| 5-780: Grad Al
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Last time, on

Grad Al




Plan graphs

® A way to do propositional planning
® How to build them

® mutex conditions for literals, actions
® How to use them

® conversion to SAT




Optimization & Search

® Classes of optimization problem
e |P CPILP MILP
® algorithms for solving, and complexity
® constraints, objective, integrality

® How to use DFID, etc. for optimization

® Definition of convexity




Bounds

® Pruning search w/ lower bounds on
objective

® Stopping early w/ upper bounds

® Getting bounds from a relaxation of an
optimization problem (increase feasible
region)

® particularly the LP relaxation of an ILP




Duality

® How to find dual of an LP or ILP

® |nterpretations of dual

linearly combine constraints to get a new
constraint orthogonal to objective

find prices for scarce resources
game between primal and dual players

correspondence faces <> vertices of
feasible regions (doesn’t include objective)
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Minimization

e Unconstrained: set Vf(x) =0
® E.g,minimize

f(x,y) =x?+y>+6x-4y +5

Vi(x,y) = (2x + 6,2y - 4)
(x,y) = (-3,2)




Equality constraints

® Equality constraint:
minimize f(x) s.t.g(x) =0

e can’t just set Vf to 0 (might violate
constraint)

® |nstead, want gradient along constraint’s
normal direction: any motion that decreases
objective will violate the constraint




Example

® E.g., minimize x* + y% subjecttox +y =2




Lagrange multipliers

® Minimize f(x) s.t.g(x) =0

e Constraint normal is Vg

® (I, 1) in our example

e Want Vf parallel to Vg & //A

e Equivalently, want Vf = AVg

® Aisa Lagrange multiplier




More than one
constraint

® With multiple constraints, use multiple
multipliers:

min x? + y? + 7% st

x+ty=2

X+z=72

(2x, 2y, 2z) = A(1, 1,0) + u(l,0, 1)




Two constraints:
the picture




What about
inequalities?

® Two cases: if minimum is in interior, can get
it by setting Vf =0




What about
inequalities?

® But if minimum is on boundary, treat as if
boundary were an equality constraint (use
Lagrange multiplier)




What about
inequalities’?

® Minimum could be at a corner: two
boundary constraints are active

® |n n dims, up to n linear inequalities may be
active (more in case of degeneracy)




Back to LP

w+d< 4
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Back to LP

max w + 2d st
w+d< 4
2w+ 5d =< 12

w,d=0

® |n LP we’re minimizing linear fn subject to
linear constraints

® So gradients are really easy to compute




Back to LP

Minimum can’t® occur in interior of feasible
region

In fact we can assume it’s at a vertex
So to find it, we must check vertices

How many boundary vertices could there
be?




Bases

With m constraints and n variables, any
subset of n constraints might be active

So up to (m choose n) possibilities

Given subset, easy to find corresponding
vertex (solve linear system)

Subset = basis




Search

® This is a combinatorial optimization
problem, so could use one of our standard
search algorithms

® Search space:
® node = basis
® objective = linear function of vertex

® neighbor =1




Neighboring bases

® [wo bases are neighbors if they share (n-1)
of n constraints

® Expanding a node in our search picks one
constraint to add and another to delete




Neighbors
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Simplex

® Notice that the objective increased
monotonically throughout search

® Turns out, this is always possible—Ileads to a
lot of pruning!

® We have just defined the simplex algorithm

® if we pretend that arbitrary vertices are
feasible, with an objective that penalizes
infeasibility heavily




Duality

example




Path planning LP

® Find the min-cost path: variables

Psxy Vs Ty Py >0







Optimal solution




Matrix form







Dual objective

® TJo get tightest bound, maximize:




Whole thing




Optimal dual solution

Any solution which adds a constant to all As also works

Similarly, could reduce Ax as far as 2




Interpretation

® Dual variables are prices on nodes: how
much does it cost to start there!

® Dual constraints are local price constraints:
edge xg (cost 3) means that node x can’t
cost more than 3 + price of node g




Search in

|ILPs




Simple search algorithm

(from last class)
e Run DFS

® node = partial assignment
® neighbor = set one variable
® Prune if a constraint becomes unsatisfiable

® Eg,in 0/l prob,settingy =0 in x + 3y 2 4

® |f we reach a feasible full assignment,
calculate its value, keep best




Pruning

Suggested increasing pruning by adding
constraints

Constraint from best solution so far:
objective 2 M (for maximization problem)

Constraint from optimal dual solution:
objective = M

Can we find more pruning to do!




First idea

® Analogue of constraint propagation or unit
resolution

® When we set a variable x, check constraints
containing x to see if they imply a restriction
on the domain of some other variable y

® E.g,setting x to | in implication constraint
(I-x) +y =1




Example

® 0O/| variables x,y, z

® maximize x subject to
2x+2y-z52
2x -y +z<2

x+2y-z<0



Example search




Problem w/ constraint
propagation

e Constraint propagation doesn’t prune as
early as it could:

2x +2y-z<2
DeaVadez S0

x+2y-z=<0

® Consider z = |




Branch and bound

Each time we fix a variable, solve the
resulting LP

Gives a tighter upper bound on value of
objective in this branch

If this upper bound < value of a previous
solution, we can prune

Called fathoming the branch




Can we do more!?

® Yes: we can make bounds tighter by looking
at the...




Duality gap




Factory LP

w+d< 4
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Duality gap

® We got bound of 5 1/3 either from primal
LP relaxation or from dual LP

® Compare to actual best profit of 5
(respecting integrality constraints)

® Difference of I/3 is duality gap
® Term is also used for ratio 5/ (5 1/3)

® Pretty close to optimal, right?




Unfortunately...
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Bad gap

® |n this example, duality gap is 3 vs 8.5, or
about a ratio of 0.35

® Ratio can be arbitrarily bad
® Aside: can often bound it for classes of ILPs

® e.g.,straightforward ILP from MAX SAT
has gap no worse than |-1/e = 0.632...




Early stopping

® A duality gap this large won’t let us prune or
stop our search early

® To fix this problem: cutting planes




Cutting plane

® A cutting plane is a new linear constraint
that

® cuts off some of the non-integral points in
the LP relaxation

® while leaving all integral points feasible




Cutting plane

constraint from
dual optimum
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How did we find it!?

® Recall our optimal dual multipliers (1/3, 1/3):
1/3(w+d-4)+ /32w +5d-12)<0
wt+2d=<16/3=51/3

® Since w, d are integers, so is w + 2d

® Soifw+2d <5 1/3, we also have




Gomory cuts

® This cutting plane is the Gomory cut

® First general recipe to find a cut in poly time
that’s guaranteed to cut off at least a minimal
amount of the LP relaxation’s feasible region

® Might have fractions on both LHS and RHS:
® 21/2w+3d=s51/3




Gomory cuts

® Findcutfor: 2 1/2w+3d=<51/3

® Rounding down fractions on LHS can only
weaken inequality:

® 2w+3d=51/3

® And as before, LHS is now integral so RHS
fraction is irrelevant:

® 2w+ 3d <5




Other cuts

In our example, the Gomory cut was
perfect: the vertices of the LP are now the
solutions of the ILP

How good is the Gomory cut in general?
Sadly, not so great.

Other cuts (not discussed here): intersection
cut, problem specific cuts




Cutting planes recipe

Solve LP relaxation

Use optimal primal and dual variables to
generate a cut

Add cut to LP (giving a less-relaxed LP) and
re-solve

Repeat until LP’s primal solution is integral




When does gap = 0!

® gap = 0 is often called strong duality

® Many people have defined sufficient
conditions

® Most common: Slater’s condition

® problem is convex

® there exists a strictly feasible point




Strictly feasible

® minimize f(x) st
gix)=0,i=1,2,...,m
Ax =b
® Strictly feasible point has gi(x) < 0 for all i

® Generalization: strict feasibility need not
hold if gi(x) is linear

® so all feasible LPs have gap = 0




Branch

and Cut




Branch and cut

Cutting planes recipe doesn’t use branching

What if we try to interleave search with cut
generation?

Resulting branch and cut methods are

some of the most popular algorithms for
solving ILPs and MILPs




Recipe

® DFS as for branch and bound
® At each node, solve the LP relaxation
® detect “‘fathomed” branches
® while not bored
® use dual vars to generate cut, re-solve
® Branch on next variable

® after a branch it may become easier to
generate more cuts




Cut generation

® Cuts at a node N are valid at N’s children

® so it’'s worth spending more effort higher
in the search tree

® General techniques for cut generation are
often expensive and/or generate weak cuts

® so people often use problem-specific cuts




Cut lifting

Sometimes a cut for one
lifted to apply to other

Or we can learn a cut in
with

branch can be
branches

ifted form to start

These cuts are like constraint learning

Try to compile some of the results of our
search to save branching later




Lifted example

® Two constraints from a SAT instance:
o x+y+(l-2)21, y+z+w=21
® Adding them yields
® x+2y+wz2|
® Trimming yields a cut:

e xt+ty+wz2|




More generally

® |f a variable appears with opposite sign in
two constraints, sum them

&t oyt 7 >l Dty >
®.. .k dyider. >0
® [hen trim the result:

® Ix+2y+z22




Example: robot task
assignment

® Team of robots must explore unknown area




Points of interest




Exploration plan




ILP

® Variables (all 0/1):
® z; = task j assigned to robot i
® Xk = robot i uses edge jk

® Cost = path cost - task bonus

® > XikCik = D, Zi i




Constraints

® Foralli, ] Zk Xijk > Zjj
® For each i, xijjk forms a tour from base:

® subtour elimination constraints




Subtour elimination
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(Game search




CETNER

® We will consider games like checkers and
chess:

® sequential

® zero-sum

® deterministic, alternating moves
® complete information

® (Generalizations later
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Figure 5.12  Ratings of human and machine chess champions.

® Classic Al challenge problem

® |n late '90s, Deep Blue became first
computer to beat reigning human champion




History:

Minimax with heuristic: 1950

Learning the heuristic: 1950s (Samuels’ checkers)
Alpha-beta pruning: 1966

Transposition tables: 1967 (hash table to find dups)
Quiescence: 1960s

DFID: 1975

End-game databases: 1977 (all 5-piece and some 6)

Opening books: ?
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Game tree for chess

400 positions after
one move by each side :
|Databases for all

Opening stage: 5 and some 6
20 positions after 7 Livieit B bloce sndgames

White's first move
! : opening moves

usually cover the
Initial
position

first 5-15 moves

Middlegame stage:
Moves In the middiegame
are selected by carrying out
a large search guided by
the minimax algorithm

The search tree fans out at
an average of 30-40 moves

at each position In the tree




Minimax search

® For small games, we can determine the value
of each node in the game tree by working
backwards from the leaves

® My move: node’s value is maximum over
children

® Opponent move: value is minimum over
children




Minimax example:
2x2 tic tac toe




Synthetic example




Principal variation




