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Last episode, 
on Grad AI



Topics covered

What is AI?  (Be able to discuss an 
example or two)
Types of uncertainty & corresponding 
approaches
How to set up state space graph for 
problems like the robotic grad student or 
path planning



Topics covered

Generic search algorithm & data 
structures
Search methods: be able to simulate

BFS, DFS, DFID
Heuristic search
A*: define admissibility; show 
optimality, efficiency

What are advantages of each?



A* Planning on Big Grids

2D grids:  500,000 nodes  =  ~ 0.8 sec
       10 million nodes  =  ~ 12 sec

Credit: Kuffner



A* on Big Grids



Projects



Project ideas

Plan a path for this robot so that it gets a 
good view of an object as fast as possible



Project ideas

Implement a distributed market-based 
planner and test the contribution of 
learning to overall performance



Project ideas

Give me an excuse to buy the new Lego 
Mindstorms set

plan footstep placements
plan how to grip objects



Spatial 
Planning



Plans in Space…

Last time, we saw A* for spatial planning
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Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.
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What’s wrong w/ A* guarantees?

(optimality) A* finds a solution of depth g*
(efficiency) A* expands no nodes that have 
f(node) > g*



What’s wrong with A*?

Discretized space into tiny little chunks
a few degrees rotation of a joint
Lots of states ⇒ slow

Discretized actions too
only allowed to move one joint at a time

Results in jagged paths
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Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.
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number of underconsistent states examined, using ideas very
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prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
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What’s wrong with A*?



Wouldn’t it be nice…

… if we could break things up based more 
on the real geometry of the world?
Robot Motion Planning by Jean-Claude Latombe



Physical system

A moderate number of real-valued 
coordinates
Deterministic, continuous dynamics
Continuous goal set (or a few pieces)
Cost = time, work, torque, …



Typical physical system



A kinematic chain

Rigid links connected 
by joints

revolute or prismatic 
(1 dof each)

Configuration
q = (q1, q2, …)



Mobile robots

Translating in space = 2 dof



More mobility

Translation + rotation = 3 dof



Q: How many dofs?

3d translation & rotation



credit: Andrew
 M

oore



Robot kinematic motion planning

Given a robot (coordinates q)
… and a workspace with obstacles
… get from a start to a goal



Kinematic planning

For any configuration q, can test whether 
it intersects obstacles
Set of legal configs is “configuration 
space” C (a subset of ℜdofs) 

Path is a continuous function q from [0,1] 
into C with q(0) = qs and q(1) = qg



Note: dynamic planning

Includes inertia as well as configuration
q, q
Harder, since twice as many dofs
More later…



C-space example



More C-space examples



Another C-space example

image: J Kuffner



Topology of C-space

Topology of C-space can be something 
other than the familiar Euclidean world
E.g. set of angles = unit circle = SO(2)

not [0, 2π) !

Ball & socket joint (3d angle) ⊆ unit 
sphere = SO(3)



Topology example

Compare L to R: 2 planar angles v. one 
solid angle — both 2 dof (and neither the 
same as Euclidean 2-space)



Back to planning

Complaint with A* was that it didn’t break 
up space intelligently
How might we do better?
Lots of roboticists have given lots of 
answers!



Shortest path in C-space



Shortest path in C-space



Shortest path

Suppose a polygonal C-space
Shortest path in C-space is a sequence of 
line segments
Each segment’s ends are either start or 
goal or one of the vertices in C-space
In 3-d or higher, might lie on edge, face, 
hyperface, …



Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html



Naive algorithm

For i = 1 … points
For j = 1 … points

included = t
For k = 1 … faces

if segment ij intersects face k
included = f



Complexity

Naive algorithm is O(n3) in planar C-
space (grows fast with d!)
For algorithms that run faster, O(n2) and 
O(k + n log n), see [Latombe, pg 157]

k = number of edges that wind up in 
visibility graph

Once we have graph, search it!



Discussion of visibility graph

Good: finds shortest path
Bad: complex C-space yields long 
runtime, even if problem is easy

get my 23-dof manipulator to move 
1mm when nearest obstacle is 1m

Bad: no margin for error



Getting bigger margins

Could just pad obstacles
but how much is enough? might make 
infeasible…

What if we try to stay as far away from 
obstacles as possible?



Voronoi

!1.5 !1 !0.5 0 0.5

!1

!0.5

0

0.5

1



Voronoi

Given a set of point obstacles
Find all places that are equidistant from 
two or more of them
Result: network of line segments
Called Voronoi graph
Each line stays as far away as possible 
from two obstacles while still going 
between them



Voronoi from polygonal C-space



Voronoi from polygonal C-space

Set of points which are equidistant from 2 
or more closest points on border of C-
space
Polygonal C-space in 2d yields lines & 
parabolas intersecting at points

lines from 2 points
parabolas from line & point



Voronoi method for planning

Compute Voronoi diagram of C-space
Go straight from start to nearest point on 
diagram
Plan within diagram to get near goal 
(guess which algorithm)
Go straight to goal



Discussion of Voronoi

Good: stays far away from obstacles
Bad: assumes polygons
Bad: assumes 2d, gets kind of hard in 
higher dimensions (but see http://
voronoi.sbp.ri.cmu.edu/~motion/)



Voronoi discussion

Bad: kind of gun-shy about obstacles



Exact cell decompositions

We can try to break C-space into a bunch 
of convex polygons



Exact cell decompositions

Will not discuss how to do
Common approach for video game NPCs
But is also hard in higher than 2d
And can result in wobbly paths



Approximate cell 
decompositions



Planning algorithm

Lay down a grid in C-space
Delete cells that intersect obstacles
Connect neighbors
A* (surprise!)
If no path, double resolution and try again

never know when we’re done



Approximate cell decomposition

This decomposition is what we were using 
for A* in examples from last class
Works pretty well except:

need high resolution near obstacles
want low res away from obstacles



Fix: variable resolution

Lay down a coarse grid
Split cells that intersect obstacle borders

empty cells good
full cells also don’t need splitting

Stop at fine resolution
Data structure: quadtree











Discussion

Works pretty well, except:
Still don’t know when to stop
Won’t find shortest path
Still doesn’t really scale to high-d



Better yet

Adaptive decomposition
Split only cells that actually make a 
difference

are on path from start
make a difference to our policy



Parti-game paper

Andrew Moore and Chris Atkeson. The 
Parti-game Algorithm for Variable 
Resolution Reinforcement Learning in 
Multidimensional State-spaces 
http://www.autonlab.org/autonweb/14699.html











Parti-game algorithm

Try actions from several points per cell
Try to plan a path from start to goal
On the way, pretend an opponent gets to 
choose which outcome happens (out of all 
that have been observed in this cell)
If we can get to goal, we win
Otherwise we can split a cell



Parti-game example

G

Start

Goal

G

G

G



9dof planar arm

Fixed

base

Start

Goal

85 partitions total



Potential-based algorithms



Potential-based algorithms

Add a fictitious force that moves us away 
from obstacles

stronger when closer
Add a force towards goal
Local minima galore …
Or, expensive but cool ways to calculate 
potentials that don’t have local minima



Randomness 
in search



We can be very lucky or unlucky



“I heard onst of a barque,” said Murphy.
“Becalmed, that couldn’t get a breath,
Till all the crowd was sick with scurvy
An’ the skipper drunk himself to death.”

Doldrums: One Of Murphy's Yarns
http://oldpoetry.com/opoem/56157    Cicely Fox Smith



Simple idea

Try multiple starting points, random seeds 
for order of expanding neighbors
Interleave computation (or iterative 
lengthening)
When does this work?



Randomization cont’d

Randomization works well if search times 
are sometimes short but have heavy tail



RRTs

We will come back to randomness for 
more planning algorithms later
For now, here’s a randomized way of 
dividing up C-space that seems to work 
quite well in high-dimensions
Rapidly-exploring Random Trees



RRTs

Put landmarks into C-space
Break up C-space into Voronoi regions 
around landmarks
Put landmarks densely only if high 
resolution is needed to find a path
Will not guarantee optimal path



RRT assumptions

RANDOM_CONFIG
samples from some distribution on C-
space; can use to bias search

EXTEND(q, q’)
uses a local controller to head towards 
q’ from q
stops before hitting obstacle

FIND_NEAREST(q, Q)



Path Planning with RRTs

BUILD_RRT (qinit)  {
   T.init(qinit); 
   for k =  1 to K do 
      qrand = RANDOM_CONFIG();    
      EXTEND(T, qrand)
}

EXTEND(T, qrand)

qnear

qne

w

qinit
qrand

[ Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree



RRT example
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RRT example



RRT for a car (3 dof)



RRTs explore coarse to fine

Tend to break up large Voronoi regions

Limiting distribution of vertices is 
RANDOM_CONFIG

Key idea in proof: as RRT grows, 
probability that qrand is reachable with 
local controller (and so immediately 
becomes a new vertex) approaches 1

In limit, we get a Voronoi cell decomposition



Planning with RRTs

Build RRT from start until we add a node 
that can reach goal using local controller
(Unique) path: root → last node → goal

Optional: cross-link tree by testing local 
controller, search within tree using A*
Optional: grow forward and backward













What you should know

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Adaptive cells (quadtree, parti-game)

Potential fields
RRTs


