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Admin

• help@cs was unable to retrieve Monday 
slides from dead hard drive

• I will type up my notes and put on web

• If anyone has questions not answered by 
notes, email me; if sufficient interest I can 
schedule a Q&A session outside of class



Last time, on 
Grad AI



FOL

• Quantifiers, variables, scoping

• Models of FOL expressions with quantifiers

• Unification and resolution in FOL



MGUs

• Someone asked on Mon whether the most 
general unifier of two first-order 
expressions is unique

• Yes: MGUs are unique up to renaming of 
variables



Planning

• Planning languages like STRIPS

• operators, preconditions, effects

• Linear planners

• forward and backward chaining

• Partial-order planning

• action orderings, open preconditions, 
guard intervals, plan refinement



Plan Graphs



Planning & model search
• For a long time, it was thought that model 

search (using a logical KB describing a 
planning domain) was a non-starter as a 
planning algorithm

• More recently, people have written fast 
planners that

• propositionalize the domain

• turn it into a CSP or SAT problem

• search for a model



Plan graph

• Tool for making good CSPs: plan graph

• Encodes a subset of the constraints that 
plans must satisfy

• Remaining constraints are handled during 
search (by rejecting solutions that violate 
them)



Example

• Start state: have(cake)

• Goal: have(cake) ^ eaten(cake)

• Operators: bake, eat



Operators

• Bake

• pre: -have(cake)

• post: have(cake)

• Eat

• pre: have(cake)

• post: -have(cake), eaten(cake)



Plan graph

• Alternating levels: states and actions

• First level: initial state

have

-eaten



Plan graph

• First action level: all applicable actions

• Linked to their preconditions

have

-eaten

eat



Plan graph

• Second state level: add effects of actions to 
get literals that could hold at step 2

have

-eaten

eat

have

-eaten
eaten

-have



Plan graph

• Also add maintenance actions to 
represent effect of doing nothing

have

-eaten

eat

have

-eaten
eaten

-have



Plan graph

• Extend another pair of levels: now bake is a 
possible action

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake



Plan graph

• Can extend as far right as we want

• Plan = subset of the actions at each action 
level

• Ordering unspecified within a level



Plan graph

• In addition to the above links, add mutex 
links to indicate mutually exclusive actions 
or literals

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake



Plan graph

• Actions which assert contradictory literals 
are mutex

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake



Plan graph

• Actions are also mutex if one deletes a 
precondition of the other, or if their 
preconditions are mutex

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake



Plan graph

• Literals are mutex if they are contradictory

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake



Plan graph

• Or if there is no non-mutex set of actions 
that could achieve both

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake



Getting a plan

• Build the plan graph out to some length k

• Translate to a SAT formula

• Search for a satisfying assignment

• If found, read off the plan

• If not, increment k and try again

• There is a test to see if k is big enough



Translation to SAT

• One variable for each pair of literals in each 
state level

• One variable for each action in each action 
level

• Mutex constraints between actions or 
literals: add clause (x ⊕ y)

• Note: mutexes are redundant, but help 
anyway



Action constraints
• Each action can only be executed if all of its 

preconditions are present:

actt+1 ⇒ pre1t ^ pre2t ^ …

• If executed, action asserts its postconditions:

actt+1 ⇒ post1t+2 ^ post2t+2 ^ …

• In order to achieve a literal, we must 
execute an action that achieves it

• postt+2 ⇒ act1t+1 v act2t+1 v …



Initial & goal constraints

• Goals must be satisfied at end: 

goal1T ^ goal2T ^ …

• And initial state holds at beginning:

init11 ^ init21 ^ …



Optimization 
and Search



Search problem

• Typical search problem: CSP or SAT

• Description: variables, domains, constraints

• Find a solution that satisfies constraints

• Any satisfying solution is OK



Example search problem

• You run a factory that makes widgets and 
doodads

• Each widget takes 1 unit of wood and 2 units 
of steel to make

• Each doodad uses 1 unit of wood, 5 of steel

• You have 4 units of wood and 12 units of 
steel; design a feasible production schedule



Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12



Optimization

• Not all feasible solutions are equally good

• Within feasible set, want to optimize an 
objective function

• E.g., maximize profit:

• Each widget yields a profit of $1

• Each doodad nets $2



Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d
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Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

profit = 5



ILP
• This type of optimization problem is called 

an integer linear program

• Interesting related problems:

• 0-1 ILP: all variables in {0, 1}

• SAT: 0-1 ILP with all constraints of form

x + (1-y) + (1-z) ≥ 1

• LP: lift integer restriction, all variables in ℝ

• MILP: some variables in ℝ



Search

• Can still use search algorithms like DFID for 
optimization problems

• Just remember the best objective value seen 
so far

• This is a fine algorithm, but we can often do 
better!



Bounds



Smarter algorithms

• We can build smarter algorithms by 
remembering bounds on optimal value

• First idea: if we have a solution with profit 3, 
add a constraint “profit ≥ 3”

• If we then find a solution with profit 5, 
replace constraint with “profit ≥ 5”
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Factory example

Widgets →

D
oo
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Upper bounds

• Suppose we’re partway finished: we’ve 
examined a few nodes and found a solution 
of profit $4



Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d



Upper bounds

• We have a solution of profit $4

• How much profit would we lose by stopping 
now?

• Might we find a node with profit $73 if we 
kept looking?



Relaxation

• First idea: what if we solve an easier version 
of the problem?

• If we make feasible region bigger, objective 
value can only get better

• So, value of relaxed problem is an upper 
bound on value of original problem



LP relaxation

• Nice way of making feasible region bigger: 
drop integrality constraints

• Called the LP relaxation of our problem

• LPs are efficiently solvable (see below)



Factory LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

feasible



profit = 5 1/3

Factory LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

feasible



Complexity

• It is NP-complete to test whether it is 
possible to achieve objective ≥ k in an MILP

• But LPs can be solved in poly time

• rough estimate: solving an LP with n 
variables and m constraints ~50–200x as 
expensive as n x m linear regression

• The difference from ILP: convexity



Convex sets

• Convex set C: if a, b in C, then C contains 
line segment ab



Convex functions

• Convex function: epigraph is convex

• Epigraph = { (x, y) | y ≥ f(x) }

• Implies level sets convex: { x | f(x) ≤ k }



ILP feasible region

Widgets →

D
oo

da
ds

 →



Convex optimization

• LP: minimize a linear objective over a 
polyhedral convex region

• Convex program: minimize a convex 
objective over a convex region

• Both are poly-time solvable (LP exactly, CP 
to within ε, poly in 1/ε)



Algorithms

• For LP

• simplex: first algorithm, not always poly 
time

• ellipsoid: first poly-time algorithm, but 
often slower than simplex

• barrier methods: poly-time, fast in practice

• For CP: ellipsoid or barrier



More bounds



What if we’re lazy?

• It was a lot of work to get that bound: had 
to solve the LP and find its exact optimum

• Can we do less work—perhaps find a 
suboptimal solution to LP?

• Sadly, a non-optimal feasible point in the LP 
relaxation gives us no useful bound



A simple bound

• Recall: 

• constraint w + d ≤ 4 (limit on wood use)

• profit w + 2d

• Since w, d ≥ 0, 

• profit = w + 2d ≤ 2w + 2d

• And, doubling both sides of constraint,

• 2w + 2d ≤ 8



The same trick works 
twice

• Try other constraint (steel use)

• 2w + 5d ≤ 12

• 2*profit = 2w + 4d ≤ 2w + 5d ≤ 12

• So profit ≤ 6



In fact it works infinitely 
many times

• We could take any positive linear 
combination of our constraints (negative 
weights would flip sign)

a (w + d - 4) + b (2w + 5d - 12) ≤ 0

(a + 2b) w + (a + 5b) d ≤ 4a + 12b



Geometrically
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Bound

• (a + 2b) w + (a + 5b) d ≤ 4a + 12b

• profit = 1w + 2d

• So, if we pick (a + 2b) ≥ 1 and (a + 5b) ≥ 2, 
we will have profit ≤ 4a + 12b

• Equivalently, could have picked (a + 2b) ≥ 2 
and (a + 5b) ≥ 4 to bound 2*profit



The best bound

• If we search for the tightest bound, we have 
an LP:

minimize 4a + 12b such that

a + 2b ≥ 1

a + 5b ≥ 2

a, b ≥ 0

• Called the dual



a = b = 1/3

The dual LP

a →

b 
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound = 
4a + 12b

feasible



Best bound, as constraint

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12



Bound from dual

• a = b = 1/3 yields bound of 16/3 = 5 1/3

• Same as bound from original relaxation!

• No accident: dual of an LP always* has same 
objective value

• And dual of dual is original LP (called 
primal)



So why bother?

• Reason 1: any feasible solution to dual yields 
upper bound (compared with only optimal 
solution to primal)

• Reason 2: dual might be easier to work with



Primal/dual bounds
• Each feasible point of dual is an upper bound 

on objective

• Each feasible point of primal is a lower 
bound on objective

• for ILP, each integral feasible point

• So (answering earlier question) if we have a 
primal feasible point w/ value 4 and a dual 
feasible point w/ value 6, we know we’re at 
least 66% of best objective



More about 
the dual



Recipe

• If we have an LP in 
matrix form,

maximize c’x subject to

Ax ≤ b

x ≥ 0

• Its dual is a similar-looking 
LP:

minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤ 
corresponding component of b



Recipe with equalities

• If we have an LP with 
equalities,

maximize c’x s.t.

Ax ≤ b

Ex = f

x ≥ 0

• Its dual has some 
unrestricted variables:

minimize b’y + f ’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted



Interpreting the dual 
variables

• The primal variable variables in the factory 
LP were how many widgets and doodads to 
produce

• We interpreted dual variables as multipliers 
for primal constraints



Factory LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit = 
w + 2d

feasible



Dual variables as prices

• “Multiplier” interpretation doesn’t give much 
intuition

• It is often possible to interpret dual variables 
as prices for primal constraints

• Suppose we bought a quantity ε of wood, 
loosening constraint to (w + d ≤ 4 + ε)

• How much should we be willing to pay for 
this wood?



Dual variables as prices

• RHS in primal is objective in dual, so 
previous solution a = b = 1/3 is still dual 
feasible

• still optimal if ε is small enough

• Our bound changes to (4 + ε) a + 12 b, 
difference of ε * 1/3

• So we should pay up to $1/3 per unit of 
wood (in small quantities)



Dual as a game

• Compare the following LP and game

• maximize c’x subject to

Ax ≤ b

x ≥ 0

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• In game, each player picks a nonneg vector, 
and Y pays X the amount [c’x + y’(b - Ax)]



Dual as a game

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• Suppose (b - Ax) has -ve component (say ith)

• Then Y will increase yi arbitrarily, making 
total payoff very -ve

• X doesn’t like this

• So X will obey constraint (b - Ax ≥ 0)



Dual as a game

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• If X obeys constraint (b - Ax ≥ 0), what 
should Y do?

• If ith component +ve, yi should be 0

• If ith component is 0, yi is indifferent

• Complementarity: y is 0 where b - Ax is +ve

• Last term cancels, and X will maximize c’x



Dual as a game

• maxx≥0 miny≥0 (c’ - y’A)x + y’b

• Suppose (c - A’y) has +ve ith component

• Then X will increase xi arbitrarily, making 
total payoff very +ve

• Y doesn’t like this

• So Y will obey constraint (c - A’y ≤ 0)



Dual as a game

• maxx≥0 miny≥0 (c’ - y’A)x + y’b

• If Y obeys constraint (c - A’y ≤ 0), what 
should X do?

• Complementarity again: xi should be 0 if ith 
component of (c - A’y) is nonzero

• First term cancels, and Y will minimize y’b



Dual as a game

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• If X obeys constraint (b - Ax ≥ 0), what 
should Y do?

• If ith component +ve, yi should be 0

• If ith component is 0, yi is indifferent

• Complementarity: y is 0 where b - Ax is +ve

• Last term cancels, and X will maximize c’x



Yet another way to look 
at the dual

• Geometric duality:

• points are dual to lines or halfspaces

• sets of points are dual to sets of halfspaces 
= convex polygons

• a set of points and its convex hull have 
same dual

• http://www.cs.cmu.edu/~ggordon/SVMs/svm-applet.html



Geometric duality

• In 3d, point’s dual is plane; set of points 
dualizes to polyhedron

• Escher example: cube’s dual is octahedron

Geometric Duality

The idea of duality for cones is almost the same as the standard idea of 

geometric duality. A pair of dual cones represents a pair of dual 

polytopes, with each vertex of one polytope corresponding to a face of the 

other and vice versa.

Why almost: usually the geometric dual is thought of as insensitive to 

location and scaling, while the size and location of the polytope 

represented by the dual cone depend on the size of the original polytope 

and its position relative to the origin. Also, strictly speaking, each cone 

must be the negative of the dual of the other, since by convention we 

intersect with the plane t ! 1 rather than t ! "1.
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