15-780: Graduate Artificial
Intelligence

Density estimation



Conditional Probability Tables
(CPT)

P(B):.OS PE=1
But where do we get
them?
P(A|B,E) )=.95
P(A|B,—E) = .85
P(A| — B,E) )=.5
P(A| = B, — E) = .05 / \
PWJIA) )=.7
P(J|-A) = 05
P(M|A)) 8

P(M|-A) = .15



Density Estimation

* A Density Estimator learns a mapping from a set of
attributes to a Probability

Input data for a
variable or a set of
variables

Density
Estimator

»Probability




Density estimation

Estimate the distribution (or conditional distribution) of a
random variable

Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year
- Continuous
height, weight, temp.,



Density estimation

e Binary and discrete variables:

Easy: Just count!

e Continuous variables:

Harder (but just a bit): Fit
a model



Learning a density estimator

#records in which x[i]=u

P(x[i1=u) =
(=) total number of records

A trivial learning algorithm!



Course evaluation

P(summer) = #Summer / # records summer? | Size Evaluation
=23/151 =0.15 1 19 3
P(Evaluation = 1) = #Evaluation=1 1 17 3

| # records

= 49/151 = 0.32 0 49 2
P(Evaluation = 1 | summer) = 0 33 1
P(Evaluation = 1 & summer) /

P(summer) = 2/23 = 0.09 0 55 3

But why do we count? ! 20 !




Computing the joint likelihood of
the data

P(summer) = #Summer / # records summer? | Size Evaluation

= 23/151 = 0.15

A A R "~
P(dataset|M ) = P(X, AX,...AXgIM) =] [ P(x /M)
k=1

—— The next slide presents one of the most
Important ideas in probabilistic inference. It —
has a huge number of applications in many
different and diverse problems




Maximum Likelihood Principle

« We can fit models by maximizing the probability of
generating the observed samples:

L(X3, ... X, | @) =p(X, | B) ... p(x, | O)

* The samples (rows in the table) are assumed to be
iIndependent)

e For a binary random variable A with P(A=1)=q

argmax, = #1/#samples
e Why?



Maximum Likelihood Principle

For a binary random variable A with P(A=1)=q
argmax, = #1/#samples
e Why?

Data likelihood: P(DIM)=qg*1-q)"

We would like to find: argmax, g™ (1-q)™



Maximum Likelihood Principle

Data likelihood: P(D|M)=qg™(1-q)™
We would like to find;: argmax,q™@-q)™

0 n n n — n n n,—
Eq '1-q)” =ng" " @-q)™ -q"n,(1-q)""

i:O:>
oq
ng" " (1-q)" -q*n,(1-q)" " =0=
q" " @A-q)= " (n,(l-q)-qn,)=0=
nl(l_q)_qnz =0=
n,=ngq+n,q=
— nl
n1+n2




Log Probabilities

Since probabilities of datasets get so
small we usually use log probabilities

- R . R )
log P(dataset|M ) =log | | P(x, /M) =) log P(x,[M)
k=1 k=1



Summary: The Good News

 We have a way to learn a Density Estimator from data.
* Density estimators can do many good things...

— Can sort the records by probability, and thus spot
weird records (anomaly detection)

— Can do inference: P(E1|E2)
Medical diagnosis / Robot sensors
— Ingredient for Bayes networks



Density estimation

e Binary and discrete variables:

Easy: Just count!

\ But what if we

only have very

/ few samples?
Harder (but just a bit): Fit

a model

e Continuous variables:



The danger of joint density
estimation

P(summer & size > 20 & evaluation = 3) =
0

- No such example in our dataset

Now lets assume we are given a
new (often called ‘test’) dataset. If
this dataset contains the line

Summer Size Evaluation
1 30 3

Then the probability we would
assign to the entire dataset is O

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1




Naive Density Estimation

The problem with the Joint Estimator is that it just
mirrors the training data.

We need something which generalizes more usefully.

The nalve model generalizes strongly:

Assume that each attribute Is distributed
iIndependently of any of the other attributes.



Joint estimation, revisited

Assuming independence we can
compute each probability independently

P(Summer) = 0.15
P(Evaluation = 1) = 0.32
P(Size > 20) = 0.63

How do we do on the joint?
P(Summer & Evaluation = 1) = 0.09
P(Summer)P(Evaluation = 1) = 0.05

P(size > 20 & Evaluation = 1) = 0.23
P(size > 20)P(Evaluation = 1) = 0.20

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
1
Not bad ! 3
1 20 1




Joint estimation, revisited

Assuming independence we can
compute each probability independently

P(Summer) = 0.15
P(Evaluation = 1) = 0.32
P(Size > 20) = 0.63

How do we do on the joint?
P(Summer & Size > 20) = 0.026
P(Summer)P(Size > 20) = 0.094

Summer? | Size Evaluation
1 19 3
1 17 3
0 49 2
0 33 1
0 55 3
1 20 1

We must be careful when using the Naive

density estimator




Contrast

Joint DE

Naive DE

Can model anything

Can model only very boring
distributions

No problem to model “C is a noisy
copy of A”

Outside Naive’s scope

Given 100 records and more than 6
Boolean attributes will screw up
badly

Given 100 records and 10,000
multivalued attributes will be fine




So what should | use?

This can be determined based on:
e Training data size

e Cross validation

e Likelihood ratio test

Cross validation is one of
the most useful tricks In
model fitting



Dealing with small datasets

We just discussed one possibility: Naive estimation

There is another way to deal with small number of
measurements that is often used in practice.

Assume we want to compute the probability of heads in a
coin flip

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will
assign probability of 1 to either the heads or tails




Pseudo counts

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will assign probability of 1 to
either the heads or tails

. In these cases we can use prior belief about the
‘fairness’ of most coins to influence the resulting model.

. We assume that we have observed 10 flips with 5 tails
and 5 heads

. Thus p(heads) = (#heads+5)/(#flips+10)

° Advantages: 1. Never assign a probability of O to an event

2. As more data accumulates we can get very close to the real
distribution (the impact of the pseudo counts will diminish rapidly)



Pseudo counts

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will assign probability of 1 to
either the heads or tails

. In these cases we can use prior belief about the
‘fairness’ of most coins to influence the resulting model.

W Some distributions (for example, the
. e as Ry |
and 5 h Beta distribution) can incorporate

pseudo counts as part of the model
. Thus p(heads) = (#heads+5)/(#flips+10)

th 5 tails

° Advantages: 1. Never assign a probability of O to an event

2. As more data accumulates we can get very close to the real
distribution (the impact of the pseudo counts will diminish rapidly)



Density estimation

e Binary and discrete variables:

Easy: Just count! V

e Continuous variables:

Harder (but just a bit): Fit
a model



Conditional Probability Tables
(CPT)

P(S1|D)="? P(S2 | D) ="?
What do we do with @
continuous variables? \
S1 -sensorl
S2 — sensor 2 @

D — distance to wall

T — too close

P(T|D<1)=.9 @



Elementary Concepts

 Population: the ideal group whose properties we are
Interested in and from which the samples are drawn

e.g., graduate students at CMU

« Random sample: a set of elements drawn at random
from the population

e.g., students in grad Al



Elementary Concepts

o Statistic: a number computed from the data
e.g., Average time of sleep



Sample Statistics

« Sample mean: — 1

ﬂ:F;Xi

where n is the number of samples.
e« Sample variance:

e« Sample covariance:

COV(x1,X) = n 2 (xei—£4) (Xai— 1)



How much do grad students sleep?

» Lets try to estimate the distribution of the time graduate
students spend sleeping (outside class).



Possible statistics

o X
Sleep time
Mean of X:
E{X}
7.03
e Variance of X:
Var{X} = E{(X-E{X})"2}
3.05

Frequency

Hours



Covariance

«Co-Variance of X1,
X2:
Covariance{X1,X2} =
E{(X1-E{X1})(X2-E{X2})}
=0.88

GPA

eeeeeeeee

Sleep hours



Statistical Models

o Statistical models attempt to characterize properties of the
population of interest

* For example, we might believe that repeated measurements
follow a normal (Gaussian) distribution with some mean u and
variance o2, X ~ N(U,6?)

—(x-u)®
2

where

20

1
p(xl®):ﬂaze

and @=(y,0?) defines the parameters (mean and variance) of the
model.



The Parameters of Our Model

0.45

- A statistical model is a |
collection of distributions; the o
parameters specify individual  °3
distributions x ~ N(l, 6?) a
* We need to adjust the .|
parameters so that the resulting o}
distribution fits the data well 005/

0

0.2r

~4 -2



The Parameters of Our Model

0.45

- A statistical model is a 0.}
collection of distributions; the o3
parameters specify individual ™’
distributions x ~ N(, %) ol
* We need to adjust the 015/
parameters so that the resulting °y
distribution fits the data well al

0.25f




Computing the parameters of our
model

e Lets assume a Guassian

eeeee

distribution for our sleep

data
« How do we compute the : |

parameters of the model?




Maximum Likelihood Principle

* We can fit statistical models by maximizing the probability of
generating the observed samples:

L(X11 1Xn| @) = p(xll @) p(Xﬂ | @)
(the samples are assumed to be independent)

* In the Gaussian case we simply set the mean and the
variance to the sample mean and the sample variance:

— 1 — 19 —
#= n_iz_l X o =5 2(xi—#)
Why?

| will leave these derivation to you ...



Sensor data

2i5

Sensor reading

04

*

Sensor 1

Sensor 2

1 1.4
Real distance

25



What Is the MLE for D given
S1,527

 We will write the general terms

and then use the network @
model to simplify it.
. The important issue is howto =~ ° rule \

work WiW Q

P(S1|D,S2)P(D|S2) *P(S1|D,S2)P(S2|D)P(D)
P(S1|S2) B P(S1|S2)P(S2)

Assuming equal prior on all valugs of D

=argmax, P(S1|D)P(S2| D) G

P(D|S1,S2) =

P(S1| D)P(S2| D)P(D)
P(S1|S2)P(S2)

arg max,

_(D-81)°

1 e 20'12 1

\ 270} \ 270,

_(D-52)

2
205

P(S1| D)P(S2| D) = e



Model for sensor data

(D-S1)2 (D-52)?

gt e 2 L o iy jogr L 1 , (D-S1)*> (D-S2)?
\ 27o) \ 270 \/27z0'12 \/27r022 207 20,
0 1 1 (D —S1)? (D-S2)° (D-S1) ,(D-S2)
——~log( B 2 4 2
ob \/27z0'12 \/27z0'22 20, 20, 20, 20,
:>—2(D_§1)—2(D_§2):o:>
207 20, Only if 6,= o,
2 2
D 81022+82201 . L
o] + 0,
D S1+S2

2



Sensor data

3 T T T T
L 3
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Real distance



Example

+
+
+




Important points

e Maximum likelihood estimations (MLE)
o Types of distributions
« Handling continuous variables



