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Admin

HW1 out today!
On course website
Due Wed 10/4

Reminder: Matlab tutorial today
WeH 5409, 4:30PM



Last episode, 
on Grad AI



Topics covered

C-space
Ways of splitting up C-space

Visibility graph
Voronoi
Exact, approximate cell decomposition
Adaptive cells (quadtree, parti-game)

Potential fields
RRTs



More on search

I defined an “admissible” heuristic as one 
that underestimates cost-to-goal
Better definition: admissible heuristic is 
optimistic about future
Covers rewards as well as costs
Map still must have absorbing goals and 
no negative-cost (positive-reward) cycles



More on search

You might think from last lecture that 
search = path planning
Other apps: logical problems (robotic 
grad student, HW1, today’s lecture), 
planning (coming up soon)



IDA*

Do a DFS of all nodes with f(node) < k
If no solution, increment k and try again
Just like DFID, except that instead of a 
depth bound, bounds f = g + h



8/15 puzzle applet

http://www.cs.ualberta.ca/~aixplore/search/IDA/Applet/SearchApplet.html



Project ideas



Poker



Poker

Have code which learns a provably near-
minimax RI Hold’Em strategy in 40 min
Code is easily parallelizable and works on 
abstractions of larger games
Can we beat world’s best computer Texas 
Hold’Em players?



More on Poker

Minimax strategy for heads-up poker = 
solving linear program
1-card hands, 13-card deck: 52 vars, 
instantaneous
RI Hold’Em: ~1,000,000 vars, 2 weeks / 
30GB (exact sol) on CPLEX, 40 min / 
1.5GB (approx sol) w/ our algorithm
TX Hold’Em: ??? (up to 1017 vars or so)



ScrabbleTM

Can buy a hand-tweaked, very good 
computer Scrabble player for $30 or so
Can we learn to beat it?
Easy: enumerate legal moves
Hard: which should we take?



Learning models for control

Most of this course, we’ll assume we have 
a good model of the world when we’re 
trying to plan
Usually not true in practice—must learn it
Project: learn a model for an interesting 
system, write a planner for learned model, 
make planner work on original system



Learning models for control

R/C car



Learning models for control

Model airplane



Logic



Why logic?

Problem-solving: want to find solutions for 
problems like 8-puzzle
Reasoning: intelligent agents need 
knowledge about world to reach good 
decisions, want them to figure out 
consequences of their knowledge
Also, logical inference is a special case of 
probabilistic inference (Part II)



Propositional logic

Constants & variables: T or F
Connectives: ∧, ∨, ¬

Can get by w/ just NAND
Sometimes also add others: 
⊕, ⇒, ⇔, …

Terminology: variable or constant with or 
w/o negation = literal
Whole thing = formula or sentence

George Boole
1815–1864



Propositional logic

Precedence:
unary binds tighter than binary
∧ has higher precedence than ∨

parens: ¬(a∧b) vs. ¬a∧b

Quiz:
a∧¬b∨c



Truth tables

x y x ∧ y

T T T

T F F

F T F

F F F

x y x ∨ y

T T T

T F T

F T T

F F F



A note on implication

(a ⇒ b) is logically equivalent 
to (¬a ∨ b)

If a is True, b must be True too

If a False, no requirement on b

E.g., “if I go to the movie I will 
have popcorn”: if no movie, 
may or may not have popcorn

a b a ⇒ b

T T T

T F F

F T T

F F T



Truth tables of all sizes

x ¬x

T F

T T

x y z (x ∨ y) ⇒ z
T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F



Expressive variable names

Rather than names like a, b, x, y, we may 
use names like “rains” or “happy(John)”
For now, “happy(John)” is just a string 
with no internal structure

propositional logic doesn’t know about 
John, just about variable happy(John)

Later we will assign semantics



What can we do with a sentence?

Assign values to variables and evaluate it
Ask whether it’s true for zero, some, or all 
assignments to variables
Simplify it to get another, equivalent 
formula (which might have side effect of 
helping us test its value)



Models

An assignment to all variables is called a 
model: e.g.

M = (a: T, b: T, c: F)
A sentence has a truth value in each model
Finding this truth value takes linear time
Ex: ((a ∧ ¬b) ∨ c) in M is ???



Definitions

A sentence is satisfiable if it is True in 
some model
If not satisfiable, it is a contradiction
A sentence is valid if it is True in every 
model (a valid sentence is a tautology)
A is a contradiction ⇔ ¬A is valid



SAT



Important search problem: SAT

SAT is the problem of determining whether 
a given propositional logic sentence is 
satisfiable
SAT is a search problem: search nodes are 
(full or partial) models, neighbors differ in 
assignment for a single variable



Why is SAT important?

Any ordinary* search problem reduces* to 
SAT
So a good SAT solver is a good AI 
building block



Ordinary search problem

OS problem = search graph + start node 
+ solution test function

search graph = next-neighbor function
problem: decide whether a solution 
node is reachable from start

Limit: efficient (poly-time) functions
Limit: polynomial depth, branching factor 
(exponentially many vertices)



Example (ordinary) search 
problem

3-coloring: can we color a map using only 
3 colors in a way that keeps neighboring 
regions from being the same color?



Reduction

Loosely, “problem A reduces to problem 
B” means that if we can solve B then we 
can solve A
More formally, A, B are decision problems 
(instances ↦ truth values)

∃ a poly-time function f so that: given an 
instance a of A, f(a) is an instance of B, 
and A(a) = B(f(a))



Example reduction

=

⇒



Search and reduction

Ordinary search problems reduce to SAT 
and (usually) vice versa
Equivalently, SAT is as hard (in theory at 
least) as (most) other search problems
Proven by S. A. Cook in 1971

showed how to simulate poly-size-
memory computer w/ (very complicated, 
but still poly-size) SAT problem



Cost of reduction

Complexity theorists often ignore little 
things like constant factors (or even 
polynomial factors!)
So, is it a good idea to reduce your search 
problem to SAT?
Answer: sometimes…



Cost of reduction

SAT is well studied ⇒ fast solvers
So, if there is an efficient reduction, ability 
to use fast SAT solvers can be a win

e.g., 3-coloring
another example later (SATplan)

Other times, cost of reduction is too high
usu. because instance gets bigger
will also see example later (MILP)



Working with 
formulas



Simplifying formulas

Searching for a model might get a lot 
easier if we simplify the formula first
Best case: could prove a sentence valid or 
contradictory without testing any models 
by simplifying until we get just T/F
Catch: in general, about as hard as SAT

[A ∈ SAT] = ¬[is (¬A) valid]



Equivalence

Two sentences are equivalent, A ≡ B, if 
they have same truth value in every model

(rains ⇒ pours) ≡ (¬rains ∨ pours)

reflexive, transitive, commutative
Simplifying = searching for a simpler*, 
equivalent formula



Simplification as search

Search node = formula
Neighborhood = equivalence rules
Simplify formula by finding a sequence

A ≡ B ≡ C ≡ … ≡ Z

where Z is “simple”
Equivalently, a path in search graph from 
A to goal node



Example

“simple” = “literally True or False”
Prove a formula valid or contradictory by 
showing a sequence

A ≡ B ≡ C ≡ … ≡ True

or 
A ≡ B ≡ C ≡ … ≡ False



Simplification as search

Contrast w/ SAT search
search node = partial model

Or hybrid
search node = partial model + formula



Transformation rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β, γ are arbitrary formulas
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Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as



More rules
210 Chapter 7. Logical Agents

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition

(α ⇒ β) ≡ (¬α ∨ β) implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β) de Morgan

¬(α ∨ β) ≡ (¬α ∧ ¬β) de Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every

known inference algorithm for propositional logic has a worst-case complexity that is expo-

nential in the size of the input. We do not expect to do better than this because propositional

entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-

tional concepts related to entailment. Like entailment, these concepts apply to all forms of

logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences α and β are logically equivalentLOGICAL
EQUIVALENCE

if they are true in the same set of models. We write this as α ⇔ β. For example, we
can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically equivalent; other

equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic

identities do in ordinary mathematics. An alternative definition of equivalence is as follows:

for any two sentences α and β,

α ≡ β if and only if α |= β and β |= α .

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in allVALIDITY

models. For example, the sentence P ∨ ¬P is valid. Valid sentences are also known as

tautologies—they are necessarily true and hence vacuous. Because the sentence True is trueTAUTOLOGY

in all models, every valid sentence is logically equivalent to True.
What good are valid sentences? From our definition of entailment, we can derive the

deduction theorem, which was known to the ancient Greeks:DEDUCTION
THEOREM

For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

α, β are arbitrary formulas



Example



Normal 
Forms



CNF

To make their lives easier, programs often 
require their inputs in conjunctive normal 
form (CNF)
CNF = conjunction of disjunctions of 
literals
Each disjunct called a clause



CNF cont’d

Often used as a form for storage of 
knowledge databases
Can add new clauses as we find them out
Formula implies each individual clause



Another normal form: DNF

DNF = disjunctive normal form = 
disjunction of conjunctions of literals
Doesn’t compose the way CNF does: can’t 
just add new conjuncts w/o changing 
meaning of KB
Example:

(rains ∨ ¬pours) ∧ fishing
≡

(rains ∧ fishing) ∨ (¬pours ∧ fishing)



Transforming to normal form

Naive algorithm:
replace all connectives with ∧∨¬

move all negations inward using De 
Morgan’s laws and double-negation
repeatedly distribute over ∧ over ∨ for 
DNF (∨ over ∧ for CNF)



Example

Put the following formula in CNF
Start to try DNF

(a ∨ b ∨ ¬c) ∧ ¬(d ∨ (e ∧ f)) ∧ (c ∨ d ∨ e)



Discussion

Problem with naive algorithm: it’s 
exponential!  (Both space and time, as 
well as size of result.)
Each use of distributivity can almost 
double the size of a subformula



A smarter transformation

Can we avoid exponential blowup in 
CNF?
Yes, if we’re willing to introduce new 
variables
D. Plaisted and S. Greenbaum. A 
structure-preserving clause form 
translation. Journal of Symbolic 
Computation, 2:293—304, 1986.



Inference 
rules



Inference rules

De Morgan’s laws are nice, but not really 
enough for all the proofs we need
Need a way to generate additional 
consequences of our formula



Modus ponens

Probably most famous inference rule: all 
men are mortal, Socrates is a man, 
therefore Socrates is mortal
Quantifier-free version: 
man(Socrates) ∧ 

(man(Socrates) ⇒ mortal(Socrates))

d
(a ∧ b ∧ c ⇒ d)  a  b  c



Inference example

When it rains, it pours
It’s never the case that it’s pouring 
and we’re not rusted
When we rust, we break
It’s raining (rains ⇒ pours) ∧

¬(pours ∧ ¬rusted) ∧
(rusted ⇒ broken) ∧

rains



Are we broken?

(rains ⇒ pours) ∧
¬(pours ∧ ¬rusted) ∧
(rusted ⇒ broken) ∧

rains



Getting organized

Can we organize our search for a proof 
better?
Mechanical system for deciding which 
transformations to apply



Theorem 
provers



Typical theorem prover

Knowledge Base (KB): a set of assertions 
about the world

we “know” conjunction of all sentences 
in KB

Query sentence B: want to know, B or ¬B?



Typical theorem prover

Apply inference rules to sets of sentences 
(subsets of KB) to generate new assertions
Add (conjoin) new assertions to KB
Result is a larger KB which is (hopefully) 
equivalent to original KB (more later)
Search control heuristics decide which 
consequence to add next



When are we done?

One approach: done if we add B to our KB
More common: proof by contradiction
Add ¬B to KB, finish when we add False



When can we give up?

For propositional logic, there are finitely 
many possible conclusions from a finite set 
of assertions
So, if we run out of things to try, we can 
conclude B does not follow from KB



Backtracking

Never have to backtrack: inference rules 
only add valid consequences to KB
But irrelevant assertions can pile up

might want to get rid of old conclusions
e.g., DFS for results whose proof adds 
≤ k new assertions to KB
then increase k (DFID on proof size)



Inference rules

What inference rules should we use in an 
automated theorem prover?
Requirement: if rule can take sentence S 
and produce sentence A, want A to be true 
whenever S is

S might be conjunction of several 
elements of KB

This is called entailment



Entailment

Sentence A entails sentence B, A ⊨ B, if B 
is True in every model where A is

same as saying that (A ⇒ B) is valid

If (subset of KB ⊨ A) then KB ⊨ A 
(monotonicity)
If KB ⊨ A then KB ≡ (KB ∧ A)

so it’s safe to add A to KB



Special cases

If A ⊨ False, then A must be a 
contradiction
A ⊨ True for any A



Proof using entailment

Suppose we have an inference rule that 
generates entailed sentences
Definition: proof tree

Leaves: sentences from KB
Children ⊨ parent

Root = consequence
If ∃ a proof tree with root False, KB is 
contradictory



Proof tree



Proof tree



Proof tree



Proof tree



Entailment v. equivalence proofs

A proof with a proof tree and ⊨ is the 
same as one with a sequence of ≡ relations

Proof tree on KB with nodes x, y, z, … 
yields sequence 

KB ≡ KB ∧ x ≡ KB ∧ x ∧ y ≡ …

if x, y, z, … topological sort of proof tree



Inference rules

Above proof tree used modus ponens
Already saw this rule above

d
(a ∧ b ∧ c ⇒ d)  a  b  c



Another inference rule

Modus tollens
If it’s raining the grass is wet; the grass is 
not wet, so it’s not raining

¬a
(a ⇒ b)  ¬b



One more…

(a ∨ b ∨ c)  (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e

Resolution
Not as commonly known as modus 
ponens / tollens



Resolution

Combines two sentences that contain a 
literal and its negation
Modus ponens / tollens are special cases
Modus tollens:
(¬raining ∨ grass-wet) ∧ ¬grass-wet  ⊨ 
¬raining



Resolution

Simple proof by case analysis
Consider separately cases where we 
assign c: True and c: False

(a ∨ b ∨ c)  (¬c ∨ d ∨ e)
a ∨ b ∨ d ∨ e



Resolution

Case c: True
(a ∨ b ∨ T) ∧ (F ∨ d ∨ e)

= (T) ∧ (d ∨ e)

= (d ∨ e)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)



Resolution

Case c: False
(a ∨ b ∨ F) ∧ (T ∨ d ∨ e)

= (a ∨ b) ∧ (T)

= (a ∨ b)

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)



Resolution

Since c must be True or False, conclude
(d ∨ e) ∨ (a ∨ b)

as desired

(a ∨ b ∨ c) ∧ (¬c ∨ d ∨ e)


