15-780: Grad Al Lecture 6: Optimization

Geoff Gordon

Admin

- help@cs was unable to retrieve Monday slides from dead hard drive
- I will type up my notes and put on web
- If anyone has questions not answered by notes, email me; if sufficient interest I can schedule a Q&A session outside of class

Last time, on Grad Al

FOL

- Quantifiers, variables, scoping
- Models of FOL expressions with quantifiers
- Unification and resolution in FOL

MGUs

- Someone asked on Mon whether the most general unifier of two first-order expressions is unique
- Yes: MGUs are unique up to renaming of variables

Planning

- Planning languages like STRIPS
 - operators, preconditions, effects
- Linear planners
 - forward and backward chaining
- Partial-order planning
 - action orderings, open preconditions, guard intervals, plan refinement

Plan Graphs

Planning & model search

- For a long time, it was thought that model search (using a logical KB describing a planning domain) was a non-starter as a planning algorithm
- More recently, people have written fast planners that
 - propositionalize the domain
 - turn it into a CSP or SAT problem
 - search for a model

- Tool for making good CSPs: plan graph
- Encodes a subset of the constraints that plans must satisfy
- Remaining constraints are handled during search (by rejecting solutions that violate them)

Example

- Start state: have(cake)
- Goal: have(cake) ^ eaten(cake)
- Operators: bake, eat

Operators

- Bake
 - pre: -have(cake)
 - post: have(cake)
- Eat
 - pre: have(cake)
 - post: -have(cake), eaten(cake)

have

-eaten

- Alternating levels: states and actions
- First level: initial state

have

-eaten

- First action level: all applicable actions
- Linked to their preconditions

 Second state level: add effects of actions to get literals that could hold at step 2

 Also add maintenance actions to represent effect of doing nothing

Extend another pair of levels: now bake is a possible action

- Can extend as far right as we want
- Plan = subset of the actions at each action level
- Ordering unspecified within a level

• In addition to the above links, add **mutex** links to indicate mutually exclusive actions or literals

Actions which assert contradictory literals are mutex

 Actions are also mutex if one deletes a precondition of the other, or if their preconditions are mutex

• Literals are mutex if they are contradictory

 Or if there is no non-mutex set of actions that could achieve both

Getting a plan

- Build the plan graph out to some length k
- Translate to a SAT formula
- Search for a satisfying assignment
- If found, read off the plan
- If not, increment k and try again
- There is a test to see if k is big enough

Translation to SAT

- One variable for each pair of literals in each state level
- One variable for each action in each action level
- Note: mutexes are redundant, but help anyway

Action constraints

 Each action can only be executed if all of its preconditions are present:

$$act_{t+1} \Rightarrow prel_t \land prel_t \land ...$$

• If executed, action asserts its postconditions:

$$act_{t+1} \Rightarrow postl_{t+2} \land post2_{t+2} \land \dots$$

- In order to achieve a literal, we must execute an action that achieves it
 - $post_{t+2} \Rightarrow actl_{t+1} v act2_{t+1} v ...$

Initial & goal constraints

• Goals must be satisfied at end:

And initial state holds at beginning:

Optimization and Search

Search problem

- Typical search problem: CSP or SAT
- Description: variables, domains, constraints
- Find a solution that satisfies constraints
- Any satisfying solution is OK

Example search problem

- You run a factory that makes widgets and doodads
- Each widget takes I unit of wood and 2 units of steel to make
- Each doodad uses I unit of wood, 5 of steel
- You have 4 units of wood and 12 units of steel; design a feasible production schedule

Optimization

- Not all feasible solutions are equally good
- Within feasible set, want to optimize an objective function
- E.g., maximize profit:
 - Each widget yields a profit of \$1
 - Each doodad nets \$2

ILP

- This type of optimization problem is called an integer linear program
- Interesting related problems:
 - 0-1 ILP: all variables in {0, 1}
 - SAT: 0-1 ILP with all constraints of form

$$x + (1-y) + (1-z) \ge 1$$

- LP: lift integer restriction, all variables in R
- MILP: some variables in R

Search

- Can still use search algorithms like DFID for optimization problems
- Just remember the best objective value seen so far
- This is a fine algorithm, but we can often do better!

Bounds

Smarter algorithms

- We can build smarter algorithms by remembering bounds on optimal value
- First idea: if we have a solution with profit 3, add a constraint "profit ≥ 3"
- If we then find a solution with profit 5, replace constraint with "profit ≥ 5"

Upper bounds

 Suppose we're partway finished: we've examined a few nodes and found a solution of profit \$4

Upper bounds

- We have a solution of profit \$4
- How much profit would we lose by stopping now?
- Might we find a node with profit \$73 if we kept looking?

Relaxation

- First idea: what if we solve an easier version of the problem?
- If we make feasible region bigger, objective value can only get better
- So, value of relaxed problem is an upper bound on value of original problem

LP relaxation

- Nice way of making feasible region bigger: drop integrality constraints
- Called the LP relaxation of our problem
- LPs are efficiently solvable (see below)

Factory LP

Factory LP

Complexity

- It is NP-complete to test whether it is possible to achieve objective ≥ k in an MILP
- But LPs can be solved in poly time
 - rough estimate: solving an LP with n variables and m constraints ~50–200x as expensive as n x m linear regression
- The difference from ILP: convexity

Convex sets

 Convex set C: if a, b in C, then C contains line segment ab

Convex functions

- Convex function: **epigraph** is convex
- Epigraph = $\{(x, y) \mid y \ge f(x)\}$
- Implies level sets convex: { x | f(x) ≤ k }

ILP feasible region

Convex optimization

- LP: minimize a linear objective over a polyhedral convex region
- Convex program: minimize a convex objective over a convex region
- Both are poly-time solvable (LP exactly, CP to within ϵ , poly in $1/\epsilon$)

Algorithms

- For LP
 - simplex: first algorithm, not always poly time
 - ellipsoid: first poly-time algorithm, but often slower than simplex
 - barrier methods: poly-time, fast in practice
- For CP: ellipsoid or barrier

More bounds

What if we're lazy?

- It was a lot of work to get that bound: had to solve the LP and find its exact optimum
- Can we do less work—perhaps find a suboptimal solution to LP?
- Sadly, a non-optimal feasible point in the LP relaxation gives us no useful bound

A simple bound

- Recall:
 - constraint $w + d \le 4$ (limit on wood use)
 - profit w + 2d
- Since w, $d \ge 0$,
 - profit = $w + 2d \le 2w + 2d$
- And, doubling both sides of constraint,
 - $2w + 2d \leq 8$

The same trick works twice

- Try other constraint (steel use)
 - $2w + 5d \le 12$
- 2*profit = $2w + 4d \le 2w + 5d \le 12$
- So profit ≤ 6

In fact it works infinitely many times

 We could take any positive linear combination of our constraints (negative weights would flip sign)

$$a (w + d - 4) + b (2w + 5d - 12) \le 0$$

 $(a + 2b) w + (a + 5b) d \le 4a + 12b$

Geometrically

Geometrically

Geometrically

Bound

- $\bullet \ \ (a + 2b) \ w + (a + 5b) \ d \le 4a + 12b$
- profit = | I w + 2d
- So, if we pick $(a + 2b) \ge 1$ and $(a + 5b) \ge 2$, we will have profit $\le 4a + 12b$
- Equivalently, could have picked (a + 2b) \geq 2 and (a + 5b) \geq 4 to bound 2*profit

The best bound

• If we search for the tightest bound, we have an LP:

minimize 4a + 12b such that

$$a + 2b \ge I$$

$$a + 5b \ge 2$$

$$a, b \ge 0$$

• Called the dual

The dual LP

Best bound, as constraint

Bound from dual

- a = b = 1/3 yields bound of 16/3 = 51/3
- Same as bound from original relaxation!
- No accident: dual of an LP always* has same objective value
- And dual of dual is original LP (called primal)

So why bother?

- Reason I: any feasible solution to dual yields upper bound (compared with only optimal solution to primal)
- Reason 2: dual might be easier to work with

Primal/dual bounds

- Each feasible point of dual is an upper bound on objective
- Each feasible point of primal is a lower bound on objective
 - for ILP, each integral feasible point
- So (answering earlier question) if we have a primal feasible point w/ value 4 and a dual feasible point w/ value 6, we know we're at least 66% of best objective

More about the dual

Recipe

matrix form,

maximize c'x subject to

$$Ax \leq b$$

 If we have an LP in
 Its dual is a similar-looking LP:

minimize b'y subject to

 $Ax \le b$ means every component of Ax is \le corresponding component of b

Recipe with equalities

 If we have an LP with
 Its dual has some equalities,

maximize c'x s.t.

$$Ax \leq b$$

$$Ex = f$$

unrestricted variables:

minimize b'y + f'z s.t.

z unrestricted

Interpreting the dual variables

- The primal variable variables in the factory LP were how many widgets and doodads to produce
- We interpreted dual variables as multipliers for primal constraints

Factory LP

Dual variables as prices

- "Multiplier" interpretation doesn't give much intuition
- It is often possible to interpret dual variables as **prices** for primal constraints
- Suppose we bought a quantity ε of wood, loosening constraint to $(w + d \le 4 + \varepsilon)$
- How much should we be willing to pay for this wood?

Dual variables as prices

- RHS in primal is objective in dual, so previous solution a = b = 1/3 is still dual feasible
 - still optimal if ε is small enough
- Our bound changes to $(4 + \varepsilon)$ a + 12 b, difference of $\varepsilon * 1/3$
- So we should pay up to \$1/3 per unit of wood (in small quantities)

- Compare the following LP and game
- maximize c'x subject to

$$Ax \le b$$
$$x \ge 0$$

- $\max_{x\geq 0} \min_{y\geq 0} c'x + y'(b Ax)$
- In game, each player picks a nonneg vector, and Y pays X the amount [c'x + y'(b - Ax)]

- $\max_{x\geq 0} \min_{y\geq 0} c'x + y'(b Ax)$
- Suppose (b Ax) has -ve component (say ith)
- Then Y will increase y_i arbitrarily, making total payoff very -ve
- X doesn't like this
- So X will obey constraint (b $Ax \ge 0$)

- $\max_{x\geq 0} \min_{y\geq 0} c'x + y'(b Ax)$
- If X obeys constraint (b Ax ≥ 0), what should Y do?
- If ith component +ve, y_i should be 0
- If ith component is 0, yi is indifferent
- Complementarity: y is 0 where b Ax is +ve
- Last term cancels, and X will maximize c'x

- $\max_{x\geq 0} \min_{y\geq 0} (c' y'A)x + y'b$
- Suppose (c A'y) has +ve ith component
- Then X will increase x_i arbitrarily, making total payoff very +ve
- Y doesn't like this
- So Y will obey constraint (c A'y \leq 0)

- $\max_{x\geq 0} \min_{y\geq 0} (c' y'A)x + y'b$
- If Y obeys constraint (c A'y ≤ 0), what should X do?
- Complementarity again: x_i should be 0 if i^{th} component of (c A'y) is nonzero
- First term cancels, and Y will minimize y'b

- $\max_{x\geq 0} \min_{y\geq 0} c'x + y'(b Ax)$
- If X obeys constraint (b Ax ≥ 0), what should Y do?
- If ith component +ve, y_i should be 0
- If ith component is 0, yi is indifferent
- Complementarity: y is 0 where b Ax is +ve
- Last term cancels, and X will maximize c'x

Yet another way to look at the dual

- Geometric duality:
 - points are dual to lines or halfspaces
 - sets of points are dual to sets of halfspaces
 = convex polygons
 - a set of points and its convex hull have same dual
- http://www.cs.cmu.edu/~ggordon/SVMs/svm-applet.html

Geometric duality

- In 3d, point's dual is plane; set of points dualizes to polyhedron
- Escher example: cube's dual is octahedron