15-780: Graduate AI Reductions, max-flow

Geoff Gordon (these slides) Ziv Bar-Joseph TAs Michael Benisch, Yang Gu

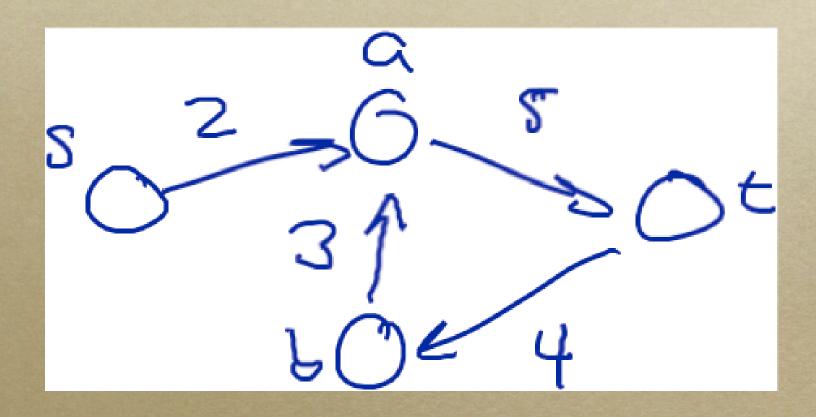
HW2

- Most people did fairly well on most questions on HW2, although average scores were lower than HW1
- Two questions seemed to give lots of people problems:
 - 1e (reductions)
 - 3c (max-flow)

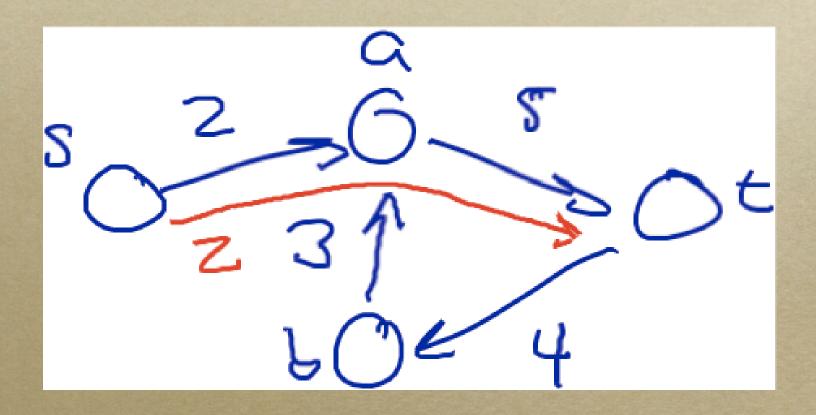
Max-flow

- Graph (V, E), integer capacities c(e),
 source s, sink t
- Edges represent one-directional pipes: we're allowed to push flow of some fluid (e.g., liters/sec of water) along each
- How much flow can we push from s to t?

Max-flow example



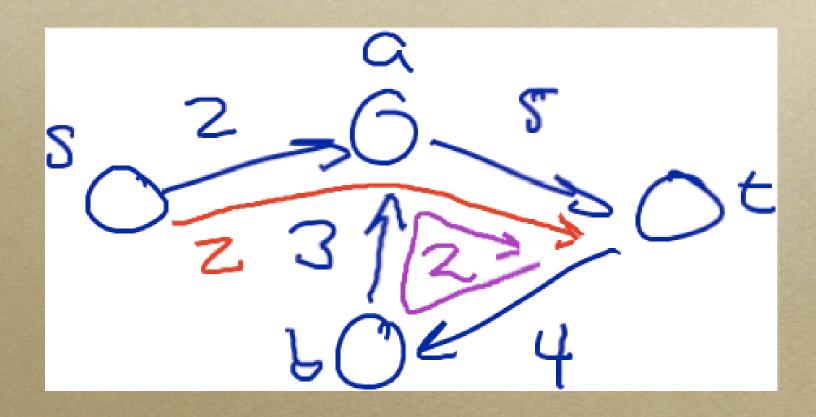
Example flow



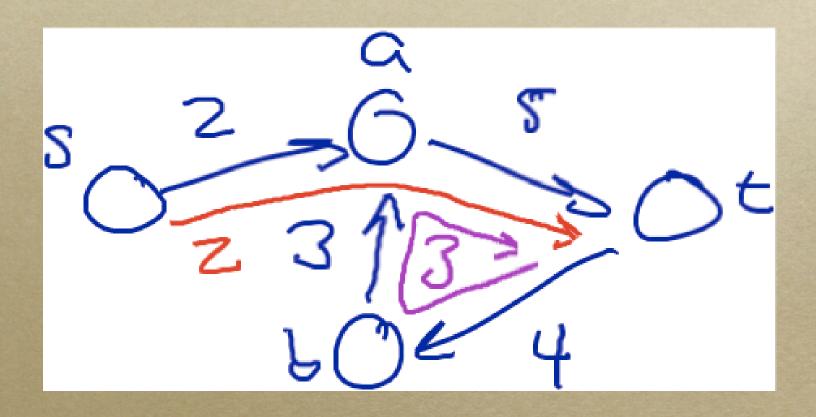
Most common mistake

- Double-counting flow
- If we pump some water into t, then out of t, then back into t, we should only count it once

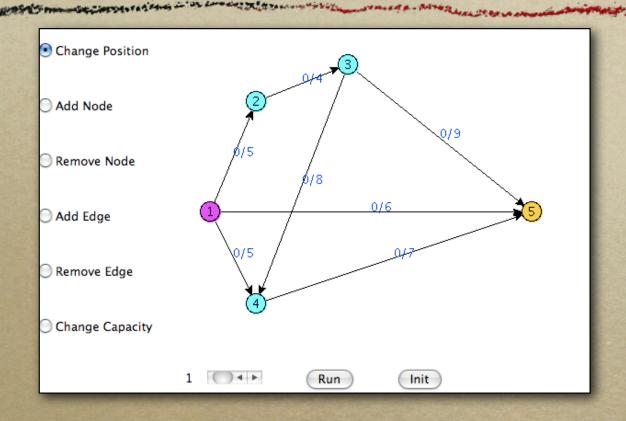
For example



For example



MAXFLOW link



 http://www.lix.polytechnique.fr/~durr/ MaxFlow/

Decision problems

- Decision problem = mapping from instances (strings) to decisions (T/F)
- E.g., SAT:
 - instance = formula of propositional logic, represented as string

$$(x \vee y) \wedge \neg x$$

• decision = T iff formula is satisfiable

Complexity classes

- Complexity class = a set of decision problems that can be solved inside some resource limit
- Limit may depend on size of instance = length of string encoding it

Optimization problems

- Standard complexity classes refer only to decision problems
- o Optimization problems must be translated
- E.g., MAXFLOW:
 - In addition to usual input, integer target flow f
 - Can we push flow $\geq f$ from s to t?

Example complexity class: P

- Problems solvable in polynomial time on a polynomial-size computer
- o "Polynomial" is in instance size n
- ∘ E.g., time $\leq 7n^2 + 3n + 5$, computer size $\leq 2n$
- Don't need to check size, just realize that it can grow with n

MAXFLOW complexity

- E.g., MAXFLOW can be solved with the Ford-Fulkerson algorithm
- At most VE iterations, each taking time
 ≤ aE + b (for some a, b)
- Instance size $n: V \le n, E \le n$
- So, total time $\leq n^2(an + b)$

More examples: NP, PSPACE

- PSPACE = problems that can be solved on a poly-sized computer (in any amount of time)
- NP = problems with a poly-sized
 certificate that allows us to verify in poly time that we should answer T
 - don't have to be able to find F certs

SAT

- Typical problem in NP: SAT
- Certificate = satisfying assignment
- Given assignment, can just substitute it into formula and check that it's correct
- Size of cert is linear in n, time to check is also linear

Nesting

- Some complexity classes contain others
- \circ E.g., $P \subseteq NP \subseteq PSPACE$
- \circ So, MAXFLOW \in PSPACE
- Many other problems in PSPACE are probably much harder than MAXFLOW...

Worst case complexity

- Complexity classes measure the worstcase complexity of a problem
- Most instances of a given size might be easy—but it's the hard ones that determine the complexity class
- E.g., easy SAT formulas
 - \circ $x \lor (formula \ of \ size \ n \ with \ no \ x \ in \ it)$

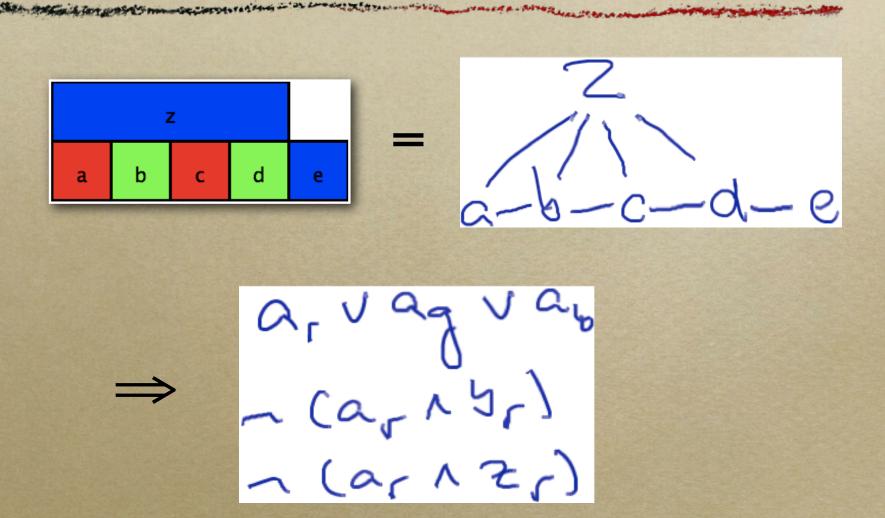
Determining complexity

- To find the complexity of a problem class, use reductions
- E.g., 1(e) asked for a reduction from planning to SAT

Reduction

- Loosely, "problem A reduces to problem B" means that if we can solve B then we can solve A
- More formally, A, B are decision problems (instances → truth values)
- ∘ \exists a poly-time function f so that: given an instance a of A, f(a) is an instance of B, and A(a) = B(f(a))

Example reduction



Example reduction #2

- Given a planning problem (like the one in problem 1)
- Build plan graph
- Translate plan graph to SAT instance
- Plan is possible iff formula is satisfiable

Direction of reduction

- If A reduces to B then
 - o if we can solve B, we can solve A
 - o so B must be at least as hard as A
 - ignoring time to compute translation f(a), possible blowup in instance size
- Very easy to get direction wrong!
 - A does not have to be as hard as B

Hardness of PLAN

- So, for 1e: we have shown that SAT is at least as hard as PLAN
 - \circ so, PLAN \in NP
- And, we have a way to get certificates for PLAN
 - satisfying assignment lets us check efficiently that our plan works