15-780: Graduate Artificial Intelligence

Density estimation

Conditional Probability Tables (CPT)

But where do we get them?

Density Estimation

 A Density Estimator learns a mapping from a set of attributes to a Probability

Density estimation

- Estimate the distribution (or conditional distribution) of a random variable
- Types of variables:
 - Binary

coin flip, alarm

- Discrete

dice, car model year

- Continuous

height, weight, temp.,

Density estimation

Binary and discrete variables:

Easy: Just count!

Continuous variables:

Harder (but just a bit): Fit a model

Learning a density estimator

$$\hat{P}(x[i] = u) = \frac{\text{\#records in which } x[i] = u}{\text{total number of records}}$$

A trivial learning algorithm!

Course evaluation

```
P(summer) = #Summer / # records

= 23/151 = 0.15

P(Evaluation = 1) = #Evaluation=1

/ # records

= 49/151 = 0.32

P(Evaluation = 1 | summer) =

P(Evaluation = 1 & summer) /

P(summer) = 2/23 = 0.09
```

But why do we count?

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	3
1	20	1

Computing the joint likelihood of the data

P(summer) = #Summer / # records = 23/151 = 0.15

$$\hat{P}(\text{dataset/}M) = \hat{P}(\mathbf{x}_1 \wedge \mathbf{x}_2 \dots \wedge \mathbf{x}_R/M) = \prod_{k=1}^K \hat{P}(\mathbf{x}_k/M)$$

The next slide presents one of the most important ideas in probabilistic inference. It has a huge number of applications in many different and diverse problems

 We can fit models by maximizing the probability of generating the observed samples:

$$L(x_1, \ldots, x_n \mid \Theta) = p(x_1 \mid \Theta) \ldots p(x_n \mid \Theta)$$

- The samples (rows in the table) are assumed to be independent)
- For a binary random variable A with P(A=1)=q argmax_q = #1/#samples
- Why?

- For a binary random variable A with P(A=1)=q argmax_q = #1/#samples
- Why?

Data likelihood: $P(D|M) = q^{n_1}(1-q)^{n_2}$

We would like to find: $\arg \max_{q} q^{n_1} (1-q)^{n_2}$

Data likelihood: $P(D|M) = q^{n_1}(1-q)^{n_2}$

We would like to find: $arg max_q q^{n_1}(1-q)^{n_2}$

$$\frac{\partial}{\partial q} q^{n_1} (1-q)^{n_2} = n_1 q^{n_1-1} (1-q)^{n_2} - q^{n_1} n_2 (1-q)^{n_2-1}$$

$$\frac{\partial}{\partial q} = 0 \Rightarrow$$

$$n_1 q^{n_1-1} (1-q)^{n_2} - q^{n_1} n_2 (1-q)^{n_2-1} = 0 \Rightarrow$$

$$q^{n_1-1} (1-q)^{n_2-1} (n_1 (1-q) - q n_2) = 0 \Rightarrow$$

$$n_1 (1-q) - q n_2 = 0 \Rightarrow$$

$$n_1 = n_1 q + n_2 q \Rightarrow$$

$$q = \frac{n_1}{n_1 + n_2}$$

Log Probabilities

Since probabilities of datasets get so small we usually use log probabilities

$$\log \hat{P}(\text{dataset/}M) = \log \prod_{k=1}^{R} \hat{P}(\mathbf{x}_{k}/M) = \sum_{k=1}^{R} \log \hat{P}(\mathbf{x}_{k}/M)$$

Summary: The Good News

- We have a way to learn a Density Estimator from data.
- Density estimators can do many good things...
 - Can sort the records by probability, and thus spot weird records (anomaly detection)
 - Can do inference: P(E1|E2)Medical diagnosis / Robot sensors
 - Ingredient for Bayes networks

Density estimation

Binary and discrete variables:

Easy: Just count!

Continuous variables:

Harder (but just a bit): Fit a model

But what if we only have very few samples?

The danger of joint density estimation

P(summer & size > 20 & evaluation = 3) = 0

No such example in our dataset

Now lets assume we are given a new (often called 'test') dataset. If this dataset contains the line

Summer Size Evaluation

1 30 3

Then the probability we would assign to the *entire* dataset is 0

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	3
1	20	1

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any of the other attributes.

Joint estimation, revisited

Assuming independence we can compute each probability independently

$$P(Summer) = 0.15$$

$$P(Evaluation = 1) = 0.32$$

$$P(Size > 20) = 0.63$$

How do we do on the joint?

P(Summer & Evaluation =
$$1$$
) = 0.09

$$P(Summer)P(Evaluation = 1) = 0.05$$

	Summer?	Size		Evaluation
	1	19		3
	1	17		3
	0	49		2
				1
Not bad!			3	
	1	20	l	1

$$P(size > 20 \& Evaluation = 1) = 0.23$$

$$P(size > 20)P(Evaluation = 1) = 0.20$$

Joint estimation, revisited

Assuming independence we can compute each probability independently

$$P(Summer) = 0.15$$

$$P(Evaluation = 1) = 0.32$$

$$P(Size > 20) = 0.63$$

How do we do on the joint?

$$P(Summer \& Size > 20) = 0.026$$

$$P(Summer)P(Size > 20) = 0.094$$

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	3
1	20	1

We must be careful when using the Naïve density estimator

Contrast

Joint DE	Naïve DE
Can model anything	Can model only very boring distributions
No problem to model "C is a noisy copy of A"	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine

So what should I use?

This can be determined based on:

- Training data size
- Cross validation
- Likelihood ratio test

Cross validation is one of the most useful tricks in model fitting

Dealing with small datasets

- We just discussed one possibility: Naïve estimation
- There is another way to deal with small number of measurements that is often used in practice.
- Assume we want to compute the probability of heads in a coin flip
 - What if we can only observe 3 flips?
 - 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails

Pseudo counts

- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails
 - In these cases we can use prior belief about the 'fairness' of most coins to influence the resulting model.
 - We assume that we have observed 10 flips with 5 tails and 5 heads
- Thus p(heads) = (#heads+5)/(#flips+10)
- Advantages: 1. Never assign a probability of 0 to an event
 - 2. As more data accumulates we can get very close to the real distribution (the impact of the pseudo counts will diminish rapidly)

Pseudo counts

- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails
 - In these cases we can use prior belief about the 'fairness' of most coins to influence the resulting model.
 - We as and 5 h
 Some distributions (for example, the Beta distribution) can incorporate pseudo counts as part of the model
- Thus p(heads) = (#heads+5)/(#flips+10)
- Advantages: 1. Never assign a probability of 0 to an event
 - 2. As more data accumulates we can get very close to the real distribution (the impact of the pseudo counts will diminish rapidly)

Density estimation

Binary and discrete variables:

Easy: Just count!

Continuous variables:

Harder (but just a bit): Fit a model

Conditional Probability Tables (CPT)

What do we do with continuous variables?

S1 - sensor 1

S2 – sensor 2

D – distance to wall

T – too close

Elementary Concepts

- Population: the ideal group whose properties we are interested in and from which the samples are drawn
 e.g., graduate students at CMU
- Random sample: a set of elements drawn at random from the population
 - e.g., students in grad Al

Elementary Concepts

Statistic: a number computed from the data
 e.g., Average time of sleep

Sample Statistics

• Sample mean: $\overline{\mu} = \frac{1}{n} \sum_{i=1}^{n} \chi_i$

where *n* is the number of samples.

• Sample variance:

$$\overline{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (\chi_i - \overline{\mu})^2$$

• Sample covariance:

$$\overline{\text{cov}(\chi_1,\chi_2)} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{1,i} - \overline{\mu_1}) (\chi_{2,i} - \overline{\mu_2})$$

How much do grad students sleep?

• Lets try to estimate the distribution of the time graduate students spend sleeping (outside class).

Possible statistics

• X
Sleep time

•Mean of X:

 $E\{X\}$

7.03

Variance of X:

$$Var{X} = E{(X-E{X})^2}$$

3.05

Covariance

Co-Variance of X1,

X2:

Covariance $\{X1, X2\}$ = $E\{(X1-E\{X1\})(X2-E\{X2\})\}$ = 0.88

Statistical Models

- Statistical models attempt to characterize properties of the population of interest
- For example, we might believe that repeated measurements follow a normal (Gaussian) distribution with some mean μ and variance σ^2 , $x \sim N(\mu, \sigma^2)$

where
$$p(x \mid \Theta) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

and $\Theta = (\mu, \sigma^2)$ defines the parameters (mean and variance) of the model.

The Parameters of Our Model

- A statistical model is a **collection** of distributions; the **parameters** specify individual distributions $x \sim N(\mu, \sigma^2)$
- We need to adjust the parameters so that the resulting distribution fits the data well

The Parameters of Our Model

- A statistical model is a **collection** of distributions; the **parameters** specify individual distributions $x \sim N(\mu, \sigma^2)$
- We need to adjust the parameters so that the resulting distribution fits the data well

Computing the parameters of our model

- Lets assume a Guassian distribution for our sleep data
- How do we compute the parameters of the model?

 We can fit statistical models by maximizing the probability of generating the observed samples:

$$L(x_1, ..., x_n \mid \Theta) = p(x_1 \mid \Theta) ... p(x_n \mid \Theta)$$
 (the samples are assumed to be independent)

• In the Gaussian case we simply set the mean and the variance to the sample mean and the sample variance:

$$\overline{\mu} = \frac{1}{n} \sum_{i=1}^{n} \chi_{i} \qquad \overline{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\chi_{i} - \overline{\mu})^{2}$$

Why?

I will leave these derivation to you ...

Sensor data

What is the MLE for D given S1,S2?

Bayes rule

D

- We will write the general terms and then use the network model to simplify it.
- The important issue is how to work with Gaussians

$$P(D \mid S1, S2) = \frac{P(S1 \mid D, S2)P(D \mid S2)}{P(S1 \mid S2)} = \frac{P(S1 \mid D, S2)P(S2 \mid D)P(D)}{P(S1 \mid S2)P(S2)}$$

Assuming equal prior on all values of D $\arg\max_{D}\frac{P(S1|D)P(S2|D)P(D)}{P(S1|S2)P(S2)}=\arg\max_{D}P(S1|D)P(S2|D)$

$$P(S1|D)P(S2|D) = \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(D-S1)^2}{2\sigma_1^2}} \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{(D-S2)^2}{2\sigma_2^2}}$$

Model for sensor data

$$\log(\frac{1}{\sqrt{2\pi\sigma_1^2}}e^{-\frac{(D-S1)^2}{2\sigma_1^2}}\frac{1}{\sqrt{2\pi\sigma_2^2}}e^{-\frac{(D-S2)^2}{2\sigma_2^2}}) = \log(\frac{1}{\sqrt{2\pi\sigma_1^2}}\frac{1}{\sqrt{2\pi\sigma_2^2}}) - \frac{(D-S1)^2}{2\sigma_1^2} - \frac{(D-S2)^2}{2\sigma_2^2}$$

$$\frac{\partial}{\partial D} \log(\frac{1}{\sqrt{2\pi\sigma_1^2}} \frac{1}{\sqrt{2\pi\sigma_2^2}}) - \frac{(D-S1)^2}{2\sigma_1^2} - \frac{(D-S2)^2}{2\sigma_2^2} = -2\frac{(D-S1)}{2\sigma_1^2} - 2\frac{(D-S2)}{2\sigma_2^2}$$

$$\Rightarrow -2\frac{(D-S1)}{2\sigma_1^2} - 2\frac{(D-S2)}{2\sigma_2^2} = 0 \Rightarrow$$

$$D = \frac{S1\sigma_2^2 + S2\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \Rightarrow \bullet \bullet$$

$$D = \frac{S1+S2}{2}$$
Only if $\sigma_1 = \sigma_2$

Sensor data

$$D = \frac{S1 + S2}{2}$$

Example

Important points

- Maximum likelihood estimations (MLE)
- Types of distributions
- Handling continuous variables