

Admin

RIS b B L Tt BT Pl s A Ty SN TR I v s e s B ey " el kR

o WEH 5409, Sep 18, 4:30-5:30pm: matlab
tutorial

o Please send your email address to TA
Michael Benisch (mbenisch at cs), who is
compiling a class email list

o Please check the website regularly for
readings (for Lec. 1-2, Ch. 1-4 of RN)

PRI b B 2, Tt g WA Pl s T A

Last eplsode
on Grad Al

Topics covered

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o What is AI? (Be able to discuss an
example or two)

o Types of uncertainty & corresponding
approaches

o How to set up state space graph for
problems like the robotic grad student or

path planning

Topics covered

- F : s = = " e - - = e e
OISO b A 4 Gt g2 IOt A s S R e MV st e b - VORI Bl s T

o Generic search algorithm & data
structures

o Search methods: be able to simulate
o BFS, DFS, DFID
o Heuristic search

o A*: define admissibility; show
optimality, efficiency

o What are advantages of each?

A* Planning on Big Grids

WWWi.{% e L 13 14 S O SR e Py ma‘m‘ﬁf““ PR

ureew

Credit: Kuffner

s

.
TR

&l
] H -
T 7]
Il

E E3E
T T
2 &

i

==

+ [o8

ST TREECFEY Tl

7]
I

I I

I =

B

B
L Consol - Kessle 3 Eimap Flarwer
& enass@eianm

(=@l

K
E3
I
T
=
TH
H
]
H
W
e

02:15 am
& B 1110604

E Projectideas

i

NG

R

PRI b B 2, Tt g WA Pl s T A

Spatlal
Planning

Wouldn’t 1t be nice...

PRSI b B 2, Tt B ol DA 4 Pty S OV TR v e Nt s B e e e

o ...If we could break things up based more
on the real geometry of the world?

o Robot Motion Planning by Jean-Claude Latombe

Fip. 11. Swucture of the 10-DOF manipulatar.

! E How Mo lloFs

Fixed Fl-&ﬂ. Clyivg

: How Man o\qfs ¢
m&i:%w$u hoth2mbl
How many DoFs :

Twe cmﬁ‘ju.u.ka\ 4, has ona real valuad
ertry per DOF.

2AO0J\] MAAPUY 1P

Kinematic planning

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o For any configuration q, can test whether
it intersects obstacles

o Set of legal configs is “configuration
space” C (a subset of Ndofs)

o Path is a continuous function q from [0,1]
into C with q(0) = qs and q(1) = qg

More C-space examples

mmwmu,fm i 13- 113 DO SR TS i Tt

Another C-space example

RIS b B L Tt BT Pl s A Ty SN TR I v s e s B ey - P e AR

R
N éf" ;"“llm“mm[““hh "lllﬂa m""" ‘H]I
o[F ’\A/J N) "“l ‘I||| 1||| l““ll 1‘,

image: J Kuffner

Topology of C- space

ORISR e 4, Tt ST Pt Tt T 4 K Tt 'OV BTS2 iy R R TR PRCAPP TIPS

o Topology of C-space can be something
other than the familiar Euclidean world

o E.g. set of angles = unit circle = SO(2)
o Nnot [0, ZTE) /

o Ball & socket joint (3d angle) C unit
sphere = SO(3)

Shortest path

" o : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o Suppose a polygonal C-space

o Shortest path in C-space is a sequence of
line segments

o Each segment’s ends are either start or
goal or one of the vertices in C-space

o In 3-d or higher, might lie on edge, face,
hyperface, ...

Complex1ty

mmmﬁ!mm A Pty = " by :!_ "o ¥ Sl

- vy
Rdaa 2 0

o Naive algorithm is O(n?) in planar C-
space (grows fast with d!)

o For algorithms that run faster, O(n?) and
O(k + n log n), see [Latombe, pg 157]

o k = number of edges that wind up in
visibility graph

o Once we have graph, search it!

Discussion of visibility graph

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Good: finds shortest path

o Bad: complex C-space yields long
runtime, even if problem is easy

o get my 23-dof manipulator to move
Imm when nearest obstacle is Im

o Bad: no margin for error

between them

Voronoi

- F : s = = " e - - = e e
OISO b A 4 Gt g2 IOt A s S R e MV st e b - VORI Bl s T

o Given a set of point obstacles

o Find all places that are equidistant from
two or more of them

o Result: network of line segments
o Called Voronoi graph

o Each line stays as far away as possible
from two obstacles while still going

Voronoi1 from polygonal C-space

m‘mwm'lfﬁﬁ I B IR eV st s A, =

Voronoi1 from polygonal C-space

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Set of points which are equidistant from 2
or more closest points on border of C-
space

o Polygonal C-space in 2d yields lines &
parabolas intersecting at points

o lines from 2 points

o parabolas from line & point

Vorono1l method for planning

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Compute Voronoi diagram of C-space

o Go straight from start to nearest point on
diagram

o Plan within diagram to get near goal
(guess which algorithm)

o Go straight to goal

Discussion of Voronoi

AR EKE b i L, Tt GRS Prrma AN T S A Pty S 9N B P CaL IR vs e WV st mes e N, Py Bletindi Tl

o Good: stays far away from obstacles
o Bad: assumes polygons

o Bad: assumes 2d, gets kind of hard in
higher dimensions (but see http.//
voronoi.sbp.ri.cmu.edu/~motion/)

Exact cell decompositions

o We can try to break C-space into a bunch
of convex polygons

-
-
7
-
| <
< L1

‘ --I
A EAE

Approximate cell decomposition

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o This decomposition is what we were using
for A* in examples from last class

o Works pretty well except:
o need high resolution near obstacles

o want low res away from obstacles

Parti-game paper

VISR b Mo 4, Tt GBS PrrmaSi DA S A Tty S OV BTSSR I s Lyt mes TR s 1% 0 1 e i AL B I TN

o Andrew Moore and Chris Atkeson. The
Parti-game Algorithm for Variable
Resolution Reinforcement Learning in
Multidimensional State-spaces

o http.://www.autonlab.org/autonweb/14699.html

Parti-game algorithm

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o Try actions from several points per cell
o Try to plan a path from start to goal

o On the way, pretend an opponent gets to
choose which outcome happens (out of all
that have been observed in this cell)

o If we can get to goal, we win

o Otherwise we can split a cell

Potential-based algorithms

- . : . = G " e - - = -
OISO b A 4 Gt g2 ST a A Tty S e B e s Y i e = BINCR ot i s S i s S ol

o Add a fictitious force that moves us away
from obstacles i

o Stronger when closer
o Add a force towards goal

o Local minima galore ...

o Or, expensive but cool ways to calculate
potentials that don’t have local minima

PRI b B 2, Tt g WA Pl s T A

Randomness
1n search

The GW YD YR CASTILE i the Dokfrarss, while sharks hang arund bév, swaitiig b nend affering of paiiey rlops

RRTs

e o e i i tanie PRSP =2 PRt T

o We will come back to randomness for
more planning algorithms later

o For now, here’s a randomized way of
dividing up C-space that seems to work
quite well in high-dimensions

o Rapidly-exploring Random Trees

RRT assumptions
o RANDOM_CONFIG

o samples from some distribution on C-
space, can use to bias search

o EXTEND(q, q’)

o uses a local controller to head towards
q from q
o Stops before hitting obstacle
o FIND_NEAREST(q, O)

Path Planning with RRTs

RRT = Rapidly-Exploring Random Tree

L e L Lot T P

[Kuffner & LaValle , ICRA’00]

BUILD_RRT (g, |
Tlnlt(qzm)’
fork= 1to K do

g,.,= RANDOM_ CONFIG();
EXTEND(Z, 4,,,)

RSP

RRTs explore coarse to fine

NI b o, Ty g WA = e Rt £ S 2 e, PP

o Tend to break up large Voronoi regions

o Limiting distribution of vertices is
RANDOM_CONFIG

o Key idea in proof: as RRT grows,
probability that grand is reachable with
local controller (and so immediately

becomes a new vertex) approaches 1

o In limit, we get a Voronoi cell decomposition

Plannmg with RRTs

PRI ISR b B 2, Tt WA Pl s A Py N ST I P e AT PR L S Pl e eSS

o Build RRT from start until we add a node
that can reach goal using local controller

o (Unique) path: root — last node — goal

o Optional: cross-link tree by testing local
controller, search within tree using A*

o Optional: grow forward and backward

\“\\\\\\\\\\\\\\\\ _ 5\\\\\\\\\\\\\\\\\\}\\&&\\\\
N ——

P~
;\\\\\\\\\\\\‘\\\\\‘
I \\\\\\\\\\\S&W

AR

N 3
\\\\5\\\\§\ AN
&\\%\\\\\\\\\\\

NN

NS
Vs

e
\\\\\\\\\\\\\\\\\R\\‘
AR NS

=

o
o

o

!
i

