
15-780: Graduate AI
Reductions, max-flow

Geoff Gordon (these slides)
Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu

HW2

Most people did fairly well on most
questions on HW2, although average
scores were lower than HW1
Two questions seemed to give lots of
people problems:

1e (reductions)
3c (max-flow)

Max-flow

Graph (V, E), integer capacities c(e),
source s, sink t
Edges represent one-directional pipes:
we’re allowed to push flow of some fluid
(e.g., liters/sec of water) along each
How much flow can we push from s to t?

Max-flow example

Example flow

Most common mistake

Double-counting flow
If we pump some water into t, then out of t,
then back into t, we should only count it
once

For example

For example

MAXFLOW link

http://www.lix.polytechnique.fr/~durr/
MaxFlow/

Decision problems

Decision problem = mapping from
instances (strings) to decisions (T/F)
E.g., SAT:

instance = formula of propositional
logic, represented as string

(x ∨ y) ∧ ¬x

decision = T iff formula is satisfiable

Complexity classes

Complexity class = a set of decision
problems that can be solved inside some
resource limit
Limit may depend on size of instance =
length of string encoding it

Optimization problems

Standard complexity classes refer only to
decision problems
Optimization problems must be translated
E.g., MAXFLOW:

In addition to usual input, integer target
flow f
Can we push flow ≥ f from s to t?

Example complexity class: P

Problems solvable in polynomial time
on a polynomial-size computer
“Polynomial” is in instance size n
E.g., time ≤ 7n2 + 3n + 5, computer size
≤ 2n
Don’t need to check size, just realize
that it can grow with n

MAXFLOW complexity

E.g., MAXFLOW can be solved with the
Ford-Fulkerson algorithm
At most VE iterations, each taking time
≤ aE + b (for some a, b)
Instance size n: V ≤ n, E ≤ n
So, total time ≤ n2(an + b)

More examples: NP, PSPACE

PSPACE = problems that can be solved on
a poly-sized computer (in any amount of
time)
NP = problems with a poly-sized
certificate that allows us to verify in poly-
time that we should answer T

don’t have to be able to find F certs

SAT

Typical problem in NP: SAT
Certificate = satisfying assignment
Given assignment, can just substitute it
into formula and check that it’s correct
Size of cert is linear in n, time to check is
also linear

Nesting

Some complexity classes contain others
E.g., P ⊆ NP ⊆ PSPACE

So, MAXFLOW ∈ PSPACE

Many other problems in PSPACE are
probably much harder than MAXFLOW…

Worst case complexity

Complexity classes measure the worst-
case complexity of a problem
Most instances of a given size might be
easy—but it’s the hard ones that determine
the complexity class
E.g., easy SAT formulas

x ∨ (formula of size n with no x in it)

Determining complexity

To find the complexity of a problem class,
use reductions
E.g., 1(e) asked for a reduction from
planning to SAT

Reduction

Loosely, “problem A reduces to problem
B” means that if we can solve B then we
can solve A
More formally, A, B are decision problems
(instances ↦ truth values)

∃ a poly-time function f so that: given an
instance a of A, f(a) is an instance of B,
and A(a) = B(f(a))

Example reduction

=

⇒

Example reduction #2

Given a planning problem (like the one in
problem 1)
Build plan graph
Translate plan graph to SAT instance
Plan is possible iff formula is satisfiable

Direction of reduction

If A reduces to B then
if we can solve B, we can solve A
so B must be at least as hard as A

ignoring time to compute translation
f(a), possible blowup in instance size

Very easy to get direction wrong!
A does not have to be as hard as B

Hardness of PLAN

So, for 1e: we have shown that SAT is at
least as hard as PLAN

so, PLAN ∈ NP

And, we have a way to get certificates for
PLAN

satisfying assignment lets us check
efficiently that our plan works

