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Intelligence

Density estimation



Conditional Probability Tables 
(CPT)

P(E)=.1
P(B)=.05

A

J M

B EBut where do we get 
them?

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15



Density Estimation
• A Density Estimator learns a mapping from a set of 

attributes to a Probability

Input data for a 
variable or a set of 

variables

Density
Estimator Probability



Density estimation
• Estimate the distribution (or conditional distribution) of a 

random variable
• Types of variables:

- Binary
coin flip, alarm

- Discrete
dice, car model year

- Continuous 
height, weight, temp.,



Density estimation
• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit 
a model



Learning a density estimator

records ofnumber  total
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A trivial learning algorithm!



Course evaluation

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 3

1 20 1

P(summer) = #Summer / # records

= 23/151 = 0.15

P(Evaluation = 1) =  #Evaluation=1 
/ # records
= 49/151 = 0.32

P(Evaluation = 1 | summer) = 
P(Evaluation = 1 & summer) / 
P(summer) = 2/23 = 0.09

But why do we count?



Computing the joint likelihood of 
the data

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 3

1 20 1

P(summer) = #Summer / # records

= 23/151 = 0.15

P(Evaluation = 1) =  #Evaluation=1 
/ # records
= 49/151 = 0.32

P(Evaluation = 1 | summer) = 
P(Evaluation = 1 & summer) / 
P(summer) = 2/23 = 0.09
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The next slide presents one of the most 
important ideas in probabilistic inference. It 
has a huge number of applications in many 
different and diverse problems



Maximum Likelihood Principle

• We can fit models by maximizing the probability of 
generating the observed samples:
L(x1, … ,xn | Θ) = p(x1 | Θ) … p(xn | Θ)
• The samples (rows in the table) are assumed to be 
independent)
• For a binary random variable A with P(A=1)=q

argmaxq = #1/#samples
• Why?



Maximum Likelihood Principle

•For a binary random variable A with P(A=1)=q
argmaxq = #1/#samples

• Why?

Data likelihood:

We would like to find:
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Maximum Likelihood Principle
Data likelihood:

We would like to find:

21 )1()|( nn qqMDP −=
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Log Probabilities

Since probabilities of datasets get so 
small we usually use log probabilities
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Summary: The Good News
• We have a way to learn a Density Estimator from data.
• Density estimators can do many good things…

– Can sort the records by probability, and thus spot 
weird records (anomaly detection)

– Can do inference: P(E1|E2)
Medical diagnosis / Robot sensors 

– Ingredient for Bayes networks



Density estimation
• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!
But what if we 
only have very 
few samples?

Harder (but just a bit): Fit 
a model



The danger of joint density 
estimation

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 3

1 20 1

P(summer & size > 20 & evaluation = 3) = 
0

- No such example in our dataset

Now lets assume we are given a 
new (often called ‘test’) dataset. If 
this dataset contains the line

Summer Size Evaluation                 

1 30 3

Then the probability we would 
assign to the entire dataset is 0



Naïve Density Estimation

The problem with the Joint Estimator is that it just 
mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed 
independently of any of the other attributes.



Joint estimation, revisited

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 3

1 20 1

Assuming independence we can 
compute each probability independently

P(Summer) = 0.15

P(Evaluation = 1) = 0.32

P(Size > 20) = 0.63

How do we do on the joint?

P(Summer & Evaluation = 1) = 0.09

P(Summer)P(Evaluation = 1) = 0.05

P(size > 20 & Evaluation = 1) = 0.23
P(size > 20)P(Evaluation = 1) = 0.20

Not bad !



Joint estimation, revisited

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 3

1 20 1

Assuming independence we can 
compute each probability independently

P(Summer) = 0.15

P(Evaluation = 1) = 0.32

P(Size > 20) = 0.63

How do we do on the joint?

P(Summer & Size > 20) = 0.026

P(Summer)P(Size > 20) = 0.094

We must be careful when using the Naïve 
density estimator



Contrast
Joint DE Naïve DE

Can model anything Can model only very boring 
distributions

No problem to model “C is a noisy 
copy of A”

Outside Naïve’s scope

Given 100 records and more than 6 
Boolean attributes will screw up 
badly

Given 100 records and 10,000 
multivalued attributes will be fine



So what should I use?
This can be determined based on:
• Training data size
• Cross validation
• Likelihood ratio test

Cross validation is one of 
the most useful tricks in 
model fitting



Dealing with small datasets
• We just discussed one possibility: Naïve estimation
• There is another way to deal with small number of 

measurements that is often used in practice.
• Assume we want to compute the probability of heads in a 

coin flip
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will 
assign probability of 1 to either the heads or tails 



Pseudo counts
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to 

either the heads or tails 

• In these cases we can use prior belief about the 
‘fairness’ of most coins to influence the resulting model. 

• We assume that we have observed 10 flips with 5 tails 
and 5 heads

• Thus p(heads) = (#heads+5)/(#flips+10)

• Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real 
distribution (the impact of the pseudo counts will diminish rapidly)



Pseudo counts
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to 

either the heads or tails 

• In these cases we can use prior belief about the 
‘fairness’ of most coins to influence the resulting model. 

• We assume that we have observed 10 flips with 5 tails 
and 5 heads

• Thus p(heads) = (#heads+5)/(#flips+10)

• Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real 
distribution (the impact of the pseudo counts will diminish rapidly)

Some distributions (for example, the 
Beta distribution) can incorporate 
pseudo counts as part of the model



Density estimation
• Binary and discrete variables: 

• Continuous variables:

Easy: Just count! √

Harder (but just a bit): Fit 
a model



Conditional Probability Tables 
(CPT)

P(S2 | D) = ?P(S1 | D) = ?

P(T| D < 1)=.9

D

S1 S2

T

What do we do with 
continuous variables?

S1 – sensor 1

S2 – sensor 2

D – distance to wall

T – too close



Elementary Concepts

• Population: the ideal group whose properties we are 
interested in and from which the samples are drawn

e.g., graduate students at CMU

• Random sample: a set of elements drawn at random 
from the population 

e.g., students in grad AI



Elementary Concepts

• Statistic: a number computed from the data
e.g., Average time of sleep



Sample Statistics
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• Sample mean:

where n is the number of samples. 
• Sample variance:

• Sample covariance:
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How much do grad students sleep?

• Lets try to estimate the distribution of the time graduate 
students spend sleeping (outside class).



Possible statistics
• X 
Sleep time

•Mean of X:
E{X}
7.03

• Variance of X: 
Var{X} = E{(X-E{X})^2}
3.05

Sleep
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Covariance
•Co-Variance of X1, 
X2: 
Covariance{X1,X2} = 

E{(X1-E{X1})(X2-E{X2})}
= 0.88

Sleep / GPA

2
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Statistical Models
• Statistical models attempt to characterize properties of the 
population of interest

• For example, we might believe that repeated measurements 
follow a normal (Gaussian) distribution with some mean µ and 
variance σ2 , x ~ N(µ,σ2)

where

and Θ=(µ,σ2) defines the parameters (mean and variance) of the 
model. 
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The Parameters of Our Model

−4 −2 0 2 4 6
0

0.05
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0.35

0.4

0.45

• A statistical model is a 
collection of distributions; the 
parameters specify individual 
distributions x ~ N(µ,σ2)
• We need to adjust the 
parameters so that the resulting 
distribution fits the data well



The Parameters of Our Model
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• A statistical model is a 
collection of distributions; the 
parameters specify individual 
distributions x ~ N(µ,σ2)
• We need to adjust the 
parameters so that the resulting 
distribution fits the data well



Computing the parameters of our 
model

• Lets assume a Guassian
distribution for our sleep 
data

• How do we compute the 
parameters of the model?
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Maximum Likelihood Principle

• We can fit statistical models by maximizing the probability of 
generating the observed samples:
L(x1, … ,xn | Θ) = p(x1 | Θ) … p(xn | Θ)
(the samples are assumed to be independent)

• In the Gaussian case we simply set the mean and the 
variance to the sample mean and the sample variance:
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Why?

I will leave these derivation to you …



Sensor data

D

S1 S2

T



What is the MLE for D given 
S1,S2?

• We will write the general terms 
and then use the network 
model to simplify it.

• The important issue is how to 
work with Gaussians
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Model for sensor data
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Sensor data
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Example



Important points
• Maximum likelihood estimations (MLE)
• Types of distributions
• Handling continuous variables


