# 15-780: Graduate Artificial Intelligence

Probabilistic Reasoning and Inference

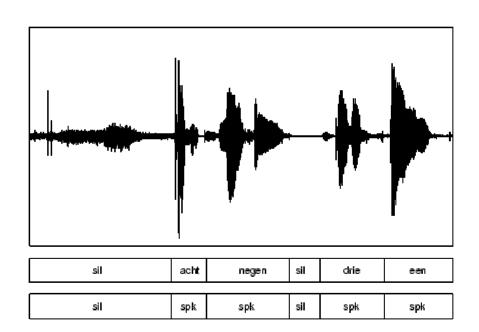
# Advantages of probabilistic reasoning

- Appropriate for complex, uncertain, environments
  - Will it rain tomorrow?
- Applies naturally to many domains
  - Robot predicting the direction of road, biology, Word paper clip
- Allows to generalize acquired knowledge and incorporate prior belief
  - Medical diagnosis
- Easy to integrate different information sources
  - Robot's sensors

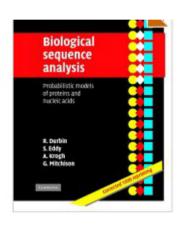
## Examples

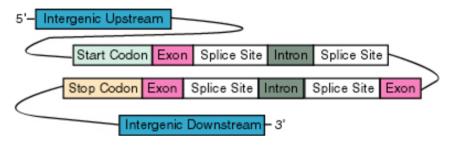
Unmanned vehicles

### Examples: Speech processing



#### Example: Biological data





ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG
ATATTTGCCGACTTAAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT
CTGAAGAACAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG
GCACATCTGACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTT
TTCCTCGAGAAGACCTTGACATGATT

#### **Basic notations**

- Random variable
  - referring to an element / event whose status is unknown:
    - A = "it will rain tomorrow"
- Domain
  - The set of values a random variable can take:
    - "A = The stock market will go up this year": Binary
    - "A = Number of Steelers wins in 2006": Discrete
    - "A = % change in Google stock in 2006": Continuous

#### **Priors**

Degree of belief in an event in the absence of any other information



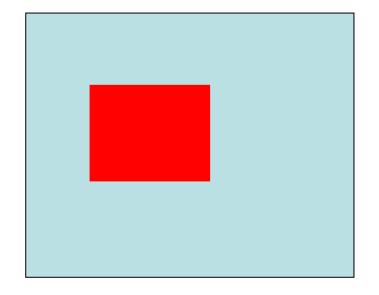
P(rain tomorrow) = 0.2

P(no rain tomorrow) = 0.8

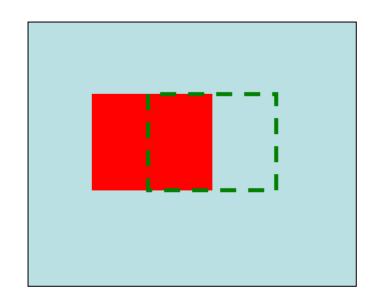
## Conditional probability

 P(A = 1 | B = 1): The fraction of cases where A is true if B is true

$$P(A = 0.2)$$



$$P(A|B = 0.5)$$



### Conditional probability

- In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable
- For example:

```
p(slept in movie) = 0.5
p(slept in movie | liked movie) = 1/3
p(didn't sleep in movie | liked movie) = 2/3
```

| Liked<br>movie | Slept | Р   |
|----------------|-------|-----|
| 1              | 1     | 0.2 |
| 1              | 0     | 0.4 |
| 0              | 0     | 0.1 |
| 0              | 1     | 0.3 |

#### Joint distributions

 The probability that a set of random variables will take a specific value is their joint distribution.

Notation: P(A ∧ B) or P(A,B)

Example: P(liked movie, slept)

| Liked<br>movie | Slept | Р   |
|----------------|-------|-----|
| 1              | 1     | 0.2 |
| 1              | 0     | 0.4 |
| 0              | 0     | 0.1 |
| 0              | 1     | 0.3 |

### Joint distribution (cont)

P(class size > 20) = 0.5

P(summer) = 1/3

P(class size > 20, summer) = 0

#### **Evaluation of classes**

| Time (regular =2, summer =1) | Class size | Evaluation (1-3) |
|------------------------------|------------|------------------|
| 1                            | 10         | 2                |
| 2                            | 34         | 3                |
| 1                            | 12         | 2                |
| 2                            | 65         | 1                |
| 2                            | 15         | 3                |
| 2                            | 43         | 1                |
| 1                            | 13         | 3                |
| 2                            | 51         | 2                |

### Joint distribution (cont)

P(class size > 20) = 0.5

P(eval = 1) = 2/9

P(class size > 20, eval = 1) = 2/9

#### Evaluation of classes

| Time (regular =2, summer =1) | Class size | Evaluation (1-3) |
|------------------------------|------------|------------------|
| 1                            | 10         | 2                |
| 2                            | 34         | 3                |
| 1                            | 12         | 2                |
| 2                            | 65         | 1                |
| 2                            | 15         | 3                |
| 2                            | 43         | 1                |
| 1                            | 13         | 3                |
| 2                            | 51         | 2                |

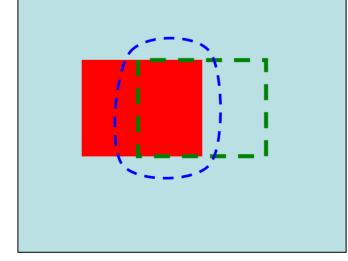
#### Chain rule

 The joint distribution can be specified in terms of conditional probability:

$$P(A,B) = P(A|B)*P(B)$$

 Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning

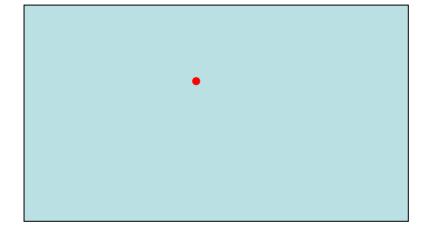




- A variety of useful facts can be derived from just three axioms:
- 1.  $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$

- A variety of useful facts can be derived from just three axioms:
- 1.  $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$

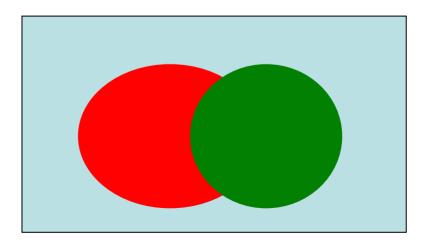




- A variety of useful facts can be derived from just three axioms:
- 1.  $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$

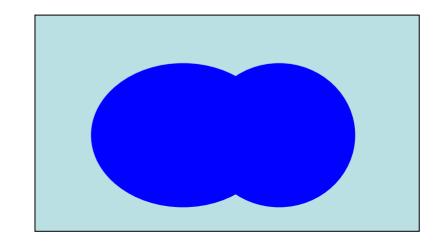
P(Steelers win the 05-06 season) = 1

- A variety of useful facts can be derived from just three axioms:
- 1.  $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$



- A variety of useful facts can be derived from just three axioms:
- 1.  $0 \le P(A) \le 1$
- 2. P(true) = 1, P(false) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$

There have been several other attempts to provide a foundation for probability theory. Kolmogorov's axioms are the most widely used.



### Using the axioms

How can we use the axioms to prove that:

$$P(\neg A) = 1 - P(A)$$

?

### Bayes rule

- One of the most important rules for AI usage.
- Derived from the chain rule:

$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

• Thus,

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$



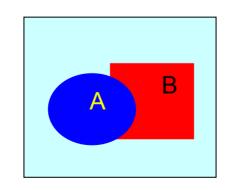
Thomas Bayes was an English clergyman who set out his theory of probability in 1764.

### Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

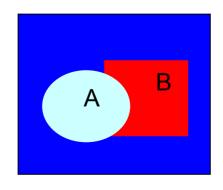
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_{A} P(B|A)P(A)}$$

This results from:  $P(B) = \sum_{A} P(B,A)$ 

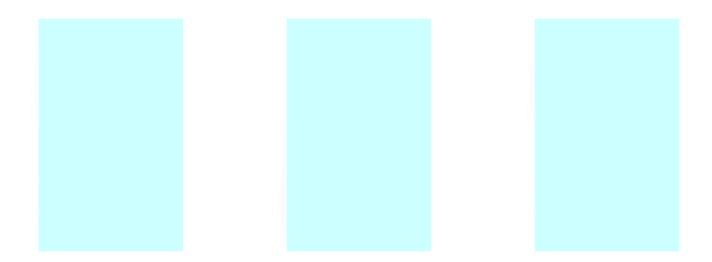


P(B,A=1)

P(B,A=0)

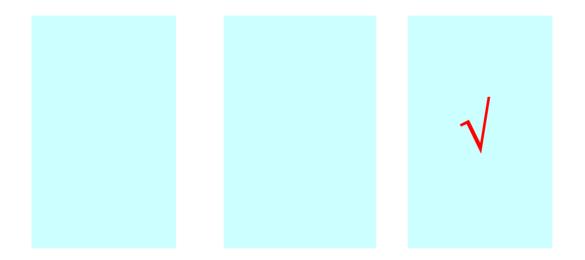


Cards game:

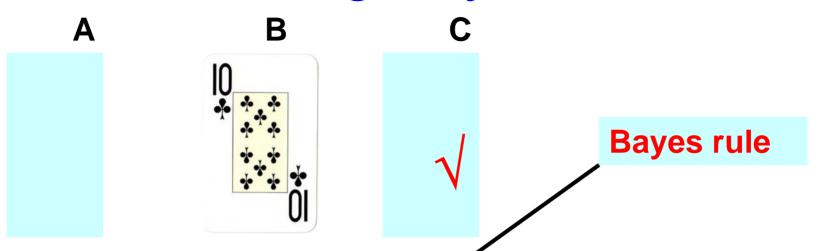


Place your bet on the location of the King!

Cards game:



Do you want to change your bet?



Computing the (posterior) probability: P(C = k | selB)

$$P(C = k \mid selB) = \frac{P(selB \mid C = k)P(C = k)}{P(selB)}$$

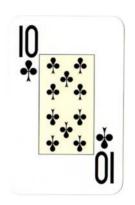
$$= \frac{P(selB \mid C = k)P(C = k)}{P(selB \mid C = k)P(C = k) + P(selB \mid C = 10)P(C = 10)}$$

Δ

В

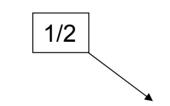
C







$$P(C=k \mid selB) =$$



$$P(selB \mid C = k)P(C = k)$$

 $P(selB \mid C = k)P(C = k) + P(selB \mid C = 10)P(C = 10)$ 

1/2

1/3

1/2

2/3

= 1/3

#### Joint distributions

 The probability that a set of random variables will take a specific value is their joint distribution.

 Requires a joint probability table to specify the possible assignments

The table can grow very rapidly ...

| Liked<br>movie | Slept | Р   |
|----------------|-------|-----|
| 1              | 1     | 0.2 |
| 1              | 0     | 0.4 |
| 0              | 0     | 0.1 |
| 0              | 1     | 0.3 |

How can we decrease the number of columns in the table?

#### Independence

 In some cases the additional information does not help

```
P(slept) = 0.5
P(slept | rain = 1) = 0.5
```

- In this case, the extra knowledge about rain does not change our prediction
- Slept and rain are independent!

| Liked<br>movie | Slept | raining | Р    |
|----------------|-------|---------|------|
| 1              | 1     | 1       | 0.1  |
| 1              | 0     | 1       | 0.2  |
| 0              | 0     | 1       | 0.05 |
| 0              | 1     | 1       | 0.15 |
| 1              | 1     | 0       | 0.1  |
| 1              | 0     | 0       | 0.2  |
| 0              | 0     | 0       | 0.05 |
| 0              | 1     | 0       | 0.15 |

### Independence (cont.)

- Notation: P(S | R) = P(S)
- Using this we can derive the following:
  - $-P(\neg S \mid R) = P(\neg S)$
  - -P(S,R) = P(S)P(R)
  - $-P(R \mid S) = P(R)$

#### Independence

- Independence allows for easier models, learning and inference
- For our example:
  - P(raining, slept movie) = P(raining)P(slept movie)
  - Instead of 4 by 2 table (4 parameters), only 2 are required
  - The saving is even greater if we have many more parameters ...
- In many cases it would be useful to assume independence, even if its not the case

### Conditional independence

 Two dependent random variables may become independent when conditioned on a third variable:

$$P(A,B \mid C) = P(A \mid C) P(B \mid C)$$

Example

P(liked movie) = 0.5

P(slept) = 0.4

P(liked movie, slept) = 0.1

P(liked movie | long) = 0.4

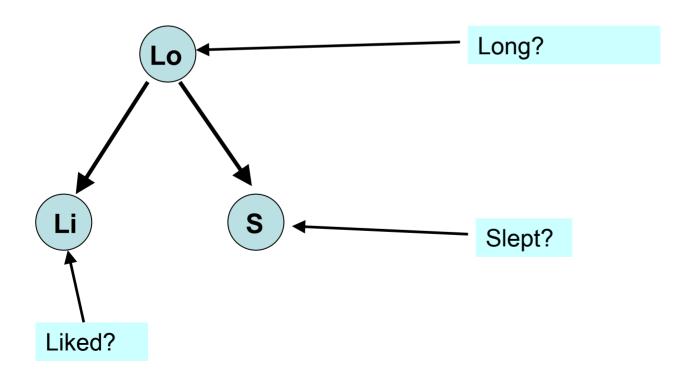
P(slept | long) 0.6

P(slept, like movie | long) = 0.24

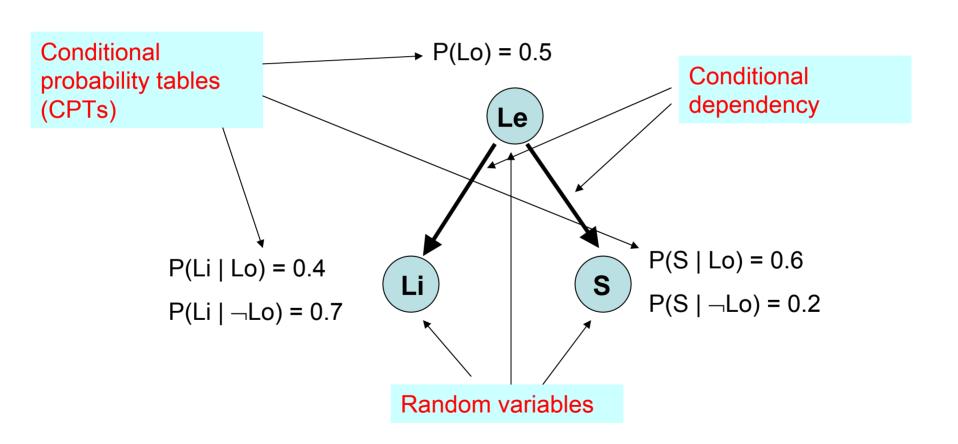
Given knowledge of length, the two other variables become independent

#### Bayesian networks

 Bayesian networks are directed graphs with nodes representing random variables and edges representing dependency assumptions



#### Bayesian networks: Notations



#### Constructing a Bayesian network

- How do we go about constructing a network for a specific problem?
- Step 1: Identify the random variables
- Step 2: Determine the conditional dependencies
- Step 3: Populate the CPTs

Can be learned from observation data!

#### A example problem

- An alarm system
  - B Did a burglary occur?
  - E Did an earthquake occur?
  - A Did the alarm sound off?
  - M Mary calls
  - J John calls
- How do we reconstruct the network for this problem?

#### Factoring joint distributions

 Using the chain rule we can always factor a joint distribution as follows:

```
P(A,B,E,J,M) =
P(A | B,E,J,M) P(B,E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E,J,M) =
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M) P(J,M)
P(A | B,E,J,M) P(B | E,J,M) P(E | J,M) P(J | M) P(M)
```

 This type of conditional dependencies can also be represented graphically.

### A Bayesian network

#### Number of parameters:

A: 2<sup>4</sup>

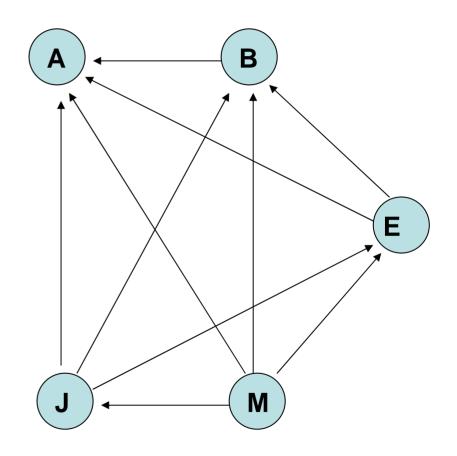
B: 2<sup>3</sup>

E: 4

J: 2

M: 1

A total of 31 parameters



#### A better approach

- An alarm system
  - B Did a burglary occur?
  - E Did an earthquake occur?
  - A Did the alarm sound off?
  - M Mary calls
  - J John calls
- Lets use our knowledge of the domain!

#### Reconstructing a network

#### Number of parameters:

A: 4

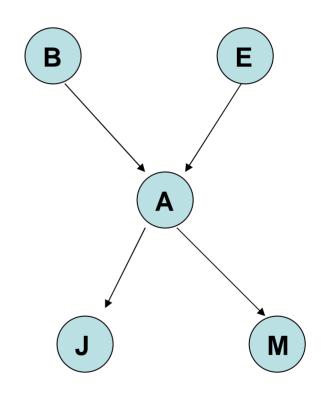
B: 1

E: 1

J: 2

M: 2

A total of 10 parameters



By relying on domain knowledge we saved 21 parameters!

## Constructing a Bayesian network: Revisited

- Step 1: Identify the random variables
- Step 2: Determine the conditional dependencies
  - Select on ordering of the variables
  - Add them one at a time
  - For each new variable X added select the minimal subset of nodes as parents such that X is independent from all other nodes in the current network given its parents.
- Step 3: Populate the CPTs
  - We will discuss this when we talk about density estimations

#### Important points

- Random variables
- Chain rule
- Bayes rule
- Joint distribution, independence, conditional independence