
15-780: Graduate AI
Lecture 22. Learning in Games

Geoff Gordon (this lecture)
Ziv Bar-Joseph

TAs Michael Benisch, Yang Gu

Recap

On Monday, we talked a lot about solution
concepts for matrix games

Support enumeration for Nash
equilibria
LPs for finding correlated equilibria
Pie-splitting for deciding which of the
many equilibria to follow

Recap

We also talked about different learning
algorithms based on opponent modeling:

fictitious play
fancier versions of FP: e.g., use a
classifier to predict opp actions
rational learning

Recap

All opp-modeling learners had only weak
guarantees: at best, convergence to some
unspecified equilibrium in self-play

not necessarily Pareto
no guarantees in non-self play (exc RL)
might not converge—eg., FP on Shapley

And, we had to keep our exact modeling
method secret (or risk being exploited)

This lecture

Want to show two things
First, algorithms with slightly stronger
guarantees for matrix games
Second, since the world isn’t a matrix
game, applications to more realistic
models

CE ex w/ info hiding necessary

3 Nash equilibria (circles)
CEs include point at TR: 1/3 on each of
TL, BL, BR (equal chance of 5, 1, 4)

0 1 2 3 4 5

0

1

2

3

4

5

L R

T 5,1 0,0

B 4,4 1,5

Policy
gradient

Next try

What can we do if not model the
opponent?
Next try: policy gradient algorithms
Keep a parameterized policy, update it to
do better against observed play
Note: this seems irrational (why not
maximize?)

Gradient dynamics for Lunch

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2006/03/30 20:02

21.3 Learning in One-Step Games 13

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Row player P(Opera)

C
o

lu
m

n
 p

la
y
e

r
P

(O
p

e
ra

)

Figure 21.2 The gradient dynamics of the Battle of the Sexes. If we initialize
the players’ strategy profile at one of the small dots, the gradient ascent update
(equation 21.9) will move it along the corresponding line. The fixed points of the
gradient dynamics are the Nash equilibria (0, 0), (1, 1), and (4/7, 3/7) (marked with
circles); the first two are stable fixed points while the last is an unstable fixed point.

where α(t) is a learning rate. The projection operator P∆(x̄) ensures that the rec-
ommended play is a legal probability distribution: it projects x̄ onto the probability
simplex ∆ by minimum Euclidean distance.

Gradient ascent has much stronger performance guarantees than fictitious play
and the other gradient-based algorithms described above. If we decrease the learning
rate according to a schedule like α(t) = 1/

√
t, then a player which runs gradient

ascent is guaranteed in the long run to achieve an average payoff at least as high
as its safety value (Zinkevich, 2003). (See section 21.3.4 for additional algorithms
with similar guarantees.) In a two-player two-action game the guarantee is even
stronger: Singh et al. (2000) proved that two gradient-ascent learners will achieve
many properties of a Nash equilibrium in the limit, including the average payoffs
and the average strategy.

The most current strategy x(t)
i may not converge when two gradient-ascent

players learn simultaneously: Singh et al. showed that the joint strategies can
enter a limit cycle, even in a two-player two-action game. If the strategies do
converge, though, their limit must be a Nash equilibrium: the projected gradient
P∆(xi + gi) − xi is zero exactly when player i can get no benefit by changing its
strategy. In other words, the Nash equilibria are exactly the fixed points of the
update in equation 21.9; see figure 21.2 for an example.

Since Nash equilibria can be difficult to find, it is interesting to look for modifica-
tions to the gradient ascent algorithm which make it converge more often. Bowling

Theorem

In a 2-player 2-action repeated matrix
game, two gradient-descent learners will
achieve payoffs and play frequencies of
some Nash equilibrium (of the stage game)
in the limit

Satinder Singh, Michael Kearns, Yishay Mansour. Nash Convergence
of Gradient Dynamics in General-Sum Games. UAI, 2000

Theorem

A gradient descent learner with
appropriately-decreasing learning rate,
when playing against an arbitrary
opponent, will achieve at least its safety
value. When playing against a stationary
opponent, it will converge to a best
response.

Gordon, 1999; Zinkevich, 2003

Discussion

Works against arbitrary opponent
Gradient descent is a member of
a class of learners called no-
regret algorithms which achieve
same guarantee
Safety value still isn’t much of a
guarantee, but…

0 100 200 300 400

0

100

200

300

400

Value to player 1

V
a

lu
e

 t
o

 p
la

y
e

r
2

Figure 1: Illustration of feasible values, safety values, equilibria, Pareto domi-
nance, and the Folk Theorem for RBoS.

problem facing two people who go out to an event every weekend, either the
opera (O) or football (F). One person prefers opera, the other prefers football,
but they both prefer to go together: the one-step reward function is

O F
O 3, 4 0, 0
F 0, 0 4, 3

Player p wants to maximize her expected total discounted future value Vp; we
discount rewards t steps in the future by γt = 0.99t. Figure 1 displays the
expected value vector (E(V1), E(V2)) for a variety of situations.

The shaded triangle in Figure 1, blue where color is available, is the set
of feasible expected-value vectors. Each of the points in this triangle is the
expected-value vector of some joint policy (not necessarily an equilibrium).

The single-round Battle of the Sexes game has three Nash equilibria. Re-
peatedly playing any one of these equilibria yields an equilibrium of RBoS, and
the resulting expected-value vectors are marked with circles in Figure 1. Some
learning algorithms guarantee convergence of average payoffs to one of these
points in self-play. For example, one such algorithm is gradient descent in the
space of an agent’s mixed strategies, since RBoS is a 2× 2 repeated game [15].

Other algorithms, such as the no-regret learners mentioned above, guarantee
that they will achieve at least the safety value of the game. The safety values
for the two players are shown as horizontal and vertical thin dashed lines. So,
two such algorithms playing against each other will arrive at a value vector
somewhere inside the dashed pentagon (cyan where color is available).

The Folk Theorem tells us that RBoS has a Nash equilibrium for every point

4

Pareto

What if we start our gradient descent
learner at (one side of) an equilibrium on
the Pareto frontier?
E.g., start at “always Union Grill”
In self-play, we stay on Pareto frontier
And we still have guarantees of safety
value and best response
Same idea works for other NR learners

Pareto

First learning algorithm we’ve discussed
that guarantees Pareto in self-play
Only a few algorithms with this property
so far, all since about 2003 (Brafman &
Tennenholtz, Powers & Shoham, Gordon & Murray)

Can’t really claim it’s “negotiating”—
would like to be able to guarantee
something about accepting ideas from
others

Open problems

Guarantee Pareto in play against a wide
variety of learners, but still guarantee
safety against arbitrary learner and best-
response against fixed learner
Do so in arbitrary games (not just
repeated matrix games)

Structured
games

A structured game

Example: avoiding detours

Learning for Multi-AgentDecision Problems – p.49/67

Abstract view

Feasible plays are convex,
payoffs linear

A+B = 1
C+D = A
E+F = B+C
G = D+E
F+G = 1
A,B,C,D,E,F,G ≥ 0

payoff = cAA + cBB + cCC +
cDD + cEE + cFF + cGG

Feasible region

!! !"#$!"#% !"#& !"#' " "#' "#& "#% "#$!
!!

!"#$

!"#%

!"#&

!"#'

"

"#'

"#&

"#%

"#$

!

(

)

*

+

,

-

.

! !"# !"$!"% !"& ' '"# '"$ '"% '"& #
!!"%

!!"$

!!"#

!

!"#

!"$

!"%

!"&

'

'"#

'"$

coordinate axes

OCP

Learning problem is an online convex
program: known convex feasible region,
unknown but linear costs depend on
actions of other players
Lots of other games can be represented
this way too

e.g., extensive-form games like poker
Matrix game version exponentially bigger

Scaling up

Playing realistic games

Main approaches
Non-learning
Opponent modeling

as noted above, guarantees are slim
Policy gradient

usually not a version with no regret
Growing interest in no-regret
algorithms, but fewer results so far

Policy gradient example

Keep-out game: A tries to get to target
region, B tries to interpose
Subproblem of RoboCup

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2006/03/30 20:02

38 Game-theoretic Learning—DRAFT Please do not distribute

x

robot A

robot B

target region

Figure 21.11 The keep-out game. Robot A tries to get to the target region, while
robot B tries to block robot A. State is x, y, ẋ, ẏ for each robot, minus one degree
of freedom for rotational symmetry.

Figure 21.12 Robots plaing the keep-out game. Reprinted with permission from
Michael Bowling.

circle for a preset length of time.
Representing an evaluation function for this game would be complex but not

impossible. The state is described by seven continuous variables: the x and y
positions and the x and y velocities of the two robots make eight degrees of freedom,
but we lose one degree of freedom because the world is rotationally symmetric.

Instead of learning an evaluation function, though, the robots learned their
policies directly. They picked from seven actions (defined by seven carefully selected
target points which depended on the locations of the robots) ten times a second,
according to a randomized policy with about 70,000 adjustable parameters. By
observing the states and rewards encountered in practice games, they estimated the
gradient of their payoffs with respect to the policy parameters, and adjusted the
parameters according to a gradient ascent algorithm like the ones in section 21.3.2.
While the convergence guarantees of section 21.3.2 do not hold in this more
complicated situation, the robots were able to improve their performance both

Policy gradient example

No-regret example

Learning to play poker from experience
Play two learners head-to-head
Results you’re about to see are from
Brendan McMahan’s thesis
They are from an algorithm that is some-
regret; no-regret experiments in progress

RI Hold’EmDraft: November 12, 2006

0 1 2 3 4101

102

103

runtime(hours)

ε =
 (u

b−
lb

)

DOBA+ |B|= 4
DOBA+ |B|=25
DOBA+ |B|=55
Async FP
Sync FP

Figure 5.9: Algorithm runtime versus approximation error on Rhode Island hold’em. The
Y axis is a log scale plot of ε for the best approximate solution the algorithms can return
at a given time, in units of $0.01.

problem for AI research. The game is similar to two-player limit Texas Hold’em. It is
played with a full deck of 52 cards, but each player receives only a single face-down hole
card, and there are only two community cards. There are three rounds of betting, with
up to three raises per betting round. Unabstracted Rhode Island Hold’em has a game tree
with 3.1 billion nodes, which is still too large to work with conveniently. Instead, Andrew
Gilpin was kind enough to provide us with the convex game representation produced by the
GameShrink algorithm [Gilpin and Sandholm, 2005]. Sparsely represented, this game has
approximately 50 × 106 non-zeros in the payoff and sequence constraint matrices, with
dimensions m = n = 883, 741, taking almost 600MB of memory to store. A solution
to this game can be converted to a payoff-equivalent strategy for the unabstracted game.
The poker game has $5.00 antes and a maximum pot size of $310.00. The uniform random
strategy, from which we started both our algorithm and fictitious play, loses approximately
$290.00 per game. The minimax value of the game is−$0.64; the value is negative because
player x (the minimizing player) bets second, and thus gains a small advantage based on

150

Texas Hold’EmDraft: November 12, 2006

0 0.5 1 1.5 210−6

10−4

10−2

100

runtime(hours)

ε =
 (u

b−
lb

)

DOBA+ |B|= 150
Async FP

Figure 5.10: Algorithm runtime versus approximation error on approximately abstracted
Texas hold’em.

the information revealed by the first player’s initial bet.

The CPLEX commercial linear programming package solved abstracted Rhode Island
Hold’em via the barrier method in about 7.5 days, using 25 GB of memory; achieving an
ε = $0.20 approximate minimax solution took 110.3 hours, or over 4.5 days. The DOBA+
produced a solution of that quality in 130 minutes; see Figure (5.11).

Figure (5.9) compares the anytime performance of DOBA+ and fictitious play (FP).
Both algorithms were initialized using the uniform-random behavior strategy for both
players; that is, at each information set the agent selects an action uniformly at random.
Especially early on, DOBA+ can produce higher quality solutions for a given amount
of time. For example, it takes DOBA+ 11 minutes to bound the value of the game in
[$0.00,−$1.35], thereby proving that player x has an advantage. It takes synchronous FP
(as in Figure (5.1)) about 30 minutes to get comparable bounds, but asynchronous FP
(DOBA+ with φ fixed at 1.0) takes only 16 minutes to get these bounds. Experiments
on smaller approximately abstracted versions of Rhode Island Hold’em, however, show
DOBA+ can outperform FP by an order of magnitude; on the smallest problem we tested

151

No-regret algorithm; RI Hold’em

! !"# $ $"# % %"#
$!

!

$!
$

$!
%

$!
&

$!
'

()*+,-./01)(23

4
5
6
7/
)
8
!
98
3

7

7

52:*;7<6

52:*;790

2:*;7<6

2:*;790

