
15-780: Grad AI
Lecture 6: Optimization

Geoff Gordon

Admin

• help@cs was unable to retrieve Monday
slides from dead hard drive

• I will type up my notes and put on web

• If anyone has questions not answered by
notes, email me; if sufficient interest I can
schedule a Q&A session outside of class

Last time, on
Grad AI

FOL

• Quantifiers, variables, scoping

• Models of FOL expressions with quantifiers

• Unification and resolution in FOL

MGUs

• Someone asked on Mon whether the most
general unifier of two first-order
expressions is unique

• Yes: MGUs are unique up to renaming of
variables

Planning

• Planning languages like STRIPS

• operators, preconditions, effects

• Linear planners

• forward and backward chaining

• Partial-order planning

• action orderings, open preconditions,
guard intervals, plan refinement

Plan Graphs

Planning & model search
• For a long time, it was thought that model

search (using a logical KB describing a
planning domain) was a non-starter as a
planning algorithm

• More recently, people have written fast
planners that

• propositionalize the domain

• turn it into a CSP or SAT problem

• search for a model

Plan graph

• Tool for making good CSPs: plan graph

• Encodes a subset of the constraints that
plans must satisfy

• Remaining constraints are handled during
search (by rejecting solutions that violate
them)

Example

• Start state: have(cake)

• Goal: have(cake) ^ eaten(cake)

• Operators: bake, eat

Operators

• Bake

• pre: -have(cake)

• post: have(cake)

• Eat

• pre: have(cake)

• post: -have(cake), eaten(cake)

Plan graph

• Alternating levels: states and actions

• First level: initial state

have

-eaten

Plan graph

• First action level: all applicable actions

• Linked to their preconditions

have

-eaten

eat

Plan graph

• Second state level: add effects of actions to
get literals that could hold at step 2

have

-eaten

eat

have

-eaten
eaten

-have

Plan graph

• Also add maintenance actions to
represent effect of doing nothing

have

-eaten

eat

have

-eaten
eaten

-have

Plan graph

• Extend another pair of levels: now bake is a
possible action

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake

Plan graph

• Can extend as far right as we want

• Plan = subset of the actions at each action
level

• Ordering unspecified within a level

Plan graph

• In addition to the above links, add mutex
links to indicate mutually exclusive actions
or literals

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake

Plan graph

• Actions which assert contradictory literals
are mutex

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake

Plan graph

• Actions are also mutex if one deletes a
precondition of the other, or if their
preconditions are mutex

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake

Plan graph

• Literals are mutex if they are contradictory

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake

Plan graph

• Or if there is no non-mutex set of actions
that could achieve both

have

-eaten

eat

have

-eaten
eaten

-have
eat

have

-eaten
eaten

-have

bake

Getting a plan

• Build the plan graph out to some length k

• Translate to a SAT formula

• Search for a satisfying assignment

• If found, read off the plan

• If not, increment k and try again

• There is a test to see if k is big enough

Translation to SAT

• One variable for each pair of literals in each
state level

• One variable for each action in each action
level

• Mutex constraints between actions or
literals: add clause (x ⊕ y)

• Note: mutexes are redundant, but help
anyway

Action constraints
• Each action can only be executed if all of its

preconditions are present:

actt+1 ⇒ pre1t ^ pre2t ^ …

• If executed, action asserts its postconditions:

actt+1 ⇒ post1t+2 ^ post2t+2 ^ …

• In order to achieve a literal, we must
execute an action that achieves it

• postt+2 ⇒ act1t+1 v act2t+1 v …

Initial & goal constraints

• Goals must be satisfied at end:

goal1T ^ goal2T ^ …

• And initial state holds at beginning:

init11 ^ init21 ^ …

Optimization
and Search

Search problem

• Typical search problem: CSP or SAT

• Description: variables, domains, constraints

• Find a solution that satisfies constraints

• Any satisfying solution is OK

Example search problem

• You run a factory that makes widgets and
doodads

• Each widget takes 1 unit of wood and 2 units
of steel to make

• Each doodad uses 1 unit of wood, 5 of steel

• You have 4 units of wood and 12 units of
steel; design a feasible production schedule

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

Optimization

• Not all feasible solutions are equally good

• Within feasible set, want to optimize an
objective function

• E.g., maximize profit:

• Each widget yields a profit of $1

• Each doodad nets $2

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

profit = 5

ILP
• This type of optimization problem is called

an integer linear program

• Interesting related problems:

• 0-1 ILP: all variables in {0, 1}

• SAT: 0-1 ILP with all constraints of form

x + (1-y) + (1-z) ≥ 1

• LP: lift integer restriction, all variables in ℝ

• MILP: some variables in ℝ

Search

• Can still use search algorithms like DFID for
optimization problems

• Just remember the best objective value seen
so far

• This is a fine algorithm, but we can often do
better!

Bounds

Smarter algorithms

• We can build smarter algorithms by
remembering bounds on optimal value

• First idea: if we have a solution with profit 3,
add a constraint “profit ≥ 3”

• If we then find a solution with profit 5,
replace constraint with “profit ≥ 5”

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Upper bounds

• Suppose we’re partway finished: we’ve
examined a few nodes and found a solution
of profit $4

Factory example

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Upper bounds

• We have a solution of profit $4

• How much profit would we lose by stopping
now?

• Might we find a node with profit $73 if we
kept looking?

Relaxation

• First idea: what if we solve an easier version
of the problem?

• If we make feasible region bigger, objective
value can only get better

• So, value of relaxed problem is an upper
bound on value of original problem

LP relaxation

• Nice way of making feasible region bigger:
drop integrality constraints

• Called the LP relaxation of our problem

• LPs are efficiently solvable (see below)

Factory LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

feasible

profit = 5 1/3

Factory LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

feasible

Complexity

• It is NP-complete to test whether it is
possible to achieve objective ≥ k in an MILP

• But LPs can be solved in poly time

• rough estimate: solving an LP with n
variables and m constraints ~50–200x as
expensive as n x m linear regression

• The difference from ILP: convexity

Convex sets

• Convex set C: if a, b in C, then C contains
line segment ab

Convex functions

• Convex function: epigraph is convex

• Epigraph = { (x, y) | y ≥ f(x) }

• Implies level sets convex: { x | f(x) ≤ k }

ILP feasible region

Widgets →

D
oo

da
ds

 →

Convex optimization

• LP: minimize a linear objective over a
polyhedral convex region

• Convex program: minimize a convex
objective over a convex region

• Both are poly-time solvable (LP exactly, CP
to within ε, poly in 1/ε)

Algorithms

• For LP

• simplex: first algorithm, not always poly
time

• ellipsoid: first poly-time algorithm, but
often slower than simplex

• barrier methods: poly-time, fast in practice

• For CP: ellipsoid or barrier

More bounds

What if we’re lazy?

• It was a lot of work to get that bound: had
to solve the LP and find its exact optimum

• Can we do less work—perhaps find a
suboptimal solution to LP?

• Sadly, a non-optimal feasible point in the LP
relaxation gives us no useful bound

A simple bound

• Recall:

• constraint w + d ≤ 4 (limit on wood use)

• profit w + 2d

• Since w, d ≥ 0,

• profit = w + 2d ≤ 2w + 2d

• And, doubling both sides of constraint,

• 2w + 2d ≤ 8

The same trick works
twice

• Try other constraint (steel use)

• 2w + 5d ≤ 12

• 2*profit = 2w + 4d ≤ 2w + 5d ≤ 12

• So profit ≤ 6

In fact it works infinitely
many times

• We could take any positive linear
combination of our constraints (negative
weights would flip sign)

a (w + d - 4) + b (2w + 5d - 12) ≤ 0

(a + 2b) w + (a + 5b) d ≤ 4a + 12b

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Geometrically

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

Bound

• (a + 2b) w + (a + 5b) d ≤ 4a + 12b

• profit = 1w + 2d

• So, if we pick (a + 2b) ≥ 1 and (a + 5b) ≥ 2,
we will have profit ≤ 4a + 12b

• Equivalently, could have picked (a + 2b) ≥ 2
and (a + 5b) ≥ 4 to bound 2*profit

The best bound

• If we search for the tightest bound, we have
an LP:

minimize 4a + 12b such that

a + 2b ≥ 1

a + 5b ≥ 2

a, b ≥ 0

• Called the dual

a = b = 1/3

The dual LP

a →

b
→

a + 2b ≥ 1

a + 5b ≥ 2

0.5

0.5

1 1.5

bound =
4a + 12b

feasible

Best bound, as constraint

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

Bound from dual

• a = b = 1/3 yields bound of 16/3 = 5 1/3

• Same as bound from original relaxation!

• No accident: dual of an LP always* has same
objective value

• And dual of dual is original LP (called
primal)

So why bother?

• Reason 1: any feasible solution to dual yields
upper bound (compared with only optimal
solution to primal)

• Reason 2: dual might be easier to work with

Primal/dual bounds
• Each feasible point of dual is an upper bound

on objective

• Each feasible point of primal is a lower
bound on objective

• for ILP, each integral feasible point

• So (answering earlier question) if we have a
primal feasible point w/ value 4 and a dual
feasible point w/ value 6, we know we’re at
least 66% of best objective

More about
the dual

Recipe

• If we have an LP in
matrix form,

maximize c’x subject to

Ax ≤ b

x ≥ 0

• Its dual is a similar-looking
LP:

minimize b’y subject to

A’y ≥ c

y ≥ 0

Ax ≤ b means every component of Ax is ≤
corresponding component of b

Recipe with equalities

• If we have an LP with
equalities,

maximize c’x s.t.

Ax ≤ b

Ex = f

x ≥ 0

• Its dual has some
unrestricted variables:

minimize b’y + f ’z s.t.

A’y + E’z ≥ c

y ≥ 0

z unrestricted

Interpreting the dual
variables

• The primal variable variables in the factory
LP were how many widgets and doodads to
produce

• We interpreted dual variables as multipliers
for primal constraints

Factory LP

Widgets →

D
oo

da
ds

 →
w + d ≤ 4

2w + 5d ≤ 12

profit =
w + 2d

feasible

Dual variables as prices

• “Multiplier” interpretation doesn’t give much
intuition

• It is often possible to interpret dual variables
as prices for primal constraints

• Suppose we bought a quantity ε of wood,
loosening constraint to (w + d ≤ 4 + ε)

• How much should we be willing to pay for
this wood?

Dual variables as prices

• RHS in primal is objective in dual, so
previous solution a = b = 1/3 is still dual
feasible

• still optimal if ε is small enough

• Our bound changes to (4 + ε) a + 12 b,
difference of ε * 1/3

• So we should pay up to $1/3 per unit of
wood (in small quantities)

Dual as a game

• Compare the following LP and game

• maximize c’x subject to

Ax ≤ b

x ≥ 0

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• In game, each player picks a nonneg vector,
and Y pays X the amount [c’x + y’(b - Ax)]

Dual as a game

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• Suppose (b - Ax) has -ve component (say ith)

• Then Y will increase yi arbitrarily, making
total payoff very -ve

• X doesn’t like this

• So X will obey constraint (b - Ax ≥ 0)

Dual as a game

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• If X obeys constraint (b - Ax ≥ 0), what
should Y do?

• If ith component +ve, yi should be 0

• If ith component is 0, yi is indifferent

• Complementarity: y is 0 where b - Ax is +ve

• Last term cancels, and X will maximize c’x

Dual as a game

• maxx≥0 miny≥0 (c’ - y’A)x + y’b

• Suppose (c - A’y) has +ve ith component

• Then X will increase xi arbitrarily, making
total payoff very +ve

• Y doesn’t like this

• So Y will obey constraint (c - A’y ≤ 0)

Dual as a game

• maxx≥0 miny≥0 (c’ - y’A)x + y’b

• If Y obeys constraint (c - A’y ≤ 0), what
should X do?

• Complementarity again: xi should be 0 if ith
component of (c - A’y) is nonzero

• First term cancels, and Y will minimize y’b

Dual as a game

• maxx≥0 miny≥0 c’x + y’(b - Ax)

• If X obeys constraint (b - Ax ≥ 0), what
should Y do?

• If ith component +ve, yi should be 0

• If ith component is 0, yi is indifferent

• Complementarity: y is 0 where b - Ax is +ve

• Last term cancels, and X will maximize c’x

Yet another way to look
at the dual

• Geometric duality:

• points are dual to lines or halfspaces

• sets of points are dual to sets of halfspaces
= convex polygons

• a set of points and its convex hull have
same dual

• http://www.cs.cmu.edu/~ggordon/SVMs/svm-applet.html

Geometric duality

• In 3d, point’s dual is plane; set of points
dualizes to polyhedron

• Escher example: cube’s dual is octahedron

Geometric Duality

The idea of duality for cones is almost the same as the standard idea of

geometric duality. A pair of dual cones represents a pair of dual

polytopes, with each vertex of one polytope corresponding to a face of the

other and vice versa.

Why almost: usually the geometric dual is thought of as insensitive to

location and scaling, while the size and location of the polytope

represented by the dual cone depend on the size of the original polytope

and its position relative to the origin. Also, strictly speaking, each cone

must be the negative of the dual of the other, since by convention we

intersect with the plane t ! 1 rather than t ! "1.

lp.nb 17

