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HW2

Most people did fairly well on most 
questions on HW2, although average 
scores were lower than HW1
Two questions seemed to give lots of 
people problems:

1e (reductions)
3c (max-flow)



Max-flow

Graph (V, E), integer capacities c(e), 
source s, sink t
Edges represent one-directional pipes: 
we’re allowed to push flow of some fluid 
(e.g., liters/sec of water) along each
How much flow can we push from s to t?



Max-flow example



Example flow



Most common mistake

Double-counting flow
If we pump some water into t, then out of t, 
then back into t, we should only count it 
once



For example



For example



MAXFLOW link

http://www.lix.polytechnique.fr/~durr/
MaxFlow/



Decision problems

Decision problem = mapping from 
instances (strings) to decisions (T/F)
E.g., SAT:

instance = formula of propositional 
logic, represented as string

(x ∨ y) ∧ ¬x

decision = T iff formula is satisfiable



Complexity classes

Complexity class = a set of decision 
problems that can be solved inside some 
resource limit
Limit may depend on size of instance = 
length of string encoding it



Optimization problems

Standard complexity classes refer only to 
decision problems
Optimization problems must be translated
E.g., MAXFLOW:

In addition to usual input, integer target 
flow f
Can we push flow ≥ f from s to t?



Example complexity class: P

Problems solvable in polynomial time 
on a polynomial-size computer
“Polynomial” is in instance size n
E.g., time ≤ 7n2 + 3n + 5, computer size 
≤ 2n
Don’t need to check size, just realize 
that it can grow with n



MAXFLOW complexity

E.g., MAXFLOW can be solved with the 
Ford-Fulkerson algorithm 
At most VE iterations, each taking time 
≤ aE + b (for some a, b)
Instance size n: V ≤ n, E ≤ n
So, total time ≤ n2(an + b)



More examples: NP, PSPACE

PSPACE = problems that can be solved on 
a poly-sized computer (in any amount of 
time)
NP = problems with a poly-sized 
certificate that allows us to verify in poly-
time that we should answer T

don’t have to be able to find F certs



SAT

Typical problem in NP: SAT
Certificate = satisfying assignment
Given assignment, can just substitute it 
into formula and check that it’s correct
Size of cert is linear in n, time to check is 
also linear



Nesting

Some complexity classes contain others
E.g., P ⊆ NP ⊆ PSPACE

So, MAXFLOW  ∈ PSPACE

Many other problems in PSPACE are 
probably much harder than MAXFLOW…



Worst case complexity

Complexity classes measure the worst-
case complexity of a problem
Most instances of a given size might be 
easy—but it’s the hard ones that determine 
the complexity class
E.g., easy SAT formulas

x ∨ (formula of size n with no x in it)



Determining complexity

To find the complexity of a problem class, 
use reductions
E.g., 1(e) asked for a reduction from 
planning to SAT



Reduction

Loosely, “problem A reduces to problem 
B” means that if we can solve B then we 
can solve A
More formally, A, B are decision problems 
(instances ↦ truth values)

∃ a poly-time function f so that: given an 
instance a of A, f(a) is an instance of B, 
and A(a) = B(f(a))



Example reduction

=

⇒



Example reduction #2

Given a planning problem (like the one in 
problem 1)
Build plan graph
Translate plan graph to SAT instance
Plan is possible iff formula is satisfiable



Direction of reduction

If A reduces to B then
if we can solve B, we can solve A
so B must be at least as hard as A

ignoring time to compute translation 
f(a), possible blowup in instance size

Very easy to get direction wrong!
A does not have to be as hard as B



Hardness of PLAN

So, for 1e: we have shown that SAT is at 
least as hard as PLAN 

so, PLAN ∈ NP

And, we have a way to get certificates for 
PLAN

satisfying assignment lets us check 
efficiently that our plan works


