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Spellman et al Mol. Biol. Cell 1998
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1997, 1998 — budding yeast cell cycle expression
2000 — plants

1999, 2000 - human

2001 — mouse
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« 1997, 1998 — budding yeast cell cycle expression
« 2000 - plants

e 1999, 2000 - human

e 2001 - mouse

e 2002 — Human data is noise !
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« 1997, 1998 — budding yeast cell cycle expression

« 2000 - plants

e 1999, 2000 - human

« 2001 — mouse

e 2002 — Human data is noise !

e 2002 — Cancer cell cycle expression (approximation)
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« 1997, 1998 — budding yeast cell cycle expression

« 2000 - plants

e 1999, 2000 - human

e 2001 - mouse

e« 2002 — human data is noise !

o 2002 — cancer cell cycle expression (approximation)
o 2004, 2005 — deconvolution and Checksum

e 2006 (upcoming) — human cell cycle data



systems

Time line &*Bioloy

PO Group

e 1997, 1998 — budding yeast cell cycle expression

e 2000 - plants

e 1999, 2000 - human

« 2001 - mouse

e« 2002 — human data is noise !

e 2002 — cancer cell cycle expression (approximation)
e 2004, 2005 — deconvolution and Checksum

e 2006 (upcoming) — human cell cycle data

« 2004 - fission yeast cell cycle data
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s Periodic gene expression program of the fission
¢ yeast cell cycle

£ Gabriella Rustici', Juan Mata', Katja Kivinen?, Pietro Lié?, Christopher ] Penkett!, Gavin Burns!,
g Jacqueline Hayles?, Alvis BrazmaZ, Paul Nurse®* & Jiirg Biihler!

“Our comparisons with budding yeast data
revealed a surprisingly small core set of genes
that are periodically expressed in both yeasts.”



From expression values to Systems
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e Cells are synchronized to the same phase

e Microarray experiments at multiple time points after
release from synchronization

o Scores derived from multiple expression time series

 Rank genes based on their scores, and use a cutoff
score to identify cycling genes

Spellman et al. (1998)
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« Different scoring methods result in different lists
e Microarray data are noisy

« Hard to separate scores for cycling and non-cycling
genes

— Score distribution of cell cycle

Score Distributions of Humean Cell Cycle
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Density

Significance of homolog :gmm

overlap O Group

(Budding_Yeast (C), Fission_Yeast (C)) (pval<=1e-05)
(Budding_Yeast (C), Human (C)) (pval<=1e-05)

Density
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N = 10000 Bandwidth = 2.023
N = 10000 Bandwidth = 3.726
(Arabidopsis (C), Budding_Yeast (C})) (pval<=0.0007)

Density

I I I I I
0] 100 200 300 400

N = 10000 Bandwidth = 2.768



systems

Graphical models ggomuv

Efficient way to represent and reason about joint distributions

Graphs in which nodes represent random variables and edges correspond to
dependency assumptions

Two major types: Directed and undirected
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» Bayesian networks » Markov random fields

» Hidden Markov models
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Graphical models (cont) &g

« Parameters are used to specify the conditional probability distribution
(directed graphs) or the potential functions (undirected graphs)

« Computational questions:
- Determining the structure of the model (sometimes)
- Estimating the parameters of the model
- Inference



Probabillistic graphical model for_sysiems

combining expression and &g

seguence homology
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Likelihood of the model *Biolony

______ PO Group
i i %{ g """ need to be learned from data

* Node Potential: Vi(C;) = Pr(C;|S;)
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Improve?
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Essential yeast genes ~ &toion

Percentage

all cycling in cycling, buding conserved in conserved in
budding only sequence sequence and
expression
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Spring 2007
Bar-Joseph, Benos, Xing
TR 10:30-11:50, Scaife Hall, 208

Intro to computational biology emphasizing machine
learning, sequence analysis and systems biology.



