15-780: Graduate Artificial Intelligence

Probabilistic Reasoning and Inference

Advantages of probabilistic reasoning

- Appropriate for complex, uncertain, environments
 - Will it rain tomorrow?
- Applies naturally to many domains
 - Robot predicting the direction of road, biology, Word paper clip
- Allows to generalize acquired knowledge and incorporate prior belief
 - Medical diagnosis
- Easy to integrate different information sources
 - Robot's sensors

Examples

Unmanned vehicles

Examples: Speech processing

Example: Biological data

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG
ATATTTGCCGACTTAAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT
CTGAAGAACAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG
GCACATCTGACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTT
TTCCTCGAGAAGACCTTGACATGATT

Basic notations

- Random variable
 - referring to an element / event whose status is unknown:
 - A = "it will rain tomorrow"
- Domain
 - The set of values a random variable can take:
 - "A = The stock market will go up this year": Binary
 - "A = Number of Steelers wins in 2006": Discrete
 - "A = % change in Google stock in 2006": Continuous

Priors

Degree of belief in an event in the absence of any other information

P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8

Conditional probability

 P(A = 1 | B = 1): The fraction of cases where A is true if B is true

$$P(A = 0.2)$$

$$P(A|B = 0.5)$$

Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- For example:

```
p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/3
p(didn't sleep in movie | liked movie) = 2/3
```

Liked movie	Slept	Р
1	1	0.2
1	0	0.4
0	0	0.1
0	1	0.3

Joint distributions

 The probability that a set of random variables will take a specific value is their joint distribution.

Notation: P(A ∧ B) or P(A,B)

Example: P(liked movie, slept)

Liked movie	Slept	Р
1	1	0.2
1	0	0.4
0	0	0.1
0	1	0.3

Joint distribution (cont)

P(class size > 20) = 0.5

P(summer) = 1/3

P(class size > 20, summer) = 0

Evaluation of classes

Time (regular =2, summer =1)	Class size	Evaluation (1-3)
1	10	2
2	34	3
1	12	2
2	65	1
2	15	3
2	43	1
1	13	3
2	51	2

Joint distribution (cont)

P(class size > 20) = 0.5

P(eval = 1) = 2/9

P(class size > 20, eval = 1) = 2/9

Evaluation of classes

Time (regular =2, summer =1)	Class size	Evaluation (1-3)
1	10	2
2	34	3
1	12	2
2	65	1
2	15	3
2	43	1
1	13	3
2	51	2

Chain rule

 The joint distribution can be specified in terms of conditional probability:

$$P(A,B) = P(A|B)*P(B)$$

 Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

P(Steelers win the 05-06 season) = 1

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

- A variety of useful facts can be derived from just three axioms:
- 1. $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

There have been several other attempts to provide a foundation for probability theory. Kolmogorov's axioms are the most widely used.

Using the axioms

How can we use the axioms to prove that:

$$P(\neg A) = 1 - P(A)$$

?

Bayes rule

- One of the most important rules for AI usage.
- Derived from the chain rule:

$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• Thus,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Thomas Bayes was an English clergyman who set out his theory of probability in 1764.

Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

This results from: $P(B) = \sum_{A} P(B,A)$

P(B,A=1)

P(B,A=0)

Cards game:

Place your bet on the location of the King!

Cards game:

Do you want to change your bet?

Computing the (posterior) probability: P(C = k | selB)

$$P(C = k \mid selB) = \frac{P(selB \mid C = k)P(C = k)}{P(selB)}$$

$$= \frac{P(selB \mid C = k)P(C = k)}{P(selB \mid C = k)P(C = k) + P(selB \mid C = 10)P(C = 10)}$$

Δ

В

C

$$P(C=k \mid selB) =$$

$$P(selB \mid C = k)P(C = k)$$

 $P(selB \mid C = k)P(C = k) + P(selB \mid C = 10)P(C = 10)$

1/2

1/3

1/2

2/3

= 1/3

Joint distributions

 The probability that a set of random variables will take a specific value is their joint distribution.

 Requires a joint probability table to specify the possible assignments

The table can grow very rapidly ...

Liked movie	Slept	Р
1	1	0.2
1	0	0.4
0	0	0.1
0	1	0.3

How can we decrease the number of columns in the table?

Independence

 In some cases the additional information does not help

```
P(slept) = 0.5
P(slept | rain = 1) = 0.5
```

- In this case, the extra knowledge about rain does not change our prediction
- Slept and rain are independent!

Liked movie	Slept	raining	Р
1	1	1	0.1
1	0	1	0.2
0	0	1	0.05
0	1	1	0.15
1	1	0	0.1
1	0	0	0.2
0	0	0	0.05
0	1	0	0.15

Independence (cont.)

- Notation: P(S | R) = P(S)
- Using this we can derive the following:
 - $-P(\neg S \mid R) = P(\neg S)$
 - -P(S,R) = P(S)P(R)
 - $-P(R \mid S) = P(R)$

Independence

- Independence allows for easier models, learning and inference
- For our example:
 - P(raining, slept movie) = P(raining)P(slept movie)
 - Instead of 4 by 2 table (4 parameters), only 2 are required
 - The saving is even greater if we have many more parameters ...
- In many cases it would be useful to assume independence, even if its not the case

Conditional independence

 Two dependent random variables may become independent when conditioned on a third variable:

$$P(A,B \mid C) = P(A \mid C) P(B \mid C)$$

Example

P(liked movie) = 0.5

P(slept) = 0.4

P(liked movie, slept) = 0.1

P(liked movie | long) = 0.4

P(slept | long) 0.6

P(slept, like movie | long) = 0.24

Given knowledge of length, the two other variables become independent

Bayesian networks

 Bayesian networks are directed graphs with nodes representing random variables and edges representing dependency assumptions

Bayesian networks: Notations

Constructing a Bayesian network

- How do we go about constructing a network for a specific problem?
- Step 1: Identify the random variables
- Step 2: Determine the conditional dependencies
- Step 3: Populate the CPTs

Can be learned from observation data!

A example problem

- An alarm system
 - B Did a burglary occur?
 - E Did an earthquake occur?
 - A Did the alarm sound off?
 - M Mary calls
 - J John calls
- How do we reconstruct the network for this problem?

Factoring joint distributions

 Using the chain rule we can always factor a joint distribution as follows:

```
P(A,B,E,J,M) =
P(A | B,E,J,M) P(B,E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M) P(J,M)
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M) P(J | M) P(M)
```

 This type of conditional dependencies can also be represented graphically.

A Bayesian network

Number of parameters:

A: 2⁴

B: 2³

E: 4

J: 2

M: 1

A total of 31 parameters

A better approach

- An alarm system
 - B Did a burglary occur?
 - E Did an earthquake occur?
 - A Did the alarm sound off?
 - M Mary calls
 - J John calls
- Lets use our knowledge of the domain!

Reconstructing a network

Number of parameters:

A: 4

B: 1

E: 1

J: 2

M: 2

A total of 10 parameters

By relying on domain knowledge we saved 21 parameters!

Constructing a Bayesian network: Revisited

- Step 1: Identify the random variables
- Step 2: Determine the conditional dependencies
 - Select on ordering of the variables
 - Add them one at a time
 - For each new variable X added select the minimal subset of nodes as parents such that X is independent from all other nodes in the current network given its parents.
- Step 3: Populate the CPTs
 - We will discuss this when we talk about density estimations

Important points

- Random variables
- Chain rule
- Bayes rule
- Joint distribution, independence, conditional independence