
15-780: Graduate AI
Lecture 2. Spatial Search

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu

Admin

WEH 5409, Sep 18, 4:30-5:30pm: matlab
tutorial
Please send your email address to TA
Michael Benisch (mbenisch at cs), who is
compiling a class email list
Please check the website regularly for
readings (for Lec. 1–2, Ch. 1–4 of RN)

Last episode,
on Grad AI

Topics covered

What is AI? (Be able to discuss an
example or two)
Types of uncertainty & corresponding
approaches
How to set up state space graph for
problems like the robotic grad student or
path planning

Topics covered

Generic search algorithm & data
structures
Search methods: be able to simulate

BFS, DFS, DFID
Heuristic search
A*: define admissibility; show
optimality, efficiency

What are advantages of each?

A* Planning on Big Grids

2D grids: 500,000 nodes = ~ 0.8 sec
 10 million nodes = ~ 12 sec

Credit: Kuffner

A* on Big Grids

Projects

Project ideas

Plan a path for this robot so that it gets a
good view of an object as fast as possible

Project ideas

Implement a distributed market-based
planner and test the contribution of
learning to overall performance

Project ideas

Give me an excuse to buy the new Lego
Mindstorms set

plan footstep placements
plan how to grip objects

Spatial
Planning

Plans in Space…

Last time, we saw A* for spatial planning

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

What’s wrong w/ A* guarantees?

(optimality) A* finds a solution of depth g*
(efficiency) A* expands no nodes that have
f(node) > g*

What’s wrong with A*?

Discretized space into tiny little chunks
a few degrees rotation of a joint
Lots of states ⇒ slow

Discretized actions too
only allowed to move one joint at a time

Results in jagged paths

Optimal Solution End-effector Trajectory Probability of Obstacle Appearing Probability of Obstacle Appearing

So
lu

tio
n

C
os

t

St
at

e
Ex

pa
ns

io
ns

Figure 10: Environment used in our second experiment, along with the optimal solution and the end-effector trajectory (without
any dynamic obstacles). Also shown are the solution cost of the path traversed and the number of states expanded by each of
the three algorithms compared.

other words, by adding a fixed value to the key of each new
state placed on the queue, the old states are given a rela-
tive advantage in their queue placement. When a state is
popped off the queue whose key value is not in line with
the current bias term, it is placed back on the queue with an
updated key value. The intuition is that only a small num-
ber of the states previously on the queue may ever make
it to the top, so it can be much more efficient to only re-
order the ones that do. We can use the same idea when ε
decreases (from εo to εn, say) to increase the bias term by
(εo − εn) · maxs∈OPEN h(sstart, s). The key value of each
state becomes
key(s) = [min(g(s), rhs(s)) + ε · h(sstart, s) + bias,

min(g(s), rhs(s))].
By using the maximum heuristic value present in the queue
to update the bias term, we are guaranteeing that each state
already on the queue will be at least as elevated on the queue
as it should be relative to the new states being added. It is
future work to implement this approach but it appears to be
a promising modification.

Finally, it may be possible to reduce the effect of un-
derconsistent states in our repair of previous solution paths.
With the current version of AD*, underconsistent states need
to be placed on the queue with a key value that uses an un-
inflated heuristic value. This is because they could reside on
the old solution path and their true effect on the start state
may be much more than the inflated heuristic would suggest.
This means, however, that the underconsistent states quickly
rise to the top of the queue and are processed before many
overconsistent states. At times, these underconsistent states
may not have any effect on the value of the start state (for
instance when they do not reside upon the current solution
path). We are currently looking into ways of reducing the
number of underconsistent states examined, using ideas very
recently developed (Ferguson & Stentz 2005). This could
prove very useful in the current framework, where much of
the processing is done on underconsistent states that may not
turn out to have any bearing on the solution.

Conclusions
We have presented Anytime Dynamic A*, a heuristic-based,
anytime replanning algorithm able to efficiently generate so-

lutions to complex, dynamic path planning problems. The
algorithm works by continually decreasing a suboptimal-
ity bound on its solution, reusing previous search efforts as
much as possible. When changes in the environment are
encountered, it is able to repair its previous solution incre-
mentally. Our experiments and application of the algorithm
to two real-world robotic systems have shown it to be a valu-
able addition to the family of heuristic-based path planning
algorithms, and a useful tool in practise.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was partially sponsored by DARPA’s
MARS program. Dave Ferguson is supported in part by an
NSF Graduate Research Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
Act Using Real-Time Dynamic Programming. Artificial
Intelligence 72:81–138.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).
Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the

What’s wrong with A*?

Wouldn’t it be nice…

… if we could break things up based more
on the real geometry of the world?
Robot Motion Planning by Jean-Claude Latombe

Physical system

A moderate number of real-valued
coordinates
Deterministic, continuous dynamics
Continuous goal set (or a few pieces)
Cost = time, work, torque, …

Typical physical system

A kinematic chain

Rigid links connected
by joints

revolute or prismatic
(1 dof each)

Configuration
q = (q1, q2, …)

Mobile robots

Translating in space = 2 dof

More mobility

Translation + rotation = 3 dof

Q: How many dofs?

3d translation & rotation

credit: Andrew
 M

oore

Robot kinematic motion planning

Given a robot (coordinates q)
… and a workspace with obstacles
… get from a start to a goal

Kinematic planning

For any configuration q, can test whether
it intersects obstacles
Set of legal configs is “configuration
space” C (a subset of ℜdofs)

Path is a continuous function q from [0,1]
into C with q(0) = qs and q(1) = qg

Note: dynamic planning

Includes inertia as well as configuration
q, q
Harder, since twice as many dofs
More later…

C-space example

More C-space examples

Another C-space example

image: J Kuffner

Topology of C-space

Topology of C-space can be something
other than the familiar Euclidean world
E.g. set of angles = unit circle = SO(2)

not [0, 2π) !

Ball & socket joint (3d angle) ⊆ unit
sphere = SO(3)

Topology example

Compare L to R: 2 planar angles v. one
solid angle — both 2 dof (and neither the
same as Euclidean 2-space)

Back to planning

Complaint with A* was that it didn’t break
up space intelligently
How might we do better?
Lots of roboticists have given lots of
answers!

Shortest path in C-space

Shortest path in C-space

Shortest path

Suppose a polygonal C-space
Shortest path in C-space is a sequence of
line segments
Each segment’s ends are either start or
goal or one of the vertices in C-space
In 3-d or higher, might lie on edge, face,
hyperface, …

Visibility graph

http://www.cse.psu.edu/~rsharma/robotics/notes/notes2.html

Naive algorithm

For i = 1 … points
For j = 1 … points

included = t
For k = 1 … faces

if segment ij intersects face k
included = f

Complexity

Naive algorithm is O(n3) in planar C-
space (grows fast with d!)
For algorithms that run faster, O(n2) and
O(k + n log n), see [Latombe, pg 157]

k = number of edges that wind up in
visibility graph

Once we have graph, search it!

Discussion of visibility graph

Good: finds shortest path
Bad: complex C-space yields long
runtime, even if problem is easy

get my 23-dof manipulator to move
1mm when nearest obstacle is 1m

Bad: no margin for error

Getting bigger margins

Could just pad obstacles
but how much is enough? might make
infeasible…

What if we try to stay as far away from
obstacles as possible?

Voronoi

!1.5 !1 !0.5 0 0.5

!1

!0.5

0

0.5

1

Voronoi

Given a set of point obstacles
Find all places that are equidistant from
two or more of them
Result: network of line segments
Called Voronoi graph
Each line stays as far away as possible
from two obstacles while still going
between them

Voronoi from polygonal C-space

Voronoi from polygonal C-space

Set of points which are equidistant from 2
or more closest points on border of C-
space
Polygonal C-space in 2d yields lines &
parabolas intersecting at points

lines from 2 points
parabolas from line & point

Voronoi method for planning

Compute Voronoi diagram of C-space
Go straight from start to nearest point on
diagram
Plan within diagram to get near goal
(guess which algorithm)
Go straight to goal

Discussion of Voronoi

Good: stays far away from obstacles
Bad: assumes polygons
Bad: assumes 2d, gets kind of hard in
higher dimensions (but see http://
voronoi.sbp.ri.cmu.edu/~motion/)

Voronoi discussion

Bad: kind of gun-shy about obstacles

Exact cell decompositions

We can try to break C-space into a bunch
of convex polygons

Exact cell decompositions

Will not discuss how to do
Common approach for video game NPCs
But is also hard in higher than 2d
And can result in wobbly paths

Approximate cell
decompositions

Planning algorithm

Lay down a grid in C-space
Delete cells that intersect obstacles
Connect neighbors
A* (surprise!)
If no path, double resolution and try again

never know when we’re done

Approximate cell decomposition

This decomposition is what we were using
for A* in examples from last class
Works pretty well except:

need high resolution near obstacles
want low res away from obstacles

Fix: variable resolution

Lay down a coarse grid
Split cells that intersect obstacle borders

empty cells good
full cells also don’t need splitting

Stop at fine resolution
Data structure: quadtree

Discussion

Works pretty well, except:
Still don’t know when to stop
Won’t find shortest path
Still doesn’t really scale to high-d

Better yet

Adaptive decomposition
Split only cells that actually make a
difference

are on path from start
make a difference to our policy

Parti-game paper

Andrew Moore and Chris Atkeson. The
Parti-game Algorithm for Variable
Resolution Reinforcement Learning in
Multidimensional State-spaces
http://www.autonlab.org/autonweb/14699.html

Parti-game algorithm

Try actions from several points per cell
Try to plan a path from start to goal
On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)
If we can get to goal, we win
Otherwise we can split a cell

Parti-game example

G

Start

Goal

G

G

G

9dof planar arm

Fixed

base

Start

Goal

85 partitions total

Potential-based algorithms

Potential-based algorithms

Add a fictitious force that moves us away
from obstacles

stronger when closer
Add a force towards goal
Local minima galore …
Or, expensive but cool ways to calculate
potentials that don’t have local minima

Randomness
in search

We can be very lucky or unlucky

“I heard onst of a barque,” said Murphy.
“Becalmed, that couldn’t get a breath,
Till all the crowd was sick with scurvy
An’ the skipper drunk himself to death.”

Doldrums: One Of Murphy's Yarns
http://oldpoetry.com/opoem/56157 Cicely Fox Smith

Simple idea

Try multiple starting points, random seeds
for order of expanding neighbors
Interleave computation (or iterative
lengthening)
When does this work?

Randomization cont’d

Randomization works well if search times
are sometimes short but have heavy tail

RRTs

We will come back to randomness for
more planning algorithms later
For now, here’s a randomized way of
dividing up C-space that seems to work
quite well in high-dimensions
Rapidly-exploring Random Trees

RRTs

Put landmarks into C-space
Break up C-space into Voronoi regions
around landmarks
Put landmarks densely only if high
resolution is needed to find a path
Will not guarantee optimal path

RRT assumptions

RANDOM_CONFIG
samples from some distribution on C-
space; can use to bias search

EXTEND(q, q’)
uses a local controller to head towards
q’ from q
stops before hitting obstacle

FIND_NEAREST(q, Q)

Path Planning with RRTs

BUILD_RRT (qinit) {
 T.init(qinit);
 for k = 1 to K do
 qrand = RANDOM_CONFIG();
 EXTEND(T, qrand)
}

EXTEND(T, qrand)

qnear

qne

w

qinit
qrand

[Kuffner & LaValle , ICRA’00]

RRT = Rapidly-Exploring Random Tree

RRT example

Pl
an

ar
 h

ol
on

om
ic

 ro
bo

t

RRT example

RRT for a car (3 dof)

RRTs explore coarse to fine

Tend to break up large Voronoi regions

Limiting distribution of vertices is
RANDOM_CONFIG

Key idea in proof: as RRT grows,
probability that qrand is reachable with
local controller (and so immediately
becomes a new vertex) approaches 1

In limit, we get a Voronoi cell decomposition

Planning with RRTs

Build RRT from start until we add a node
that can reach goal using local controller
(Unique) path: root → last node → goal

Optional: cross-link tree by testing local
controller, search within tree using A*
Optional: grow forward and backward

What you should know

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Adaptive cells (quadtree, parti-game)

Potential fields
RRTs

