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Last time, on 
Grad AI



Optimization

Unconstrained optimization: gradient = 0
Equality-constrained optimization

Lagrange multipliers
Inequality-constrained: either

nonnegative multipliers (last W), or
search through bases (simplex, on M)



Duality

How to express path planning as an LP
Dual of path planning LP



Optimization in ILPs

DFS, with pruning by:
constraint propagation
best solution so far
dual feasible solution
dual feasible solution for relaxation of 
ILP with some variables set (branch 
and bound)



Optimization in ILPs

Duality gap and Slater’s condition
Cutting planes (how to use, how to find)

generally, e.g., Gomory
problem specific, e.g., subtour 
elimination for TSPs

Branch and cut



Historical note

Gomory’s cuts weren’t the first poly-time 
cuts: e.g., Dantzig in 1959
But they were first to guarantee finite 
termination of cutting plane method for 
ILPs
Proven by Gomory in 1963



Game search





Synthetic example



Principal variation



Making it work

Minimax is all well and good for small 
games
But what about bigger ones? 2 answers:

cutting off search early (big win)
pruning (smaller win but still useful)



Heuristics

Quickly and approximately evaluate a 
position without search
E.g., Q = 9, R = 5, B = N = 3, P = 1
Build out game tree as far as we can, use 
heuristic at leaves in lieu of real value

might want to build it out unevenly 
(more below)



Heuristics

Deep Blue used: materiel, mobility, king 
position, center control, open file for rook, 
paired bishops/rooks, … (> 6000 total 
features!)
Weights are context dependent, learned 
from DB of grandmaster games then hand 
tweaked



Quiescence



Pruning

Idea: don’t bother looking at parts of the 
tree we can prove are irrelevant



Pruning example



Pruning example



Alpha-beta pruning

Do a DFS through game tree
At each node n on stack, keep bounds
α(n): value of best deviation so far for 
MAX along path to n
β(n): value of best deviation so far for 
MIN along path to n



Alpha-beta pruning

Deviation = way of leaving the path to n
So, to get α,

take all MAX nodes on path to n
look at all their children that we’ve 
finished evaluating
best (highest) of these children is α

Lowest of children of MIN nodes is β



Example of alpha and beta



Alpha-beta pruning

At max node:
receive α and β values from parent

expand children one by one
update α as we go

if α ever gets higher than β, stop
won’t ever reach this node (return α)



Alpha-beta pruning

At min node:
receive α and β values from parent

expand children one by one
update β as we go

if β ever gets lower than α, stop
won’t ever reach this node (return β)



Example



How much do we save?

Original tree: bd nodes
b = branching factor
d = depth

If we expand children in random order, 
pruning will touch b3d/4 nodes
Lower bound (best node first): bd/2

Can often get close to lower bound w/ 
move ordering heuristics



Matrix 
games



Matrix games

Games where each player chooses a single 
move (simultaneously with other players)
Also called normal form games
Simultaneous moves cause uncertainty: we 
don’t know what other player(s) will do



Acting in a matrix game

One of the simplest kinds of games; we’ll 
get more complicated later in course
But still will make us talk about

negotiation
cooperation
threats, promises



Matrix game: prisoner’s dilemma

C D

C -1 -9

D 0 -5

C D

C -1 0

D -9 -5

payoff to Row Payoff to Col



Matrix game: prisoner’s dilemma

C D

C -1, -1 -9, 0

D 0, -9 -5, -5



Can also have n-player games

H T

H 0, 0, 1 0, 0, 1

T 0, 0, 1 1, 1, 0

H T

H 1, 1, 0 0, 0, 1

T 0, 0, 1 0, 0, 1

if Layer plays H if Layer plays T



Analyzing a game

What do we want to know about a game?
Value of a joint action: just read it off of 
the table
Value of a mixed joint strategy: almost as 
simple



Value of a mixed joint strategy

Suppose Row plays 30-70, Col plays 60-40

C D

C .6*.3*w .4*.3*x

D .6*.7*y .4*.7*z



Payoff of joint strategy

Just an average over elements of payoff 
matrices MR and MC

If x and y are strategy vectors like (.3, .7)’ 
then we can write x’ MR y and x’ MC y



What else?

Could ask for value of a strategy x under 
various weaker assumptions about other 
players’ strategies y, z, …
Weakest assumption: other players might 
do absolutely anything!
How much does a strategy guarantee us in 
the most paranoid of all possible worlds?



Safety value

Worst-case value of a row strategy x in 2-
player game is

miny x’ MR y
More than two players, min over y, z, …
Best worst-case value is safety value or 
minimax value of game

maxx miny x’ MR y



What else?

If the world really is out to get us, the 
safety value is the end of the story
This is the case in…



Zero-sum 
games



Zero-sum game

A 2-player matrix game where
(payoff to A) = -(payoff to B) for all 
combinations of actions
Note: 3-player games are never called 
zero-sum, even if payoffs add to 0
But if (payoff to A) = 7 - (payoff to B) we 
sometimes fudge and call it zero-sum



Zero-sum: matching pennies

H T

H 1 -1

T -1 1



Minimax

In zero-sum games, safety value for Row is 
negative of safety value for Col (famous 
theorem of Nash)
A strategy that guarantees minimax value 
is a minimax strategy
If both players play such strategies, we are 
in a minimax equilibrium

no incentive for either player to switch 



Finding minimax

minx maxy  x’My  subject to
1’x = 1
1’y = 1
x, y ≥ 0



For example



Finding minimax

Eliminate x’s equality constraint:
minx maxy, z  z(1 - 1’x) + x’My  subject to

1’y = 1
x, y ≥ 0



Finding minimax

Gradient wrt x is
My - 1z

maxy, z  z  subject to
My - 1z ≥ 0
1’y = 1
y ≥ 0



For example



Interpreting LP

maxy, z  z  subject to
My ≥ 1z
1’y = 1
y ≥ 0

y is a strategy for Col; z is value of this 
strategy











Duality

x is dual variable for My ≥ 1z
Complementarity: Row can only play 
strategies where My = 1z
Makes sense: others cost more
Dual of this LP looks the same, so Col can 
only play strategies where x’M is maximal



Back to general-sum

What if the world isn’t really out to get us?
Minimax strategy is unnecessarily 
pessimistic



General-sum 
equilibria



Lunch

A U

A 3, 4 0, 0

U 0, 0 4, 3

A = Ali Baba, U = Union Grill



Pessimism

In Lunch, safety value is 12/7 < 2
Could get 3 by suggesting less-preferred 
restaurant
Any halfway-rational player will 
cooperate with this suggestion



Rationality

Trust the other player to look out for his/
her own best interests
Stronger assumption than “s/he might do 
anything”
Results in possibility of higher-than-safety 
payoff



Dominated strategies

First step towards being rational: if a 
strategy is bad no matter what the other 
player does, don’t play it!
Such a strategy is (strictly) dominated
Strict = always worse (not just the same)
Weak = sometimes worse, never better



Eliminating dominated strategies

C D

C -1, -1 -9, 0

D 0, -9 -5, -5



Do we always get a unique 
answer?

No: try Lunch
What can we do instead?
Well, what was special 
about Row offering to play 
A?

A U

A 3, 4 0, 0

U 0, 0 4, 3



Equilibrium

If Row says s/he will play A, 
Col’s best response is to play 
A as well
And if Col plays A, then Row’s 
best response is also A
So (A, A) is a mutually 
reinforcing pair of strategies—
an equilibrium

A U

A 3, 4 0, 0

U 0, 0 4, 3



Finding equilibria

The idea of equilibrium allows us to rule 
out some more joint strategies beyond 
what dominance gave us
The particular type of equilibrium we are 
about to describe is due to Nash

his name keeps coming up…



Finding equilibria

In a Nash equilibrium, we have a (mixed) 
strategy for each player
Each strategy is a best response to others

puts zero weight on suboptimal actions
therefore zero weight on dominated 
actions





How good is equilibrium?

Does an equilibrium tell you how to play?
Sadly, no.
To get further, we’ll need additional 
assumptions



Bargaining



Bargaining

In the standard model of a matrix game, 
players can’t communicate
To allow for bargaining, we will extend the 
model two ways:

first, cheap talk
second, a moderator



Cheap talk

Players get a chance to talk to one another 
before picking their actions
They cay say whatever they want—lie, 
threaten, cajole, or even be honest
What will happen?



Coordination

Certainly the players will try to coordinate
That is, they will try to agree on an 
equilibrium

agreeing on a non-equilibrium will lead 
to deviation

But which one?



Pareto dominance
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Pareto dominance

In Lunch, there are 3 Nash equilibria
Players could agree on any one, or agree 
to randomize among them

e.g., each simultaneously say a binary 
number, XOR together, use result to pick 
equilibrium



Pareto dominance

Not all equilibria are 
created equal
For any in brown triangle’s 
interior, there is one on red 
line that’s better for both 
players
Red line = Pareto dominant
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Beyond Pareto

We still haven’t achieved our goal of 
actually predicting what will happen
We’ve narrowed it down a lot: Pareto-
dominant equilibria
Further narrowing is the subject of much 
argument among game theorists



Nash bargaining solution

Nash designed a model of the bargaining 
process (there’s that name again…)
Rubinstein later made the model more 
detailed and implementable
Model includes offers, threats, and 
impatience to reach an agreement
In this model, we finally have a unique 
answer to “what will happen?”



Nash bargaining solution

Predicts players 
will agree on the 
point on Pareto 
frontier that 
maximizes product 
of extra utility
Invariant to axis 
rescaling, player 
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Moderator

A moderator has a big deck of cards
Each card has a recommended action for 
each player
Moderator draws a card, whispers actions 
to corresponding players

actions may be correlated
only find out your own



Correlated equilibrium

Since players can have correlated actions, 
an equilibrium with a moderator is called 
a correlated equilibrium
Example: 5-way stoplight
All NE are CE
At least as many CE as NE in every game 
(often strictly more)



Realism?

Moderators are often available
Sometimes have to be kind of clever
E.g., can simulate a moderator using 
cheap talk and some crypto



Correlated equilibrium

A U

A a b

U c d

A U

A 3, 4 0, 0

U 0, 0 4, 3



Correlated equilibrium

Probability that Row is recommended to 
play A = a + b
Given recommendation for A, probability 
that Col also plays A = a / (a + b)
Rationality: when I’m recommended to 
play A, I don’t want to play B instead



Correlated equilibrium
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Figure 21.1 Equilibria in the Battle of the Sexes. The corners of the outlined
simplex correspond to the four pure strategy profiles OO, OF, FO, and FF; the
curved surface is the set of distributions where the row and column players pick
independently; the convex shaded polyhedron is the set of correlated equilibria.
The Nash equilibria are the points where the curved surface intersects the shaded
polyhedron.

and FF:

O F

O a b

F c d

Suppose that the row player receives the recommendation O. Then it knows that
the column player will play O and F with probabilities a/(a + b) and b/(a + b). (The
denominator is nonzero since the row player has received the recommendation O.)
The definition of correlated equilibrium states that in this situation the row player’s
payoff for playing O must be at least as large as its payoff for playing F.

In other words, in a correlated equilibrium we must have

4
a

a + b
+ 0

b

a + b
≥ 0

a

a + b
+ 3

b

a + b
if a + b > 0

Multiplying through by a + b yields the linear inequality

4a + 0b ≥ 0a + 3b (21.2)

(We have discarded the qualification a+b > 0 since inequality 21.2 is always true in
this case.) On the other hand, by examining the case where the row player receives
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the recommendation F, we can show that

0c + 3d ≥ 4c + 0d . (21.3)

Similarly, the column player’s two possible recommendations tell us that

3a + 0c ≥ 0a + 4c (21.4)

and

0b + 4d ≥ 3b + 0d . (21.5)

Intersecting the four constraints (21.2–21.5), together with the simplex constraints

a + b + c + d = 1

and

a, b, c, d ≥ 0

yields the set of correlated equilibria. The set of correlated equilibria is shown as
the six-sided shaded polyhedron in figure 21.1. (Figure 21.1 is adapted from (Nau
et al., 2004).)

For a game with multiple players and multiple strategies we will have more
variables and constraints: one nonnegative variable per strategy profile, one equality
constraint which ensures that the variables represent a probability distribution, and
one inequality constraint for each ordered pair of distinct strategies of each player.
(A typical example of the last type of constraint is “given that the moderator
tells player i to play strategy j, player i doesn’t want to play k instead.”) All
of these constraints together describe a convex polyhedron. The number of faces
of this polyhedron is no larger than the number of inequality and nonnegativity
constraints given above, but the number of vertices can be much larger.

The Nash equilibria for Battle of the Sexes are a subset of the correlated
equilibria. The large tetrahedron in figure 21.1 represents the set of probability
distributions over strategy profiles. In most of these probability distributions the
players’ action choices are correlated. If we constrain the players to pick their
actions independently, we are restricting the allowable distributions. The set of
distributions which factor into independent row and column strategy choices is
shown as a hyperbola in figure 21.1. The constraints which define an equilibrium
remain the same, so the Nash equilibria are the three places where the hyperbola
intersects the six-sided polyhedron.

21.3 Learning in One-Step Games

In normal-form games we have assumed that the description of the game is common
knowledge: everyone knows all of the rules of the game and the motivations of the
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Correlated equilibrium
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Bargaining

Can use Nash bargaining model to select 
among CE
Same results hold: unique answer on 
Pareto frontier (but now Pareto frontier 
might be better)


