
15-780: Graduate AI
Lecture 3. Logic, SAT, and CSPs

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu

Admin

HW1 out today!
On course website
Due Wed 10/4

Reminder: Matlab tutorial today
WeH 5409, 4:30PM

Last episode,
on Grad AI

Topics covered

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Adaptive cells (quadtree, parti-game)

Potential fields
RRTs

More on search

I defined an “admissible” heuristic as one
that underestimates cost-to-goal
Better definition: admissible heuristic is
optimistic about future
Covers rewards as well as costs
Map still must have absorbing goals and
no negative-cost (positive-reward) cycles

More on search

You might think from last lecture that
search = path planning
Other apps: logical problems (robotic
grad student, HW1, today’s lecture),
planning (coming up soon)

IDA*

Do a DFS of all nodes with f(node) < k
If no solution, increment k and try again
Just like DFID, except that instead of a
depth bound, bounds f = g + h

8/15 puzzle applet

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html

Project ideas

Poker

Poker

Have code which learns a provably near-
minimax RI Hold’Em strategy in 40 min
Code is easily parallelizable and works on
abstractions of larger games
Can we beat world’s best computer Texas
Hold’Em players?

More on Poker

Minimax strategy for heads-up poker =
solving linear program
1-card hands, 13-card deck: 52 vars,
instantaneous
RI Hold’Em: ~1,000,000 vars, 2 weeks /
30GB (exact sol) on CPLEX, 40 min /
1.5GB (approx sol) w/ our algorithm
TX Hold’Em: ??? (up to 1017 vars or so)

ScrabbleTM

Can buy a hand-tweaked, very good
computer Scrabble player for $30 or so
Can we learn to beat it?
Easy: enumerate legal moves
Hard: which should we take?

Learning models for control

Most of this course, we’ll assume we have
a good model of the world when we’re
trying to plan
Usually not true in practice—must learn it
Project: learn a model for an interesting
system, write a planner for learned model,
make planner work on original system

Learning models for control

R/C car

Learning models for control

Model airplane

Logic

Why logic?

Problem-solving: want to find solutions for
problems like 8-puzzle
Reasoning: intelligent agents need
knowledge about world to reach good
decisions, want them to figure out
consequences of their knowledge
Also, logical inference is a special case of
probabilistic inference (Part II)

Propositional logic

Constants & variables: T or F
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others:
⊕, ⇒, ⇔, …

Terminology: variable or constant with or
w/o negation = literal
Whole thing = formula or sentence

George Boole
1815–1864

Propositional logic

Precedence:
unary binds tighter than binary
∧ has higher precedence than ∨

parens: ¬(a∧b) vs. ¬a∧b

Quiz:
a∧¬b∨c

Truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F

A note on implication

(a ⇒ b) is logically equivalent
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will
have popcorn”: if no movie,
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T

Truth tables of all sizes

x ¬x

T F

T T

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Expressive variable names

Rather than names like a, b, x, y, we may
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string
with no internal structure

propositional logic doesn’t know about
John, just about variable happy(John)

Later we will assign semantics

What can we do with a sentence?

Assign values to variables and evaluate it
Ask whether it’s true for zero, some, or all
assignments to variables
Simplify it to get another, equivalent
formula (which might have side effect of
helping us test its value)

Models

An assignment to all variables is called a
model: e.g.

M = (a: T, b: T, c: F)
A sentence has a truth value in each model
Finding this truth value takes linear time
Ex: ((a ∧ ¬b) ∨ c) in M is ???

Definitions

A sentence is satisfiable if it is True in
some model
If not satisfiable, it is a contradiction
A sentence is valid if it is True in every
model (a valid sentence is a tautology)
A is a contradiction ⇔ ¬A is valid

SAT

Important search problem: SAT

SAT is the problem of determining whether
a given propositional logic sentence is
satisfiable
SAT is a search problem: search nodes are
(full or partial) models, neighbors differ in
assignment for a single variable

Why is SAT important?

Any ordinary* search problem reduces* to
SAT
So a good SAT solver is a good AI
building block

Ordinary search problem

OS problem = search graph + start node
+ solution test function

search graph = next-neighbor function
problem: decide whether a solution
node is reachable from start

Limit: efficient (poly-time) functions
Limit: polynomial depth, branching factor
(exponentially many vertices)

Example (ordinary) search
problem

3-coloring: can we color a map using only
3 colors in a way that keeps neighboring
regions from being the same color?

Reduction

Loosely, “problem A reduces to problem
B” means that if we can solve B then we
can solve A
More formally, A, B are decision problems
(instances ↦ truth values)

∃ a poly-time function f so that: given an
instance a of A, f(a) is an instance of B,
and A(a) = B(f(a))

Example reduction

=

⇒

Search and reduction

Ordinary search problems reduce to SAT
and (usually) vice versa
Equivalently, SAT is as hard (in theory at
least) as (most) other search problems
Proven by S. A. Cook in 1971

showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

Cost of reduction

Complexity theorists often ignore little
things like constant factors (or even
polynomial factors!)
So, is it a good idea to reduce your search
problem to SAT?
Answer: sometimes…

Cost of reduction

SAT is well studied ⇒ fast solvers
So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

e.g., 3-coloring
another example later (SATplan)

Other times, cost of reduction is too high
usu. because instance gets bigger
will also see example later (MILP)

Working with
formulas

Simplifying formulas

Searching for a model might get a lot
easier if we simplify the formula first
Best case: could prove a sentence valid or
contradictory without testing any models
by simplifying until we get just T/F
Catch: in general, about as hard as SAT

[A ∈ SAT] = ¬[is (¬A) valid]

Equivalence

Two sentences are equivalent, A ≡ B, if
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, commutative
Simplifying = searching for a simpler*,
equivalent formula

Simplification as search

Search node = formula
Neighborhood = equivalence rules
Simplify formula by finding a sequence

A ≡ B ≡ C ≡ … ≡ Z

where Z is “simple”
Equivalently, a path in search graph from
A to goal node

Example

“simple” = “literally True or False”
Prove a formula valid or contradictory by
showing a sequence

A ≡ B ≡ C ≡ … ≡ True

or
A ≡ B ≡ C ≡ … ≡ False

Simplification as search

Contrast w/ SAT search
search node = partial model

Or hybrid
search node = partial model + formula

Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas

210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

More rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β are arbitrary formulas

Example

Normal
Forms

CNF

To make their lives easier, programs often
require their inputs in conjunctive normal
form (CNF)
CNF = conjunction of disjunctions of
literals
Each disjunct called a clause

CNF cont’d

Often used as a form for storage of
knowledge databases
Can add new clauses as we find them out
Formula implies each individual clause

Another normal form: DNF

DNF = disjunctive normal form =
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t
just add new conjuncts w/o changing
meaning of KB
Example:

(rains ∨ ¬pours) ∧ fishing
≡

(rains ∧ fishing) ∨ (¬pours ∧ fishing)

Transforming to normal form

Naive algorithm:
replace all connectives with ∧∨¬

move all negations inward using De
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for
DNF (∨ over ∧ for CNF)

Example

Put the following formula in CNF
Start to try DNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)

Discussion

Problem with naive algorithm: it’s
exponential! (Both space and time, as
well as size of result.)
Each use of distributivity can almost
double the size of a subformula

A smarter transformation

Can we avoid exponential blowup in
CNF?
Yes, if we’re willing to introduce new
variables
D. Plaisted and S. Greenbaum. A
structure-preserving clause form
translation. Journal of Symbolic
Computation, 2:293—304, 1986.

Inference
rules

Inference rules

De Morgan’s laws are nice, but not really
enough for all the proofs we need
Need a way to generate additional
consequences of our formula

Modus ponens

Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal
Quantifier-free version:
man(Socrates) ∧

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d) a b c

Inference example

When it rains, it pours
It’s never the case that it’s pouring
and we’re not rusted
When we rust, we break
It’s raining (rains ⇒ pours) ∧

¬(pours ∧ ¬rusted) ∧
(rusted ⇒ broken) ∧

rains

Are we broken?

(rains ⇒ pours) ∧
¬(pours ∧ ¬rusted) ∧
(rusted ⇒ broken) ∧

rains

Getting organized

Can we organize our search for a proof
better?
Mechanical system for deciding which
transformations to apply

Theorem
provers

Typical theorem prover

Knowledge Base (KB): a set of assertions
about the world

we “know” conjunction of all sentences
in KB

Query sentence B: want to know, B or ¬B?

Typical theorem prover

Apply inference rules to sets of sentences
(subsets of KB) to generate new assertions
Add (conjoin) new assertions to KB
Result is a larger KB which is (hopefully)
equivalent to original KB (more later)
Search control heuristics decide which
consequence to add next

When are we done?

One approach: done if we add B to our KB
More common: proof by contradiction
Add ¬B to KB, finish when we add False

When can we give up?

For propositional logic, there are finitely
many possible conclusions from a finite set
of assertions
So, if we run out of things to try, we can
conclude B does not follow from KB

Backtracking

Never have to backtrack: inference rules
only add valid consequences to KB
But irrelevant assertions can pile up

might want to get rid of old conclusions
e.g., DFS for results whose proof adds
≤ k new assertions to KB
then increase k (DFID on proof size)

Inference rules

What inference rules should we use in an
automated theorem prover?
Requirement: if rule can take sentence S
and produce sentence A, want A to be true
whenever S is

S might be conjunction of several
elements of KB

This is called entailment

Entailment

Sentence A entails sentence B, A ⊨ B, if B
is True in every model where A is

same as saying that (A ⇒ B) is valid

If (subset of KB ⊨ A) then KB ⊨ A
(monotonicity)
If KB ⊨ A then KB ≡ (KB ∧ A)

so it’s safe to add A to KB

Special cases

If A ⊨ False, then A must be a
contradiction
A ⊨ True for any A

Proof using entailment

Suppose we have an inference rule that
generates entailed sentences
Definition: proof tree

Leaves: sentences from KB
Children ⊨ parent

Root = consequence
If ∃ a proof tree with root False, KB is
contradictory

Proof tree

Proof tree

Proof tree

Proof tree

Entailment v. equivalence proofs

A proof with a proof tree and ⊨ is the
same as one with a sequence of ≡ relations

Proof tree on KB with nodes x, y, z, …
yields sequence

KB ≡ KB ∧ x ≡ KB ∧ x ∧ y ≡ …

if x, y, z, … topological sort of proof tree

Inference rules

Above proof tree used modus ponens
Already saw this rule above

d
(a ∧ b ∧ c ⇒ d) a b c

Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is
not wet, so it’s not raining

¬a
(a ⇒ b) ¬b

One more…

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Not as commonly known as modus
ponens / tollens

Resolution

Combines two sentences that contain a
literal and its negation
Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet ⊨
¬raining

Resolution

Simple proof by case analysis
Consider separately cases where we
assign c: True and c: False

(a ∨ b ∨ c) (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution

Case c: True
(a ∨ b ∨ T) ∧ (F ∨ d ∨ e)

= (T) ∧ (d ∨ e)

= (d ∨ e)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

Resolution

Case c: False
(a ∨ b ∨ F) ∧ (T ∨ d ∨ e)

= (a ∨ b) ∧ (T)

= (a ∨ b)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

Resolution

Since c must be True or False, conclude
(d ∨ e) ∨ (a ∨ b)

as desired

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)

