
15-780: Graduate Artificial 
Intelligence

Probabilistic Reasoning and Inference 



Advantages of probabilistic 
reasoning

• Appropriate for complex, uncertain, environments
- Will it rain tomorrow?

• Applies naturally to many domains
- Robot predicting the direction of road, biology, Word paper clip

• Allows to generalize acquired knowledge and 
incorporate prior belief
- Medical diagnosis 

• Easy to integrate different information sources
- Robot’s sensors



Examples
• Unmanned vehicles



Examples: Speech processing



Example: Biological data

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG
ATATTTGCCGACTTAAAAAGCTCAAG 
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT
CTGAAGAACAACTGGGAGTGTCGCTAC 
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG
GCACATCTGACAGAAGTGGAATCAAGG 
CTAGAAAGACTGGAACAGCTATTTCTACTGATTT
TTCCTCGAGAAGACCTTGACATGATT



Basic notations
• Random variable

- referring to an element / event whose status is unknown:
A = “it will rain tomorrow”

• Domain
- The set of values a random variable can take:
- “A = The stock market will go up this year”: Binary
- “A = Number of Steelers wins in 2006”: Discrete
- “A = % change in Google stock in 2006”: Continuous



Priors

Degree of belief 
in an event in the 
absence of any 
other information

Rain

No rain

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8



Conditional probability
• P(A = 1 | B = 1): The fraction of cases where A is true if 

B is true

P(A = 0.2) P(A|B = 0.5)



Conditional probability
• In some cases, given knowledge of one or more 

random variables we can improve upon our prior 
belief of another random variable

• For example:
p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/3
p(didn’t sleep in movie | liked movie) = 2/3

Liked 
movie

Slept P

1 1 0.2
1 0 0.4
0 0 0.1
0 1 0.3



Joint distributions
• The probability that a set of random 

variables will take a specific value is their 
joint distribution.

• Notation: P(A ∧ B) or P(A,B)
• Example:  P(liked movie, slept)

Liked 
movie

Slept P

1 1 0.2

1 0 0.4

0 0 0.1

0 1 0.3



Joint distribution (cont)
P(class size > 20) = 0.5

P(summer) = 1/3

Evaluation of classes
P(class size > 20, summer) = 0

Time (regular =2, 
summer =1)

Class size Evaluation 
(1-3)

1 10 2

2 34 3

1 12 2

2 65 1

2 15 3

2 43 1

1 13 3

2 51 2



Joint distribution (cont)

P(class size > 20) = 0.5

P(eval = 1) = 2/9

P(class size > 20, eval = 1) = 2/9 Evaluation of classes

Time (regular =2, 
summer =1)

Class size Evaluation 
(1-3)

1 10 2

2 34 3

1 12 2

2 65 1

2 15 3

2 43 1

1 13 3

2 51 2



Chain rule
• The joint distribution can be specified in terms of 

conditional probability:
P(A,B) = P(A|B)*P(B)

• Together with Bayes rule (which is actually derived from 
it) this is one of the most powerful rules in probabilistic 
reasoning 



Axioms of probability 
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three 
axioms:

1. 0 ≤ P(A) ≤ 1
2. P(true) = 1,  P(false) = 0
3. P(A ∨ B) = P(A) + P(B) – P(A ∧ B)
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Axioms of probability 
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three 
axioms:

1. 0 ≤ P(A) ≤ 1
2. P(true) = 1,  P(false) = 0
3. P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

P(Steelers win the 05-06 season) = 1



Axioms of probability 
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three 
axioms:
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Axioms of probability 
(Kolmogorov’s axioms)

• A variety of useful facts can be derived from just three 
axioms:

1. 0 ≤ P(A) ≤ 1
2. P(true) = 1,  P(false) = 0
3. P(A ∨ B) = P(A) + P(B) – P(A ∧ B)

There have been several 
other attempts to provide a 
foundation for probability 
theory. Kolmogorov’s
axioms are the most widely 
used.



Using the axioms
• How can we use the axioms to prove that:

P(¬A) = 1 – P(A)
?



Bayes rule
• One of the most important rules for AI usage.
• Derived from the chain rule:

P(A,B) = P(A | B)P(B) = P(B | A)P(A)
• Thus,
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Thomas Bayes was 
an English 
clergyman who set 
out his theory of 
probability in 1764. 



Bayes rule (cont)
Often it would be useful to derive the rule a bit 

further:
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This results from: 
P(B) = ∑AP(B,A)



Using Bayes rule
• Cards game:

Place your bet on the 
location of the King!



Using Bayes rule
• Cards game:

√

Do you want to 
change your bet?



Using Bayes rule
A B C
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Computing the (posterior) probability: P(C = k | selB)

Bayes rule
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Using Bayes rule A B C

√

P(C=k | selB) =
1/3

1/2

1/2 1/3 2/3
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1/2



Joint distributions
• The probability that a set of random 

variables will take a specific value is their 
joint distribution.

• Requires a joint probability table to 
specify the possible assignments

• The table can grow very rapidly …

Liked 
movie

Slept P

1 1 0.2

1 0 0.4

0 0 0.1

0 1 0.3

How can we decrease the number of columns in 
the table?



Independence
Liked 
movie

Slept raining P

1 1 1

1

1

0 1 1 0.15

1 1 0 0.1

1 0 0 0.2

0 0 0 0.05

0 1 0 0.15

0.1

1 0 0.2

0 0 0.05

• In some cases the additional 
information does not help

• In this case, the extra 
knowledge about rain does not 
change our prediction

• Slept and rain are independent!

P(slept) = 0.5

P(slept | rain = 1) = 0.5



Independence (cont.)
• Notation: P(S | R) = P(S)
• Using this we can derive the following:

- P(¬S | R) = P(¬S)
- P(S,R) = P(S)P(R)
- P(R | S) = P(R)



Independence
• Independence allows for easier models, learning and 

inference
• For our example: 

- P(raining, slept movie) = P(raining)P(slept movie)
- Instead of 4 by 2 table (4 parameters), only 2 are 

required
- The saving is even greater if we have many more 

parameters …
• In many cases it would be useful to assume 

independence, even if its not the case



Conditional independence
• Two dependent random variables may become 

independent when conditioned on a third variable:
P(A,B | C) = P(A | C) P(B | C)

• Example
P(liked movie) = 0.5
P(slept) = 0.4
P(liked movie, slept) = 0.1
P(liked movie | long) = 0.4
P(slept | long) 0.6
P(slept, like movie | long) = 0.24 

Given knowledge of length, 
the two other variables 
become independent



Bayesian networks
• Bayesian networks are directed graphs with 

nodes representing random variables and 
edges representing dependency assumptions

Lo

Li S

Long?

Slept?

Liked?



Bayesian networks: Notations

P(Lo) = 0.5

Le

Li S

Conditional 
probability tables 
(CPTs)

Conditional 
dependency

P(S | Lo) = 0.6

P(S | ¬Lo) = 0.2

Random variables

P(Li | Lo) = 0.4

P(Li | ¬Lo) = 0.7



Constructing a Bayesian network

• How do we go about constructing a network for a 
specific problem?

• Step 1: Identify the random variables
• Step 2: Determine the conditional dependencies
• Step 3: Populate the CPTs

Can be learned from observation data!



A example problem
• An alarm system

B – Did a burglary occur?
E – Did an earthquake occur?
A – Did the alarm sound off?
M – Mary calls
J – John calls

• How do we reconstruct the network for this problem?



Factoring joint distributions
• Using the chain rule we can always factor a joint 

distribution as follows:
P(A,B,E,J,M) = 

P(A | B,E,J,M) P(B,E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) = 
P(A | B,E,J,M) P(B | E, J,M) P(E | J,M) P(J,M)
P(A | B,E,J,M) P(B | E, J,M) P(E | J,M)P(J | M)P(M)

• This type of conditional dependencies can also be 
represented graphically.



A Bayesian network
Number of parameters:

A: 2^4

B: 2^3

E: 4 

J: 2

M: 1

A total of 31 parameters

E

J M

A B



A better approach
• An alarm system

B – Did a burglary occur?
E – Did an earthquake occur?
A – Did the alarm sound off?
M – Mary calls
J – John calls

• Lets use our knowledge of the domain!



Reconstructing a network

A

J M

B ENumber of parameters:

A: 4

B: 1

E: 1

J: 2

M: 2

A total of 10 parameters

By relying on domain knowledge 
we saved 21 parameters!



Constructing a Bayesian network: 
Revisited

• Step 1: Identify the random variables
• Step 2: Determine the conditional dependencies

- Select on ordering of the variables
- Add them one at a time
- For each new variable X added select the minimal subset of nodes 
as parents such that X is independent from all other nodes in the 
current network given its parents.

• Step 3: Populate the CPTs
- We will discuss this when we talk about density estimations



Important points
• Random variables
• Chain rule
• Bayes rule
• Joint distribution, independence, conditional 

independence


