15-780: Grad Al Lecture 7: Optimization

Geoff Gordon

Last time, on Grad Al

Plan graphs

- A way to do propositional planning
- How to build them
 - mutex conditions for literals, actions
- How to use them
 - conversion to SAT

Optimization & Search

- Classes of optimization problem
 - LP, CP, ILP, MILP
 - algorithms for solving, and complexity
 - constraints, objective, integrality
- How to use DFID, etc. for optimization
- Definition of convexity

Bounds

- Pruning search w/ lower bounds on objective
- Stopping early w/ upper bounds
- Getting bounds from a relaxation of an optimization problem (increase feasible region)
 - particularly the LP relaxation of an ILP

Duality

- How to find dual of an LP or ILP
- Interpretations of dual
 - linearly combine constraints to get a new constraint orthogonal to objective
 - find prices for scarce resources
 - game between primal and dual players
 - correspondence faces
 vertices of feasible regions (doesn't include objective)

Constrained optimization

Minimization

- Unconstrained: set $\nabla f(x) = 0$
- E.g., minimize

$$f(x, y) = x^2 + y^2 + 6x - 4y + 5$$

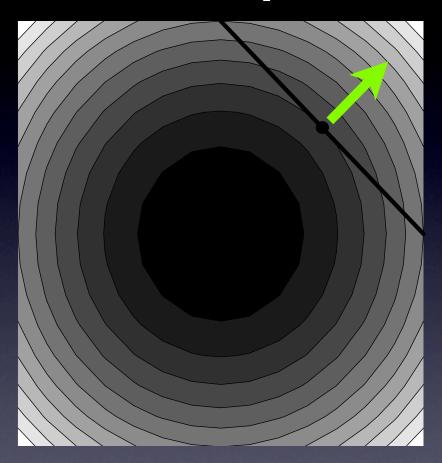
$$\nabla f(x, y) = (2x + 6, 2y - 4)$$

(x, y) = (-3, 2)

Equality constraints

- Equality constraint:
 - minimize f(x) s.t. g(x) = 0
- can't just set ∇f to 0 (might violate constraint)
- Instead, want gradient along constraint's normal direction: any motion that decreases objective will violate the constraint

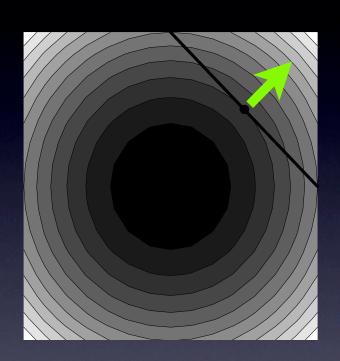
Example



• E.g., minimize $x^2 + y^2$ subject to x + y = 2

Lagrange multipliers

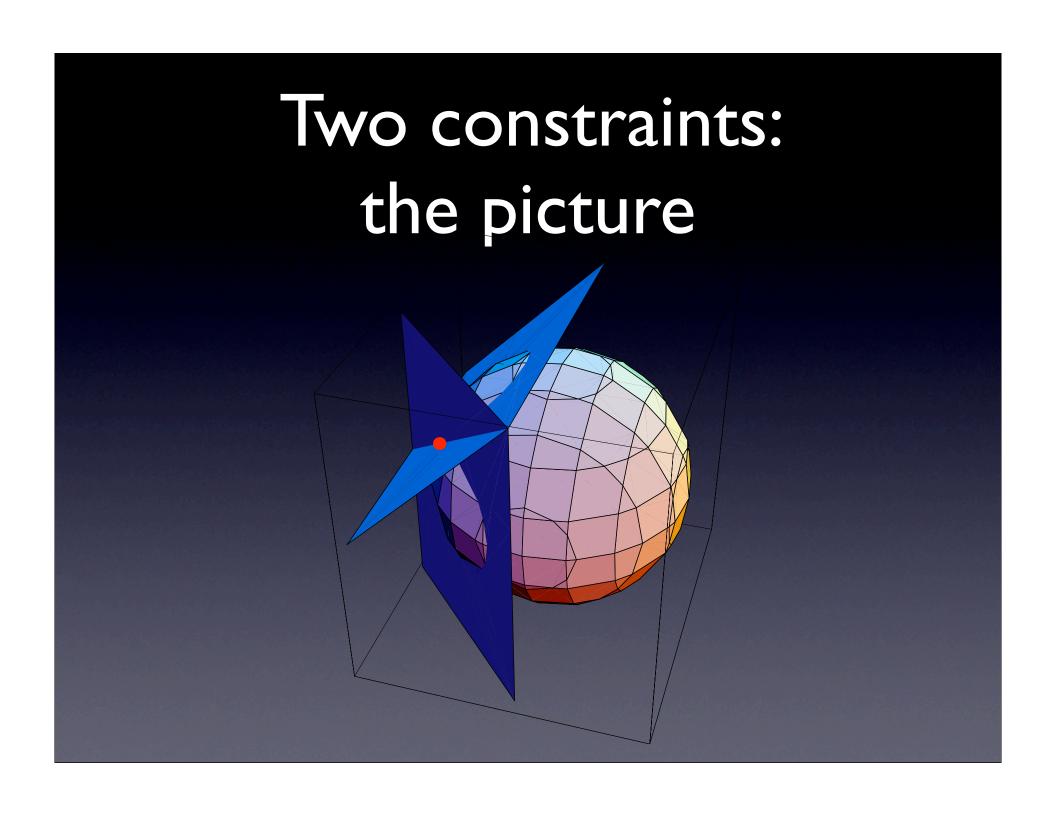
- Minimize f(x) s.t. g(x) = 0
- Constraint normal is ∇g
 - (I, I) in our example
- Want ∇f parallel to ∇g
- Equivalently, want $\nabla f = \lambda \nabla g$
- λ is a Lagrange multiplier



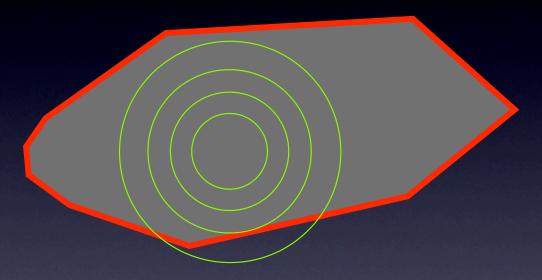
More than one constraint

With multiple constraints, use multiple multipliers:

min
$$x^2 + y^2 + z^2$$
 st
 $x + y = 2$
 $x + z = 2$
 $(2x, 2y, 2z) = \lambda(1, 1, 0) + \mu(1, 0, 1)$

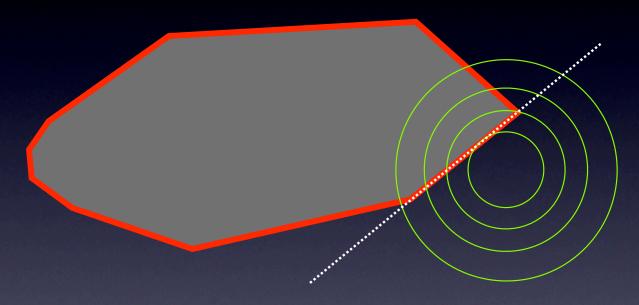


What about inequalities?



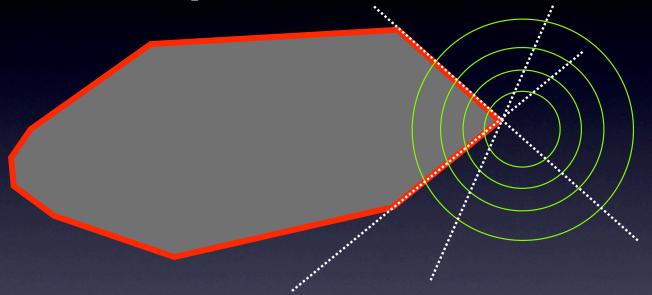
• Two cases: if minimum is in interior, can get it by setting $\nabla f = 0$

What about inequalities?



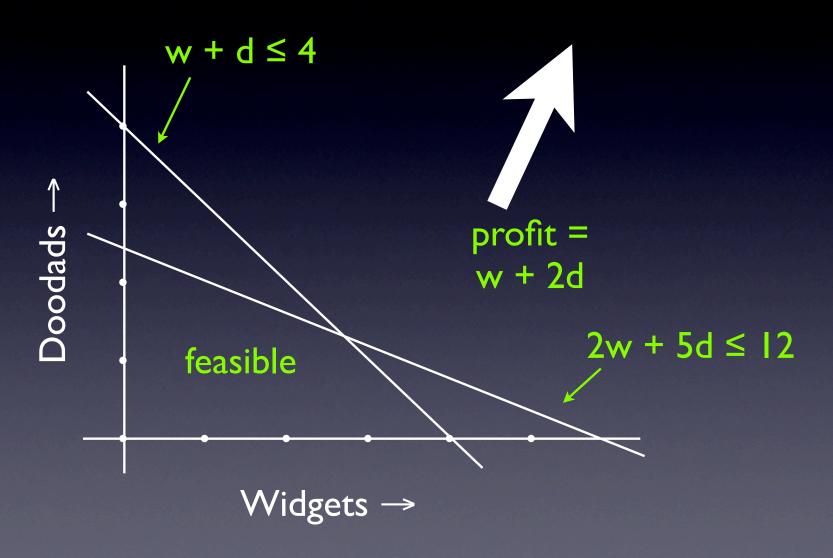
 But if minimum is on boundary, treat as if boundary were an equality constraint (use Lagrange multiplier)

What about inequalities?



- Minimum could be at a corner: two boundary constraints are active
- In n dims, up to n linear inequalities may be active (more in case of degeneracy)

Back to LP



Back to LP

$$max w + 2d st$$

$$w + d \le 4$$

$$2w + 5d \le 12$$

$$w, d \ge 0$$

- In LP we're minimizing linear fn subject to linear constraints
- So gradients are really easy to compute

Back to LP

- Minimum can't* occur in interior of feasible region
- In fact we can assume it's at a vertex
- So to find it, we must check vertices
- How many boundary vertices could there be?

Bases

- With m constraints and n variables, any subset of n constraints might be active
- So up to (m choose n) possibilities
- Given subset, easy to find corresponding vertex (solve linear system)
- Subset = basis

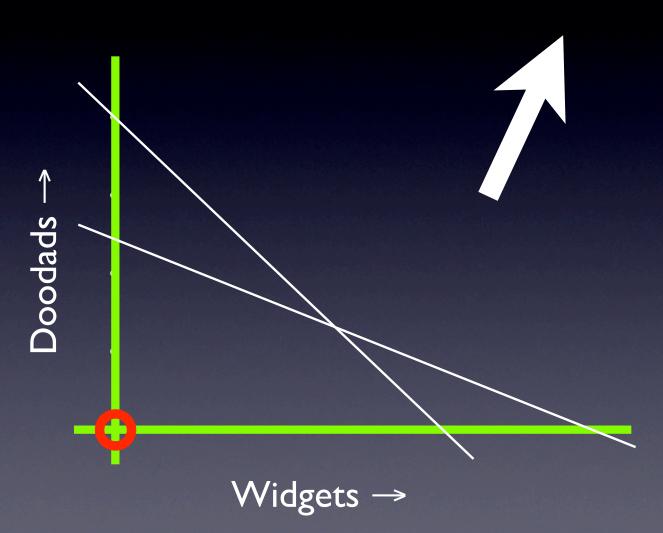
Search

- This is a combinatorial optimization problem, so could use one of our standard search algorithms
- Search space:
 - node = basis
 - objective = linear function of vertex
 - neighbor = ?

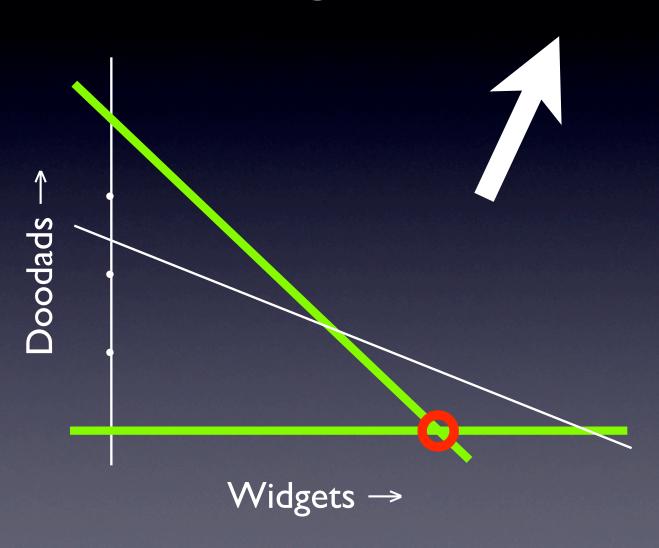
Neighboring bases

- Two bases are neighbors if they share (n-1) of n constraints
- Expanding a node in our search picks one constraint to add and another to delete

Neighbors



Neighbors



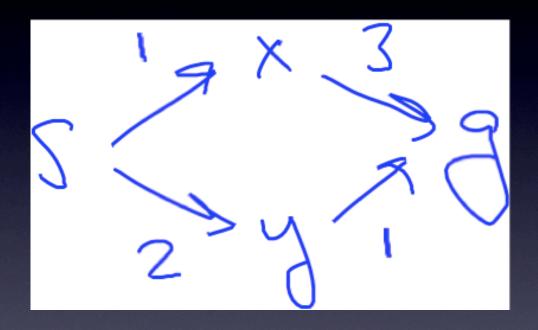
Neighbors

Simplex

- Notice that the objective increased monotonically throughout search
- Turns out, this is always possible—leads to a lot of pruning!
- We have just defined the simplex algorithm
 - if we pretend that arbitrary vertices are feasible, with an objective that penalizes infeasibility heavily

Duality example

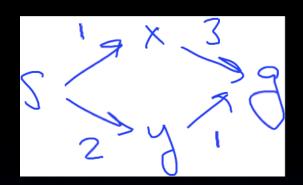
Path planning LP



Find the min-cost path: variables

Psx, Psy, Pxg, Pyg >0

Path planning LP



with
$$Psx + 3Pxg + 2Psy + Pyg$$

$$St$$

$$Psx$$

$$+ Psy$$

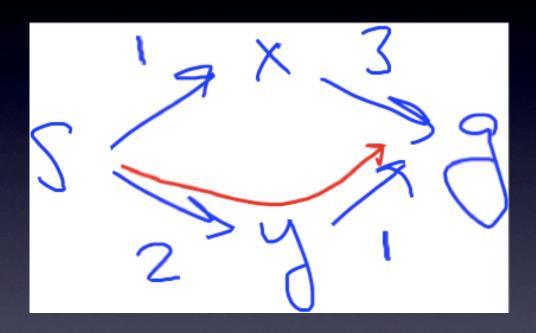
$$- Psx + Pxg$$

$$- Psy + Pyg = 0$$

$$- Pxg$$

$$- Pyg = -1$$

Optimal solution



$$p_{sy} = p_{yg} = I$$
, $p_{sx} = p_{xg} = 0$, cost 3

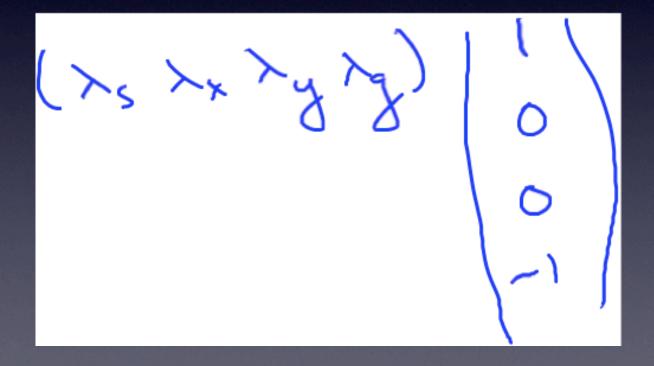
Matrix form

Dual

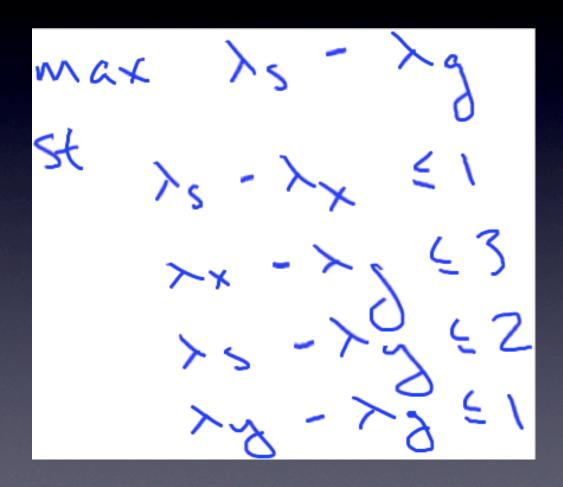
 $\leq (1371)$

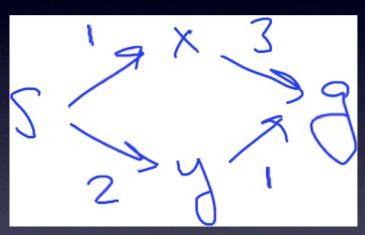
Dual objective

• To get tightest bound, maximize:

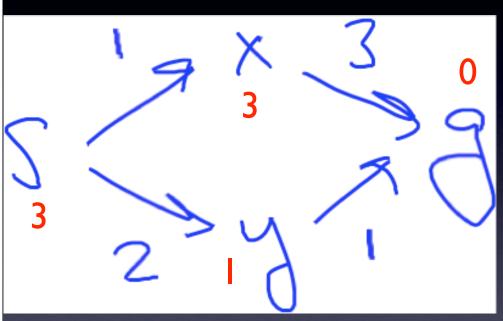


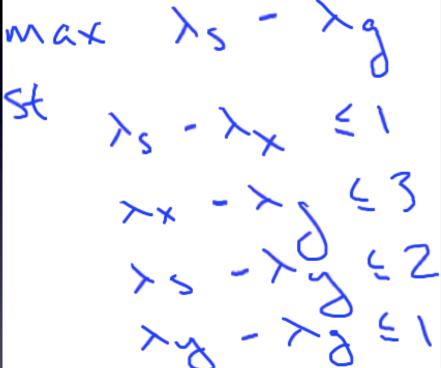
Whole thing





Optimal dual solution





Any solution which adds a constant to all λs also works Similarly, could reduce λ_x as far as 2

Interpretation

- Dual variables are prices on nodes: how much does it cost to start there?
- Dual constraints are local price constraints: edge xg (cost 3) means that node x can't cost more than 3 + price of node g

Search in ILPs

Simple search algorithm (from last class)

- Run DFS
 - node = partial assignment
 - neighbor = set one variable
- Prune if a constraint becomes unsatisfiable
 - E.g., in 0/1 prob, setting y = 0 in $x + 3y \ge 4$
- If we reach a feasible full assignment, calculate its value, keep best

Pruning

- Suggested increasing pruning by adding constraints
- Constraint from best solution so far: objective ≥ M (for maximization problem)
- Constraint from optimal dual solution: objective ≤ M
- Can we find more pruning to do?

First idea

- Analogue of constraint propagation or unit resolution
- When we set a variable x, check constraints containing x to see if they imply a restriction on the domain of some other variable y
- E.g., setting x to I in implication constraint $(I-x) + y \ge I$

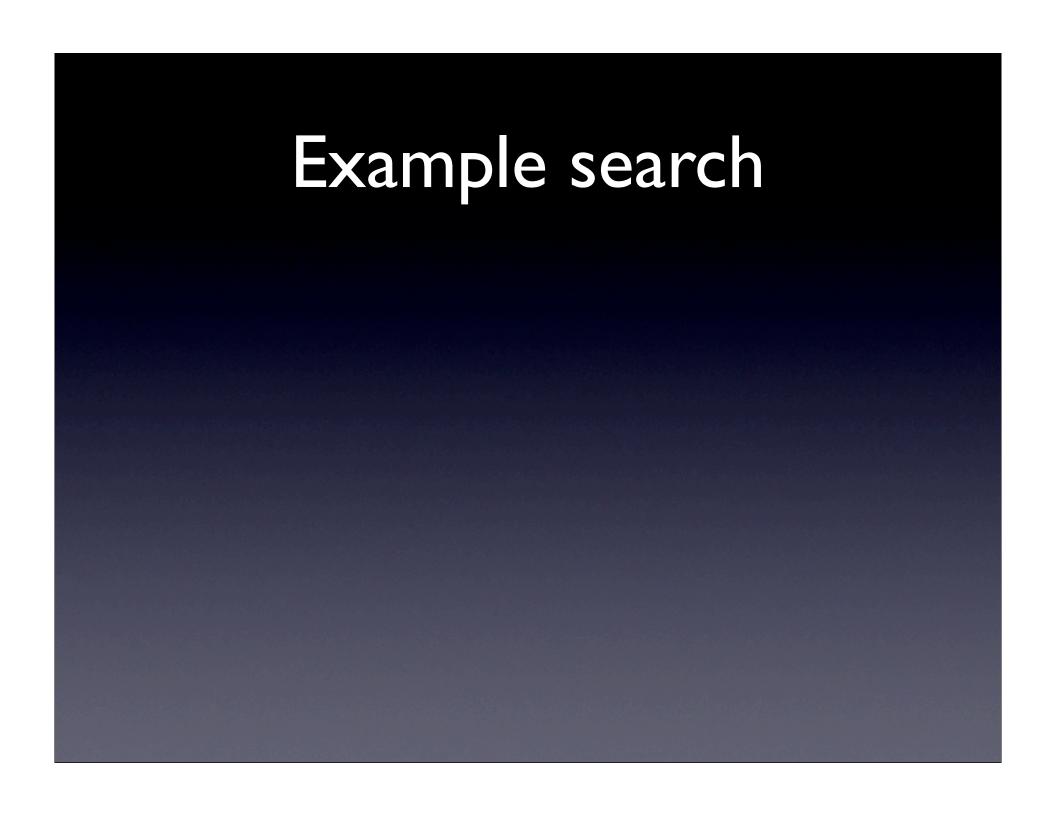
Example

- 0/I variables x, y, z
- maximize x subject to

$$2x + 2y - z \le 2$$

$$2x - y + z \le 2$$

$$-x + 2y - z \le 0$$



Problem w/ constraint propagation

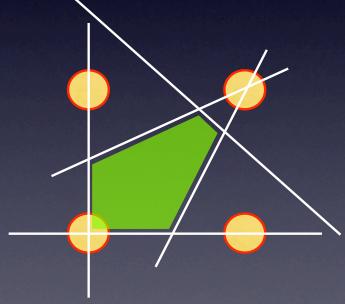
 Constraint propagation doesn't prune as early as it could:

$$2x + 2y - z \le 2$$

$$2x - y + z \le 2$$

$$-x + 2y - z \le 0$$

Consider z = I



Branch and bound

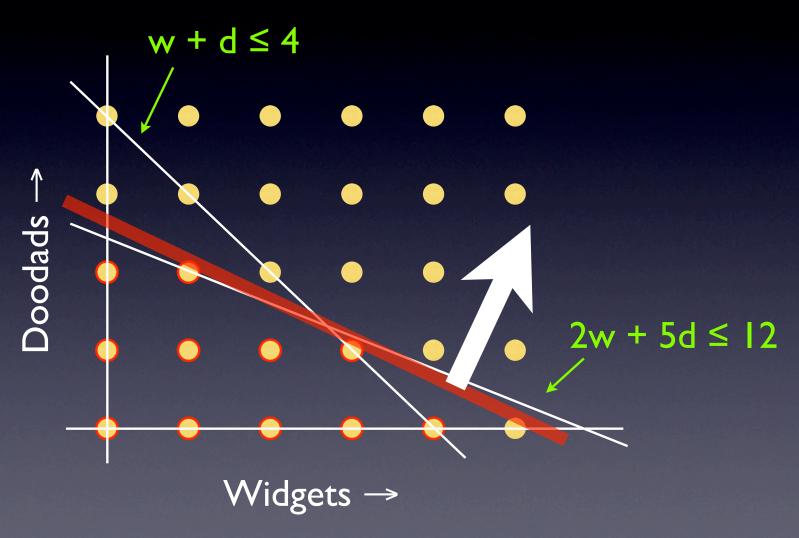
- Each time we fix a variable, solve the resulting LP
- Gives a tighter upper bound on value of objective in this branch
- If this upper bound < value of a previous solution, we can prune
- Called fathoming the branch

Can we do more?

• Yes: we can make bounds tighter by looking at the...

Duality gap

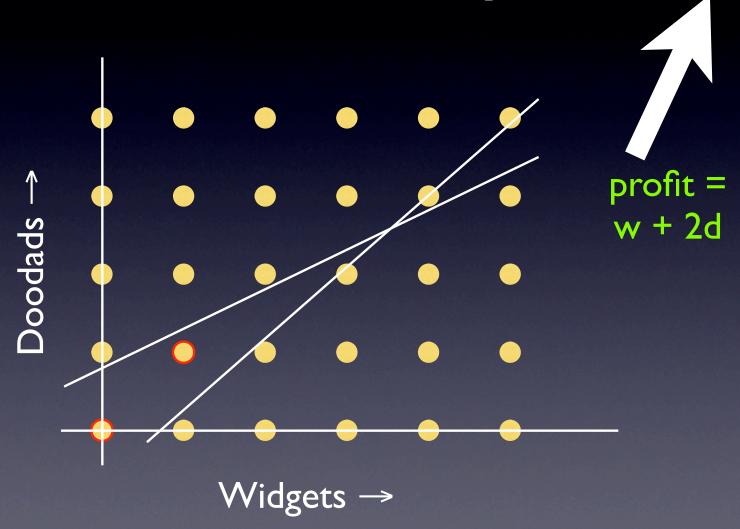
Factory LP



Duality gap

- We got bound of 5 1/3 either from primal LP relaxation or from dual LP
- Compare to actual best profit of 5 (respecting integrality constraints)
- Difference of 1/3 is duality gap
 - Term is also used for ratio 5 / (5 1/3)
- Pretty close to optimal, right?

Unfortunately...



Bad gap

- In this example, duality gap is 3 vs 8.5, or about a ratio of 0.35
- Ratio can be arbitrarily bad
- Aside: can often bound it for classes of ILPs
 - e.g., straightforward ILP from MAX SAT has gap no worse than I-I/e = 0.632...

Early stopping

- A duality gap this large won't let us prune or stop our search early
- To fix this problem: cutting planes

Cutting plane

- A cutting plane is a new linear constraint that
 - cuts off some of the non-integral points in the LP relaxation
 - while leaving all integral points feasible

Cutting plane Joodads → constraint from dual optimum cutting plane Widgets →

How did we find it?

• Recall our optimal dual multipliers (1/3, 1/3):

$$1/3 (w + d - 4) + 1/3 (2w + 5d - 12) \le 0$$

 $w + 2d \le 16/3 = 5 1/3$

- Since w, d are integers, so is w + 2d
- So if w + 2d \leq 5 1/3, we also have

$$w + 2d \leq 5$$

Gomory cuts

- This cutting plane is the **Gomory cut**
- First general recipe to find a cut in poly time that's guaranteed to cut off at least a minimal amount of the LP relaxation's feasible region
- Might have fractions on both LHS and RHS:
 - $2 \frac{1}{2} w + 3 d \le \frac{5}{1} \frac{1}{3}$

Gomory cuts

- Find cut for: $2 \frac{1}{2} w + 3 d \le \frac{5}{1} \frac{1}{3}$
- Rounding down fractions on LHS can only weaken inequality:
 - $2w + 3d \le 5 \frac{1}{3}$
- And as before, LHS is now integral so RHS fraction is irrelevant:
 - $2w + 3d \le 5$

Other cuts

- In our example, the Gomory cut was perfect: the vertices of the LP are now the solutions of the ILP
- How good is the Gomory cut in general?
- Sadly, not so great.
- Other cuts (not discussed here): intersection cut, problem specific cuts

Cutting planes recipe

- Solve LP relaxation
- Use optimal primal and dual variables to generate a cut
- Add cut to LP (giving a less-relaxed LP) and re-solve
- Repeat until LP's primal solution is integral

When does gap = 0?

- gap = 0 is often called strong duality
- Many people have defined sufficient conditions
- Most common: Slater's condition
 - problem is convex
 - there exists a strictly feasible point

Strictly feasible

minimize f(x) st

$$g_i(x) \le 0, i = 1, 2, ..., m$$

 $Ax = b$

- Strictly feasible point has $g_i(x) < 0$ for all i
- Generalization: strict feasibility need not hold if $g_i(x)$ is linear
 - so all feasible LPs have gap = 0

Branch and Cut

Branch and cut

- Cutting planes recipe doesn't use branching
- What if we try to interleave search with cut generation?
- Resulting branch and cut methods are some of the most popular algorithms for solving ILPs and MILPs

Recipe

- DFS as for branch and bound
- At each node, solve the LP relaxation
 - detect "fathomed" branches
 - while not bored
 - use dual vars to generate cut, re-solve
- Branch on next variable
 - after a branch it may become easier to generate more cuts

Cut generation

- Cuts at a node N are valid at N's children
 - so it's worth spending more effort higher in the search tree
- General techniques for cut generation are often expensive and/or generate weak cuts
 - so people often use problem-specific cuts

Cut lifting

- Sometimes a cut for one branch can be lifted to apply to other branches
- Or we can learn a cut in lifted form to start with
- These cuts are like constraint learning
- Try to compile some of the results of our search to save branching later

Lifted example

• Two constraints from a SAT instance:

•
$$x + y + (1-z) \ge 1$$
, $y + z + w \ge 1$

Adding them yields

•
$$x + 2y + w \ge 1$$

• Trimming yields a cut:

$$\bullet$$
 x + y + w \geq 1

More generally

• If a variable appears with opposite sign in two constraints, sum them

$$\bullet x + 2y + z \ge 1, 2x + y \ge 1$$

•
$$3x + 3y + z \ge 2$$

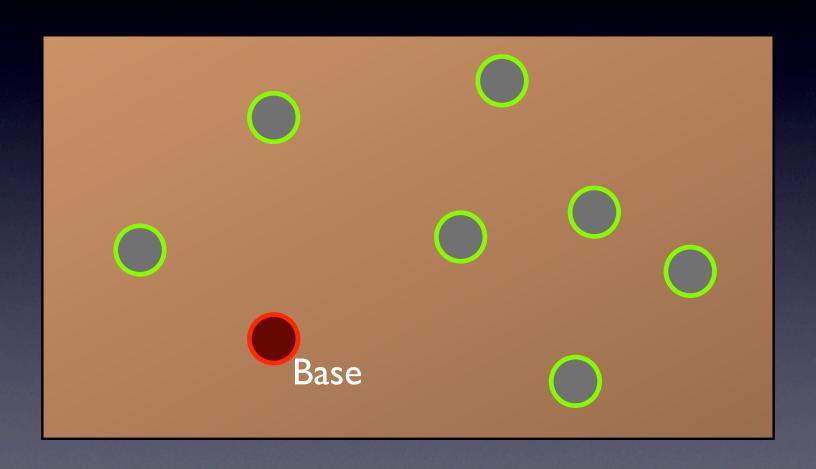
Then trim the result:

•
$$2x + 2y + z \ge 2$$

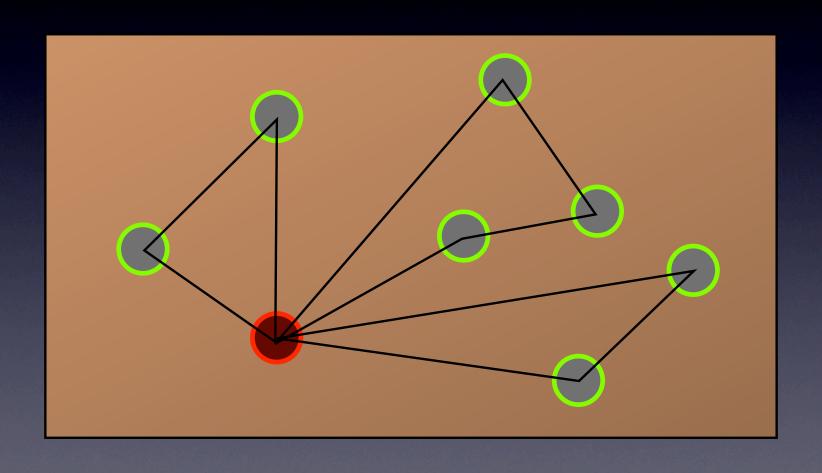
Example: robot task assignment

• Team of robots must explore unknown area

Points of interest



Exploration plan



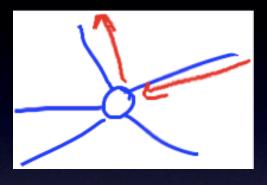
ILP

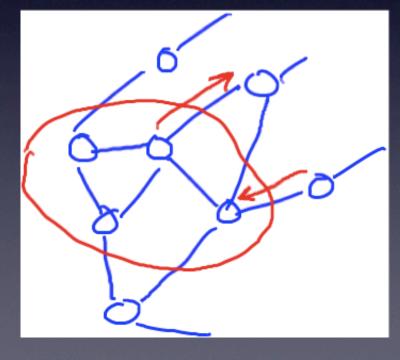
- Variables (all 0/1):
 - $z_{ij} = task j$ assigned to robot i
 - x_{ijk} = robot i uses edge jk
- Cost = path cost task bonus
 - $\bullet \sum x_{ijk} c_{ijk} \sum z_{ij} t_{ij}$

Constraints

- For all i, j: $\sum_{k} x_{ijk} \ge z_{ij}$
- For each i, x_{ijk} forms a tour from base:
 - subtour elimination constraints

Subtour elimination



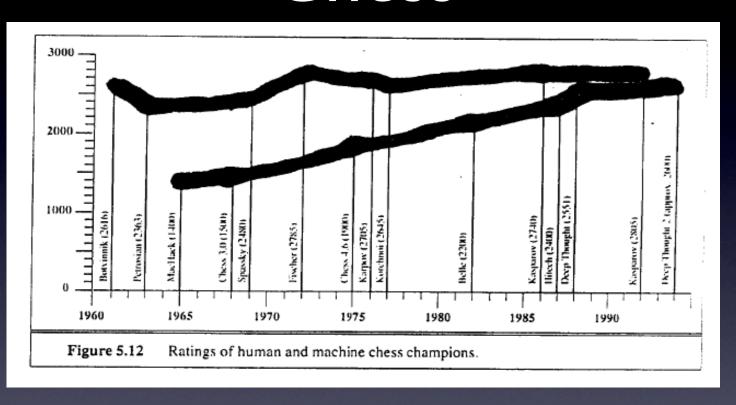


Game search

Games

- We will consider games like checkers and chess:
 - sequential
 - zero-sum
 - deterministic, alternating moves
 - complete information
- Generalizations later

Chess

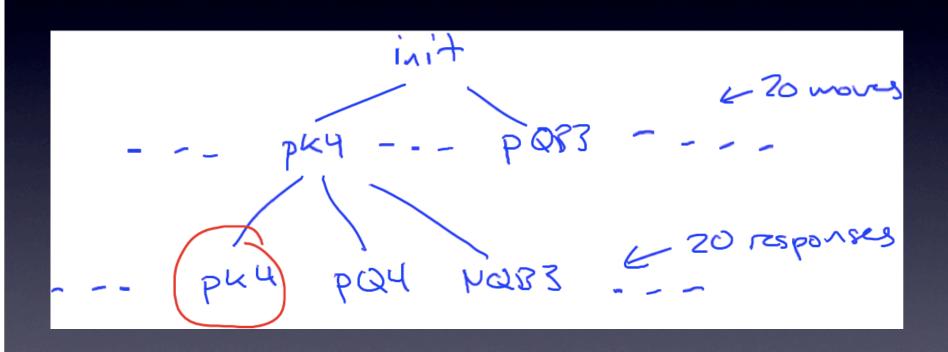


- Classic Al challenge problem
- In late '90s, Deep Blue became first computer to beat reigning human champion

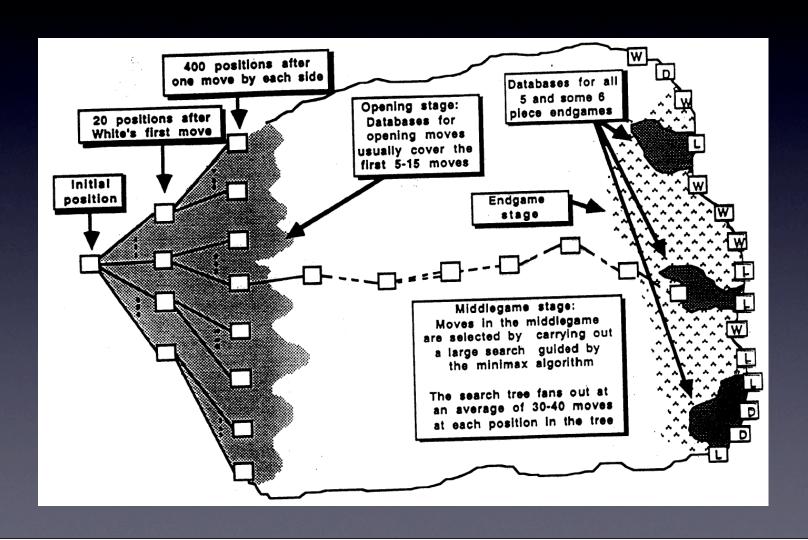
History:

- Minimax with heuristic: 1950
- Learning the heuristic: 1950s (Samuels' checkers)
- Alpha-beta pruning: 1966
- Transposition tables: 1967 (hash table to find dups)
- Quiescence: 1960s
- DFID: 1975
- End-game databases: 1977 (all 5-piece and some 6)
- Opening books: ?

Game tree



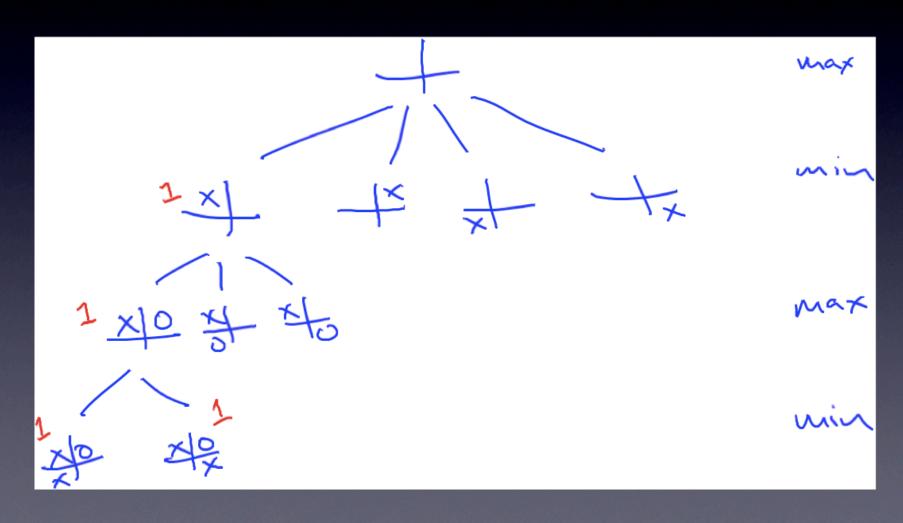
Game tree for chess



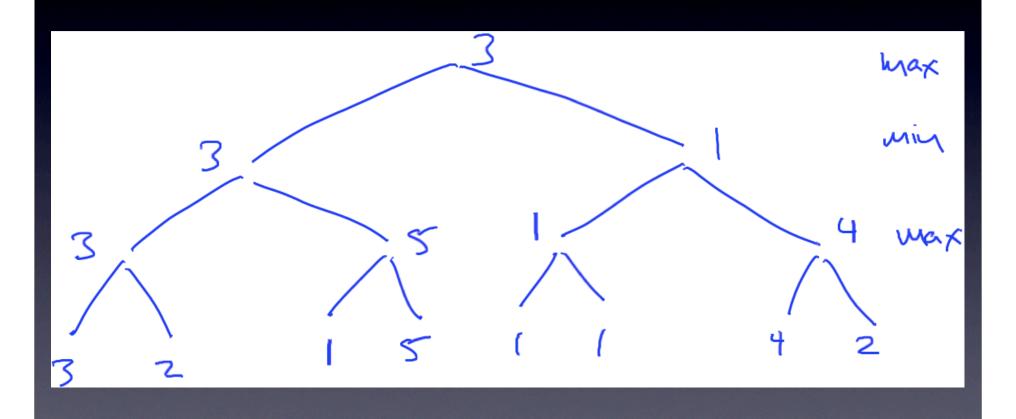
Minimax search

- For small games, we can determine the value of each node in the game tree by working backwards from the leaves
- My move: node's value is maximum over children
- Opponent move: value is minimum over children

Minimax example: 2x2 tic tac toe



Synthetic example



Principal variation

