempster-Shafer

Allows additional worst-case uncertainty 
beyond probabilities
Maintains lower, upper bounds on 
probabilities; assumes world is 
adversarial within those bounds
Like probabilities, inference is guaranteed 
correct
May be overly conservative



CSPs



Constraint satisfaction

Recall 3-coloring
Turned map into graph (same size) then 
into SAT problem (constant factor blowup)
Did we have to do that?

=



CSP definition

No: represent as CSP instead
CSP = (variables, domains, constraints)
Variable: a
Domain: (R, G, B)
Constraint: a, b ∈ (RG, RB, GR, GB, BR, 
BG)
Constraints usually represented compactly



Search

Obviously a search problem
Let’s try DFS—top to bottom, RGB



DFS looks stupid

OK, that wasn’t the right way
Blindingly obvious: consistency checking
Don’t assign a variable to a value that 
conflicts with a neighbor



Search

DFS with consistency checking



Well, that’s better

But it still doesn’t notice the problem as 
soon as it could
Forward checking: delete conflicting 
values from neighbors’ domains

remember to put them back if we 
backtrack
can do this with reference counts



Search

Try again with forward checking



Can we do even better?

Constraint propagation
E.g., once we notice a variable has just 
one consistent value, delete that value 
from its neighbors’ domains
Even fancier: arc consistency, k-
consistency (see RN)



Search

Constraint propagation solves it without 
backtracking!



Constraint learning

When we reach a dead end, can spend 
time analyzing why it is dead
If there’s a simple reason, distill it into a 
constraint and add it to CSP
Saves backtracking later
But useless constraints slow us down
See RN Ch 5 for more detail



Orderings

Big choices: which variable to try next? 
What value to assign to it?
So far, fixed order—can do better
Most constrained variable first

natural generalization of propagation
tends to find inconsistencies quickly
cheap to do, often a big win



Orderings

Least-constraining value first
Give ourselves more flexibility later on
Delay decisions
Less important, but sometimes helpful



Example

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/
6-034Artificial-IntelligenceFall2002/Tools/detail/mapresalloc.htm



Other important CSPs

Minesweeper (courtesy Andrew Moore)

“Minesweeper” CSP

V = { v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 }, D = { B (bomb) , S (space) }

C = { (v1,v2) : { (B , S) , (S,B) } ,(v1,v2,v3) : { (B,S,S) , (S,B,S) , (S,S,B)},...}
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The Waltz algorithm

One of the earliest examples of a computation posed as a CSP.

The Waltz algorithm is for interpreting line drawings of solid 
polyhedra.

Adjacent intersections impose constraints on each other. Use CSP 
to find a unique set of labelings. Important step to 
“understanding” the image.

Look at all intersections.

What kind of intersection could this
be? A concave intersection of three

faces? Or an external convex inter
section?

Waltz Alg. on simple scenes

Assume all objects:

• Have no shadows or cracks
• Three-faced vertices
• “General position”: no junctions change with small 

movements of the eye.

Then each line on image is one of the following:

• Boundary line (edge of an object) (<) with right hand of 
arrow denoting “solid” and left hand denoting “space”

• Interior convex edge (+)
• Interior concave edge (-)

+

++
+

 18 legal kinds of junctions

Given a representation of the diagram, label each junction in one of the above manners.

The junctions must be labelled so that lines are labelled consistently at both ends.

Can you formulate that as a CSP? FUN FACT :  Constra int Propagat ion a lways works perfec t ly .
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Other important CSPs

Sudoku
http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html



Other important CSPs

Job-shop scheduling
A bunch of jobs

each job is a sequence of operations
drill, polish, paint

A bunch of resources
each operation needs several resources

Is there a schedule of length ≤ k?



SAT Solvers



SAT solvers

There are SAT solvers which routinely 
handle problems with 1,000,000 variables
Such a SAT solver is a subroutine in one of 
the planning algorithms we’ll discuss soon
So, here’s how to write one



Hard instances

SAT is NP-complete! How can we handle 
problems with 1,000,000 variables?!?
NP-complete doesn’t mean runtime has to 
be exponential for all examples

e.g., (a ∨ b) ∧ (c ∨ d) ∧ (e ∨ f ∨ g)

Many practical SAT examples are 
apparently not all that hard



So where are the hard examples?

Why are practical examples easy?
They are over- or under-constrained

under-constrained ⇒ succeed quickly

over-constrained ⇒ fail quickly

Where are the hard examples?



Random 3CNF formulas

It turns out that random formulas can be 
quite hard to solve
Randomly select variables to be in each 
clause, randomize +ve vs. -ve
If we generate too few clauses, formula is 
under-constrained
Too many: over-constrained



Just right

Random formulas w/ n=50 vars, m clauses
Clauses have 3 distinct vars, 50% negated

Section 7.7. Agents Based on Propositional Logic 225
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Figure 7.18 (a) Graph showing the probability that a random 3-CNF sentence with n =50
symbols is satisfiable, as a function of the clause/symbol ratiom/n. (b) Graph of the median
runtime of DPLL and WALKSAT on 100 satisfiable random 3-CNF sentences with n =50,
for a narrow range ofm/n around the critical point.

7.7 AGENTS BASED ON PROPOSITIONAL LOGIC

In this section, we bring together what we have learned so far in order to construct agents

that operate using propositional logic. We will look at two kinds of agents: those which

use inference algorithms and a knowledge base, like the generic knowledge-based agent in

Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We

will demonstrate both kinds of agents in the wumpus world, and will find that both suffer

from serious drawbacks.

Finding pits and wumpuses using logical inference

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and

safe squares. It begins with a knowledge base that states the “physics” of the wumpus world.

It knows that [1,1] does not contain a pit or a wumpus; that is, ¬P1,1 and ¬W1,1. For every

square [x, y], it knows a sentence stating how a breeze arises:

Bx,y ⇔ (Px,y+1 ∨ Px,y−1 ∨ Px+1,y ∨ Px−1,y) . (7.1)

For every square [x, y], it knows a sentence stating how a stench arises:

Sx,y ⇔ (Wx,y+1 ∨ Wx,y−1 ∨ Wx+1,y ∨ Wx−1,y) . (7.2)

Finally, it knows that there is exactly one wumpus. This is expressed in two parts. First, we

have to say that there is at least one wumpus:

W1,1 ∨ W1,2 ∨ · · · ∨ W4,3 ∨ W4,4 .

Then, we have to say that there is at most one wumpus. One way to do this is to say that

for any two squares, one of them must be wumpus-free. With n squares, we get n(n − 1)/2



4.3

It turns out m/n = 4.3 (and change) is the 
hard area, for any sufficiently large n
What’s special about 4.3?  I don’t know.
Unfortunately real formulas don’t look like 
random ones, so it’s not so easy to check 
hardness



SAT solvers

Many different search strategies
Will mention two: WalkSAT (briefly) and 
DPLL / Chaff
Both assume formula input in CNF
Could do a simplification search before 
handing to algorithm
Chaff paper claims this may not help much



WalkSAT
Section 7.6. Effective propositional inference 223

functionWALKSAT(clauses ,p,max flips) returns a satisfying model or failure
inputs: clauses , a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips , number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses
for i = 1 to max flips do
if model satisfies clauses then returnmodel
clause ← a randomly selected clause from clauses that is false in model
with probability p flip the value inmodel of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.17 The WALKSAT algorithm for checking satisfiability by randomly flipping

the values of variables. Many versions of the algorithm exist.

used by the MIN-CONFLICTS algorithm for CSPs (page 151). All these algorithms take steps

in the space of complete assignments, flipping the truth value of one symbol at a time. The

space usually contains many local minima, to escape from which various forms of random-

ness are required. In recent years, there has been a great deal of experimentation to find a

good balance between greediness and randomness.

One of the simplest and most effective algorithms to emerge from all this work is called

WALKSAT (Figure 7.17). On every iteration, the algorithm picks an unsatisfied clause and

picks a symbol in the clause to flip. It chooses randomly between two ways to pick which

symbol to flip: (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in

the new state, and (2) a “random walk” step that picks the symbol randomly.

Does WALKSAT actually work? Clearly, if it returns a model, then the input sentence

is indeed satisfiable. What if it returns failure? Unfortunately, in that case we cannot tell
whether the sentence is unsatisfiable or we need to give the algorithm more time. We could

try settingmax flips to infinity. In that case, it is easy to show that WALKSATwill eventually
return a model (if one exists), provided that the probability p > 0. This is because there is
always a sequence of flips leading to a satisfying assignment, and eventually the random

walk steps will generate that sequence. Alas, if max flips is infinity and the sentence is
unsatisfiable, then the algorithm never terminates!

What this suggests is that local-search algorithms such as WALKSAT are most useful

when we expect a solution to exist—for example, the problems discussed in Chapters 3 and 5

usually have solutions. On the other hand, local search cannot always detect unsatisfiability,

which is required for deciding entailment. For example, an agent cannot reliably use local

search to prove that a square is safe in the wumpus world. Instead, it can say, “I thought about

it for an hour and couldn’t come up with a possible world in which the square isn’t safe.” If

the local-search algorithm is usually really fast at finding a model when one exists, the agent

might be justified in assuming that failure to find a model indicates unsatisfiability. This isn’t

the same as a proof, of course, and the agent should think twice before staking its life on it.



Discussion

Pros: easy to implement, very fast on 
satisfiable formulas
Cons: can’t ever prove unsatisfiable



DPLL

WalkSAT used complete assignments as its 
search space
DPLL uses (partial assignment, formula)
DPLL stands for Davis, Putnam, 
Logemann, and Loveland
Refers to a family of algorithms; we will 
discuss the Chaff implementation



DPLL

DPLL(formula, model)

model = deduce(formula, model)
if (all-assigned(formula, model))

return evaluate(formula, model)
x = choose-variable(formula, model)
if (DPLL(formula, model / x: T)) 

return T
else 

return DPLL(formula, model / x: F)



Simple subroutines

all-assigned: checks whether all clauses 
have all variables assigned
evaluate: evaluates a fully-assigned 
formula



Clause learning

An optional feature of DPLL-style 
algorithms is clause learning
When we backtrack, we can analyze 
reasons for failure and try to add a clause 
that will cause us to notice the same type 
of failure sooner on the next branch
More below



deduce()

Does any inference it can do quickly to set 
more variables without searching
Has to be fast, so will miss some 
inferences
E.g, a Sudoku puzzle requires no search, 
but most deduce() implementations won’t 
solve it



deduce()

Chaff uses only the following rule:
Unit resolution

If a clause contains just one unknown 
variable, set it to satisfy the clause

In (a ∨ b ∨ ¬c):

with (a: F, b: F), will set c: F
with (a: F, c: T), will set b: T



Other deduction rules

RN recommends
Pure literal rule

If a literal appears with only one sign in 
all remaining unsatisfied clauses, set it 
based on that sign

In (a ∨ b) ∧ (a ∨ ¬b), sets a: T

Chaff paper says this rule is too slow



Choose-variable

Can’t use most-constrained variable 
heuristic from CSP
This seems like a real pity
Could imagine allowing clauses like

exactly-one-of(a, b, c, d)
at-most-k-of(3, a, b, c, d)

Not sure why this isn’t implemented more 
often



Choosing a branch variable

Want to satisfy lots of clauses immediately
If we can’t do that, want lots of length-1 
clauses
MOMS heuristic

find smallest clause (say 3 variables)
pick a variable that occurs maximally 
often in size-3 clauses



MOMS discussion

Chaff authors say: MOMS doesn’t choose 
good variables on non-random problems
Recommend heuristics based on “activity” 
of a variable
Each time a literal seems important, 
increment its score; decay all scores at a 
constant rate over time



Important literals

“Important” literals are
ones in added clauses
ones in conflict clauses

Chaff increments on conflict, restricts 
choice to literals in most recently added 
clause



Clause learning

Try to add clauses which will let us detect 
failure sooner on other branches
These clauses are redundant
So if they don’t help us prune, they slow us 
down
Chaff paper recommends counting how 
often a clause is involved in a conflict



Clause learning

Skipped conflict learning in CSPs; this is 
essentially the same idea
Learned clauses are derived by resolution 
from clauses already in formula
When we fail, there is a conflict clause 
which has all literals unsatisfied
Use conflict cause to focus resolution



Clause learning

Conflict clause has all unsatisfied literals
(a ∨ b ∨ ¬c) in model (a: F, b: F, c: T)

Some assignments in model came from 
unit resolution—call these implied vars

say c is most recent, from clause (b ∨ c)

all other literals in this clause must be 
in conflict too



Clause learning

So, resolving these two clauses yields 
another conflict clause

in this case (a ∨ b)

Keep doing resolutions for all implied 
variables, in reverse chronological order



When should we stop?

As we back up through assignments, 
eventually we will hit a decision variable 
(i.e., one that wasn’t assigned)
Call it x
Could skip x, continue with next assigned 
variable
But Chaff recommends stopping at x



Why is this a good idea?

Next backtrack will unset x
Learned clause will have x as its only 
unsatisfied literal
Will immediately set x via a unit resolution



Intuition

[Subset of previous decisions] ⇒ [setting 
for x]
Didn’t know how to set x on this branch, 
so might not know on future branches
Any time this same subset of decisions 
appears on a future branch, won’t have to 
search both values of x



Randomness

Both WalkSAT and Chaff are random
more randomness in WalkSAT

Result is a significant variance in solution 
times for same formula (Chaff authors 
report seconds vs. days)



We can be very lucky or unlucky



Simple idea

Try different random seeds for breaking 
ties in variable ordering heuristic
Let each seed run longer than the last
Seems to help a lot



Randomization cont’d

Randomization works well if search times 
are sometimes short but have heavy tail



Clause learning

For DPLL-style algorithms, if clause 
learning was active, random restarts don’t 
totally lose effort from previous tries



First-order 
logic



First-order logic

So far we’ve been using opaque
vars like rains or happy(John)
Limits us to statements like “it’s raining” or 
“if John is happy then Mary is happy”
Can’t say “all men are mortal” or “if John 
is happy then someone else is happy too”

Bertrand Russell
1872-1970



Predicates and objects

Interpret happy(John) or likes(Joe, pizza) 
as a predicate applied to some objects
Object = an object in the world
Predicate = boolean-valued function of 
objects
predicate(object) plays same role that 
variable did before



Distinguished predicates

We will assume three distinguished 
predicates with fixed meanings:

True, False
Equal(x, y)

We will also write (x = y) and (x ≠ y)
Equality satisfies usual axioms



Functions

Functions map zero or more objects to 
another object

e.g., professor(15-780), last-common-
ancestor(John, Mary)

Predicates and functions have fixed arity
Zero-argument function is equivalent to an 
object variable



The nil object

Functions are untyped: must have a value 
for any set of arguments
Typically add a nil object to use as value 
when other answers don’t make sense



Model

Models are now much more complicated
List of objects
Table of function values for each 
function mentioned in formula

includes referent for each variable
Table of predicate values for each 
predicate mentioned in formula



For example



KB describing example

alive(cat)
ear-of(cat) = ear
in(cat, box) ∧ in(ear, box)

¬in(box, cat) ∧ ¬in(cat, nil) …

ear-of(box) = ear-of(ear) = ear-of(nil) = nil
cat ≠ box ∧ cat ≠ ear ∧ cat ≠ nil …



Aside: typed variables

KB illustrates need for data types
Don’t want to have to specify ear-of(box) 
or ¬in(cat, nil) 

Could design a type system and allow only 
formulas which obey type rules (e.g., 
argument of happy() is of type animate)



Model of example

Objects: C, B, E, N
Assignments:

cat: C, box: B, ear: E, nil: N
ear-of(C): E, ear-of(B): N, ear-of(E): N, 
ear-of(N): N

Predicate values:
in(C, B), ¬in(C, C), ¬in(C, N), …



Failed model

Objects: C, E, N
Fails because there’s no way to satisfy 
inequality constraints with only 3 objects



Another possible model

Objects: C, B, E, N, X
Extra object X could have arbitrary 
properties since it’s not mentioned in KB
E.g., X could be its own ear


