

PRI b B 2, Tt g WA Pl s T A

Last eplsode
on Grad Al

More on search

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o I defined an “admissible” heuristic as one
that underestimates cost-to-goal

o Better definition: admissible heuristic is
optimistic about future

o Covers rewards as well as costs

o Map still must have absorbing goals and
no negative-cost (positive-reward) cycles

-y S edeay : . > s el
5 . 8 L o 'ftn..a...-_#;-'l--: o e i - m“&ﬁ#ﬂwm
R e T ¥ G T ¥ A Ty 2 L
J N K Tt A

Project 1deas

Poker

e = b o i 4 Aty O e L Lk C PSRRI = s Ao e P S

Poker

e o e i i tanie PRSP =2 PRt T

o Have code which learns a provably near-
minimax RI Hold Em strategy in 40 min

o Code is easily parallelizable and works on
abstractions of larger games

o Can we beat world’s best computer Texas
Hold’Em players?

More on Poker

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

X ~ = 1"' E.:"-‘ .h.

o Minimax strategy for heads-up poker =
solving linear program

o [-card hands, 13-card deck: 52 vars,
instantaneous

o RI Hold’Em: ~1,000,000 vars, 2 weeks /
30GB (exact sol) on CPLEX, 40 min /
1.5GB (approx sol) w/ our algorithm

o TX Hold’Em: ??? (up to 107 vars or so)

Learning models for control

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Most of this course, we’ll assume we have
a good model of the world when we’re
trying to plan

o Usually not true in practice—must learn it

o Project: learn a model for an interesting
system, write a planner for learned model,
make planner work on original system

Learning models for control

o RIC car

Learning models for control

FEOISTEIRE b Ao 4, Tt S BIAT Prmai BEDAST S A Pt = I At s v VSl tmes e MR e el el

o Model arplane

Why 10g1<:‘7

PRI ISR b B 2, Tt WA Pl s A Py N ST I i PRSP = P e T

o Problem-solving: want to find solutions for
problems like 8-puzzle

o Reasoning: intelligent agents need
knowledge about world to reach good
decisions, want them to figure out
consequences of their knowledge

o Also, logical inference is a special case of
probabilistic inference (Part I1)

Propositional logic

-
#
"

cill Al e Laann s 18- 4. 5 TP BN 2 Sy £ . Pelag g oy

o Constants & variables: T or F

o Connectives: A, V, —

o Can get by w/ just NAND

o Sometimes also add others:

George Boole
= es O 1815-1864

o Terminology: variable or constant with or
w/o negation = literal

o Whole thing = formula or sentence

A note on implication

ReR N aioih - L T POy P e Tl
o (a=>b)is logically equivalent s bl o
to(—av b)
o If ais True, b must be True too | L 4
o If a False, no requirement on b Lo bl 4
o E.g., “ifl gotothemovielwill | FF | T T
h ”: . s :
ave popcorn’: if no movie | F T
may or may not have popcorn

Expressive variable names

TS e i AL G Prmmaa it Ot T8 A s """"“’"""""-f:'i-':.*?:"-""‘-";'"":-u-—r—"““"“"”"'“hugtq-m o et Tl

o Rather than names like a, b, x, y, we may
use names like “rains” or “happy(John)”

o For now, “happy(John)” is just a string
with no internal structure

o propositional logic doesn’t know about
John, just about variable happy(John)

o Later we will assign semantics

What can we do with a sentence?

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Assign values to variables and evaluate it

o Ask whether it’s true for zero, some, or all
assignments to variables

o Simplify it to get another, equivalent
formula (which might have side effect of
helping us test its value)

Definitions

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o A sentence is satisfiable if it is True in
some model

o If not satisfiable, it is a contradiction

o A sentence is valid if it is True in every
model (a valid sentence is a tautology)

o Ais a contradiction & —-A is valid

Important search problem SAT

m%mwmm 8 By " DA L iy o Mgl SNSERL TS PR S IO B e R S T

o SAT is the problem of determining whether
a given propositional logic sentence is
satisfiable

o SAT is a search problem: search nodes are
(full or partial) models, neighbors differ in
assignment for a single variable

Ordinary search problem

' # . ; L "44“;,'nmw_gm_’l‘f_gt..,-...-.M;-l--:_u___r,-rn-urs-.”"#;z_.“ o

o OS problem = search graph + start node
+ solution test function

o Search graph = next-neighbor function

o problem: decide whether a solution
node is reachable from start

o Limit: efficient (poly-time) functions

o Limit: polynomial depth, branching factor
(exponentially many vertices)

Example (ordinary) search
problem

m ' +J. z oA Pty i e Bt e Ky o S i Sy £ . el ar g A e = . i -y 2wt ”

- Pl o

o 3-coloring: can we color a map using only
3 colors in a way that keeps neighboring
regions from being the same color?

Reduction

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Loosely, “problem A reduces to problem

B” means that if we can solve B then we
can solve A

o More formally, A, B are decision problems
(instances ~ truth values)

o d a poly-time function f so that: given an
instance a of A, f(a) is an instance of B,

and A(a) = B(f(a))

Search and reduction

PRI b et o, Ty A = FaA e O '“-f:‘.tﬂ'_“_"-"‘""-“;'L':WT“““"”HM“;r-F“ P ile i Tl

o Ordinary search problems reduce to SAT
and (usually) vice versa

o Equivalently, SAT is as hard (in theory at
least) as (most) other search problems

o Proven by S. A. Cook in 1971

o showed how to simulate poly-size-
memory computer w/ (very complicated,
but still poly-size) SAT problem

Cost of reduction

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o SAT is well studied = fast solvers

o So, if there is an efficient reduction, ability
to use fast SAT solvers can be a win

o e.g., 3-coloring
o another example later (SATplan)

o Other times, cost of reduction is too high
o usu. because instance gets bigger

o will also see example later (MILP)

PRI b B 2, Tt g WA Pl s T A T R e

Workmg with
formulas

Slmphfymg formulas

T B o T e e i an Lanie /. P e el

o Searching for a model might get a lot
easier if we simplify the formula first

o Best case: could prove a sentence valid or
contradictory without testing any models
by simplifying until we get just T/F

o Catch: in general, about as hard as SAT
o [A€ SAT] = —=[is (—A) valid]

Equivalence

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o Two sentences are equivalent, A = B, if
they have same truth value in every model

o (rains = pours) = (—~rains v pours)
o reflexive, transitive, commutative

o Simplifying = searching for a simpler*,
equivalent formula

Simplification as search

b s op - T i K Tt g - n-'fﬁ-ﬁ"'““"""-f:‘-t*?f""""‘='”'"":--—r-'""“"""”"”‘-lugfq.-w P e vl

o Search node = formula
o Neighborhood = equivalence rules
o Simplify formula by finding a sequence
A=B=C=...=7
where Z is “simple”

o Equivalently, a path in search graph from
A to goal node

Transtormation rules

VIPONTTIRR b Mo 4, Tt g Prrma St DAY S A Tty S I BTSSR s e s Ll st B e Pl i Tl
(e ANB) = (BAa) commutativity of A
(aVB) = (BVa) commutativity of V
((aAB)Avy) = (aA(BA7y)) associativity of A
((aVB)Vy) = (aV(BV7y)) associativity of V
—(—-a) = a double-negation elimination
(N (BV)) ((aAB)V (aA)) distributivity of A over V

((aVPB)A(aVy)) distributivity of V over A

a, B, v are arbitrary formulas

(av (bac)) A (bnne

([avb) vV (avc) N\ ("‘5\/6)

-y S edeay : . > s el
5 . 8 L o 'ftn..a...-_#;-'l--: o e i - m“&ﬁ#ﬂwm
R e T ¥ G T ¥ A Ty 2 L
J N K Tt A

Normal
Forms

([av k) V (qvc) N\ ("5\/6]

Another normal form: DNF

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

o DNF = disjunctive normal form =
disjunction of conjunctions of literals

o Doesn’t compose the way CNF does: can’t
just add new conjuncts w/o changing
meaning of KB

o Example:

(rains v —pours) A fishing

(rains A fishing) v (=pours A fishing)

Transtorming to normal form

x B L 5 . & & ¥ - i 4 — -
DN T IR A3 4 St A P AT AR Ty "9 B S v WVl emest o fobw, e

o Naive algorithm:

o replace all connectives with AV -

o move all negations inward using De
Morgan’s laws and double-negation

o repeatedly distribute over A over Vv for
DNF (v over A for CNF)

A smarter transformation

NI b o, Ty g WA = e Rt £ S 2 e, PP

o Can we avoid exponential blowup in
CNF?

o Yes, if we're willing to introduce new
variables

o D. Plaisted and S. Greenbaum. A
structure-preserving clause form

translation. Journal of Symbolic
Computation, 2:293—304, 1986.

FIOIETERL b A &, Tt g A oot mr DA 04

Inference

rules

s el

Modus ponens

" v : - Pty i’ P B g ¥ ey g S i = s - h - AP
mmw.wm{lﬁ i B 1 S & e et S o .MHM“;E*“M.MQW

(aANbANc=d) a b c
d

o Probably most famous inference rule: all
men are mortal, Socrates is a man,
therefore Socrates is mortal

o Quantifier-free version:

man(Socrates) A

(man(Socrates) = mortal(Socrates))

FIOIETERL b A &, Tt g A oot mr DA 04

Theorem
provers

g e T i e e s W

Typical theorem prover

TS e i At gAY ol Ot ¥4 A Tty i I B '"""'-f:'i-':.ff?:"-""‘-";'"":-u-—r—"““"“"”"'“hugupw o et Tl

o Apply inference rules to sets of sentences
(subsets of KB) to generate new assertions

o Add (conjoin) new assertions to KB

o Result is a larger KB which is (hopefully)
equivalent to original KB (more later)

o Search control heuristics decide which
consequence to add next

Backtracking

- . : . = G " e - - = -
OISO b A 4 Gt g2 ST a A Tty S e B e s Y i e = BINCR ot i s S i s S ol

o Never have to backtrack: inference rules
only add valid consequences to KB

o But irrelevant assertions can pile up
o might want to get rid of old conclusions

o e.g., DFES for results whose proof adds
< k new assertions to KB

o then increase k (DFID on proof size)

Inference rules

- - : " = B ¥ o . : i -
IR b i Gt S T e Dbt R il NI S RORE AP er SR

o What inference rules should we use in an
automated theorem prover?

o Requirement: if rule can take sentence S
and produce sentence A, want A to be true
whenever S is

o S might be conjunction of several
elements of KB

o This is called entailment

Entailment

= * . s =t - ¥ i - . g "
AT EIRE . 2, Tt A oSt Ot T4 A Tty S O BT AL I vs o SVt mes e N Gt i

o Sentence A entails sentence B, A = B, if B
is True in every model where A is

o same as saying that (A = B) is valid

o If (subset of KB = A) then KB = A
(monotonicity)

o If KBE Athen KB=(KB A A)
o So it’s safe to add A to KB

o Children

Proof using entailment

NI b o, Ty g WA = e Rt £ S 2 e, PP

o Suppose we have an inference rule that
generates entailed sentences

o Definition: proof tree

o Leaves: sentences from KB

= parent

o Root = consequence

o If d a proof tree with root False, KB is
contradictory

: -

[RWAS =) o |= A{bU\/S
?Du&f‘s AN ON ; = ﬁ...:ﬂv”b

L Mf&:\\'lbwagf c:v‘«ZS"-’""""L

;-a;ﬁji? F o
DA A O \
| /f’\' T

I =

Entailment v. equivalence proofs

' - 2 : E "{H#-nmw_t:‘_tgt..,-...-:Mi-l--:w-fn-nrs-.”"ﬂ;z_.u 28

o A proof with a proof tree and & is the
same as one with a sequence of = relations

o Proof tree on KB with nodes x, y, z, ...
yields sequence

KB=KBAx=KBAXxAy=...

if x, 9, z, ... topological sort of proof tree

