

Computational biology: Systems biology and the cell cycle

Movie1.gvp

The Cell Cycle

- The process in which cells divide.
- Plays key role in development and cancer.

Time series expression data

Expression = level of gene (protein) in this experiment

genes

- 1997, 1998 budding yeast cell cycle expression
- 2000 plants
- 1999, 2000 human
- 2001 mouse

- 1997, 1998 budding yeast cell cycle expression
- 2000 plants
- 1999, 2000 human
- 2001 mouse

2002 – Human data is noise!

Reproducibility of peak between two repeats

- 1997, 1998 budding yeast cell cycle expression
- 2000 plants
- 1999, 2000 human
- 2001 mouse
- 2002 Human data is noise!
- 2002 Cancer cell cycle expression (approximation)

- 1997, 1998 budding yeast cell cycle expression
- 2000 plants
- 1999, 2000 human
- 2001 mouse
- 2002 human data is noise!
- 2002 cancer cell cycle expression (approximation)
- 2004, 2005 deconvolution and Checksum
- 2006 (upcoming) human cell cycle data

- 1997, 1998 budding yeast cell cycle expression
- 2000 plants
- 1999, 2000 human
- 2001 mouse
- 2002 human data is noise!
- 2002 cancer cell cycle expression (approximation)
- 2004, 2005 deconvolution and Checksum
- 2006 (upcoming) human cell cycle data

2004 – fission yeast cell cycle data

"Our comparisons with budding yeast data revealed a surprisingly small core set of genes that are periodically expressed in both yeasts."

From expression values to score

- Cells are synchronized to the same phase
- Microarray experiments at multiple time points after release from synchronization
- Scores derived from multiple expression time series
- Rank genes based on their scores, and use a cutoff score to identify cycling genes

Spellman et al. (1998)

Problems

- Different scoring methods result in different lists
- Microarray data are noisy
- Hard to separate scores for cycling and non-cycling genes
 - Score distribution of cell cycle genes (derived from GO) versus the rest
 - solid curve: cycling genes
 - dotted curve: the rest

Significance of homolog overlap

(Budding_Yeast (C), Fission_Yeast (C)) (pval<=1e-05)

(Budding_Yeast (C), Human (C)) (pval<=1e-05)

(Arabidopsis (C), Budding_Yeast (C)) (pval<=0.0007)

Graphical models

- Efficient way to represent and reason about joint distributions
- Graphs in which nodes represent random variables and edges correspond to dependency assumptions
- Two major types: Directed and undirected

- Bayesian networks
- Hidden Markov models

Markov random fields

Graphical models (cont)

- Parameters are used to specify the conditional probability distribution (directed graphs) or the potential functions (undirected graphs)
- Computational questions:
 - Determining the structure of the model (sometimes)
 - Estimating the parameters of the model
 - Inference

Probabilistic graphical model for systems combining expression and sequence homology

: C_i: Cycling Status Nodes (unobserved)

: Score Nodes (observed) — : Encodes Dependency Relations

Numeric summary of expression time series

Likelihood of the model

need to be learned from data

Node Potential:

$$\psi_i(C_i) = Pr(C_i|S_i)$$

Edge Potential:

$$\psi_i(C_i) = Pr(C_i|S_i)$$

$$\psi_{ij}(C_i, C_j) = 2^{-\lambda w_{ij}(C_i - C_j)^2}$$

Joint probability distribution

controls contribution from each source

weight (from homology)

$$L = \frac{1}{Z} \prod_{i} \psi_{i}(C_{i}) \prod_{i,j} \psi_{ij}(C_{i}, C_{j})$$

In what cases can we improve?

0.5 0.0

fission yeast

Arabidopsis

Essential yeast genes

10-810: Graduate Computational Genomics

- Spring 2007
- Bar-Joseph, Benos, Xing
- TR 10:30-11:50, Scaife Hall, 208
- Intro to computational biology emphasizing machine learning, sequence analysis and systems biology.