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o WEH 5409, Sep 18, 4:30-5:30pm: matlab
tutorial

o Please send your email address to TA
Michael Benisch (mbenisch at cs), who is
compiling a class email list

o Please check the website regularly for
readings (for Lec. 1-2, Ch. 1-4 of RN)
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Topics covered
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o What is AI? (Be able to discuss an
example or two)

o Types of uncertainty & corresponding
approaches

o How to set up state space graph for
problems like the robotic grad student or

path planning




Topics covered
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o Generic search algorithm & data
structures

o Search methods: be able to simulate
o BFS, DFS, DFID
o Heuristic search

o A*: define admissibility; show
optimality, efficiency

o What are advantages of each?




A* Planning on Big Grids
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Credit: Kuffner
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Spatlal
Planning
















Wouldn’t 1t be nice...
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o ...If we could break things up based more
on the real geometry of the world?

o Robot Motion Planning by Jean-Claude Latombe










Fip. 11. Swucture of the 10-DOF manipulatar.
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Kinematic planning
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o For any configuration q, can test whether
it intersects obstacles

o Set of legal configs is “configuration
space” C (a subset of Ndofs)

o Path is a continuous function q from [0,1]
into C with q(0) = qs and q(1) = qg










More C-space examples
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Another C-space example
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Topology of C- space
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o Topology of C-space can be something
other than the familiar Euclidean world

o E.g. set of angles = unit circle = SO(2)
o Nnot [0, ZTE) /

o Ball & socket joint (3d angle) C unit
sphere = SO(3)
















Shortest path
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o Suppose a polygonal C-space

o Shortest path in C-space is a sequence of
line segments

o Each segment’s ends are either start or
goal or one of the vertices in C-space

o In 3-d or higher, might lie on edge, face,
hyperface, ...










Complex1ty

mmmﬁ!mm A Pty = " by :!_ "o ¥ Sl

- vy
Rdaa 2 0

o Naive algorithm is O(n?) in planar C-
space (grows fast with d!)

o For algorithms that run faster, O(n?) and
O(k + n log n), see [Latombe, pg 157]

o k = number of edges that wind up in
visibility graph

o Once we have graph, search it!




Discussion of visibility graph
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o Good: finds shortest path

o Bad: complex C-space yields long
runtime, even if problem is easy

o get my 23-dof manipulator to move
Imm when nearest obstacle is Im

o Bad: no margin for error










between them

Voronoi
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o Given a set of point obstacles

o Find all places that are equidistant from
two or more of them

o Result: network of line segments
o Called Voronoi graph

o Each line stays as far away as possible
from two obstacles while still going




Voronoi1 from polygonal C-space
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Voronoi1 from polygonal C-space
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o Set of points which are equidistant from 2
or more closest points on border of C-
space

o Polygonal C-space in 2d yields lines &
parabolas intersecting at points

o lines from 2 points

o parabolas from line & point




Vorono1l method for planning
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o Compute Voronoi diagram of C-space

o Go straight from start to nearest point on
diagram

o Plan within diagram to get near goal
(guess which algorithm)

o Go straight to goal




Discussion of Voronoi
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o Good: stays far away from obstacles
o Bad: assumes polygons

o Bad: assumes 2d, gets kind of hard in
higher dimensions (but see http.//
voronoi.sbp.ri.cmu.edu/~motion/)







Exact cell decompositions

o We can try to break C-space into a bunch
of convex polygons
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Approximate cell decomposition
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o This decomposition is what we were using
for A* in examples from last class

o Works pretty well except:
o need high resolution near obstacles

o want low res away from obstacles

























Parti-game paper
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o Andrew Moore and Chris Atkeson. The
Parti-game Algorithm for Variable
Resolution Reinforcement Learning in
Multidimensional State-spaces

o http.://www.autonlab.org/autonweb/14699.html
















Parti-game algorithm
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o Try actions from several points per cell
o Try to plan a path from start to goal

o On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

o If we can get to goal, we win

o Otherwise we can split a cell













Potential-based algorithms
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o Add a fictitious force that moves us away
from obstacles i

o Stronger when closer
o Add a force towards goal

o Local minima galore ...

o Or, expensive but cool ways to calculate
potentials that don’t have local minima
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Randomness
1n search
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RRTs
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o We will come back to randomness for
more planning algorithms later

o For now, here’s a randomized way of
dividing up C-space that seems to work
quite well in high-dimensions

o Rapidly-exploring Random Trees







RRT assumptions
o RANDOM_CONFIG

o samples from some distribution on C-
space, can use to bias search

o EXTEND(q, q’)

o uses a local controller to head towards
q from q
o Stops before hitting obstacle
o FIND_NEAREST(q, O)




Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree
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[ Kuffner & LaValle , ICRA’00]

BUILD_RRT (g, |
Tlnlt(qzm)’
fork= 1to K do

g,.,= RANDOM_ CONFIG();
EXTEND(Z, 4,,,)

RSP




























RRTs explore coarse to fine
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o Tend to break up large Voronoi regions

o Limiting distribution of vertices is
RANDOM_CONFIG

o Key idea in proof: as RRT grows,
probability that grand is reachable with
local controller (and so immediately

becomes a new vertex) approaches 1

o In limit, we get a Voronoi cell decomposition




Plannmg with RRTs
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o Build RRT from start until we add a node
that can reach goal using local controller

o (Unique) path: root — last node — goal

o Optional: cross-link tree by testing local
controller, search within tree using A*

o Optional: grow forward and backward
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