
15-780: Graduate Artificial 
Intelligence

Neural networks



Mimicking the brain
• In the early days of AI there was a lot of interest in 

developing models that can mimic human thinking.
• While no one knew exactly how the brain works (and, 

even though there was a lot of progress since, there is 
still little known), some of the basic computational units 
were known

• A key component of these units is the neuron.



The Neuron
• A cell in the brain
• Highly connected to other 

neurons
• Thought to perform 

computations by integrating 
signals from other neurons

• Outputs of these 
computation may be 
transmitted to one or more 
neurons 



What can we do with NN?
• Classification

- We already mentioned many useful applications
• Regression

- A new concept:
Input: Real valued variables
Output: One or more real values

• Examples:
- Predict the price of Googles stock from Microsofts stock
- Predict distance to obstacle from various sensors    



Linear regression
• Given an input x we would 

like to compute an output y
• In linear regression we 

assume that y in x are 
related with the following 
equation: 

y = wx+ε
where w is a parameter 
and ε represents 
measurement or other 
noise  
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Linear regression
• Our goal is to estimate w from a training 
data of <xi,yi> pairs

• This could be done using a least squares 
approach

• Why least squares?

- minimizes squared distance between 
measurements and predicted line

- has a nice probabilistic interpretation

- easy to compute
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If the noise is Gaussian 
with mean 0 then least 
squares is also the 
maximum likelihood 
estimate of w



Solving linear regression

• You should be familiar with this by now …

• We just take the derivative w.r.t. to w and set to 0:
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Regression example



Affine regression
• So far we assumed that the 

line passes through the origin
• What if the line does not?
• No problem, simply change the 

model to
y = w0 + w1x+ε

• Can use least squares to 
determine w0 , w1
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Affine regression
• So far we assumed that the 

line passes through the origin
• What if the line does not?
• No problem, simply change the 

model to
y = w0 + w1x+ε

• Can use least squares to 
determine w0 , w1
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Just a second, we will soon 
give a simpler solution

X



Multivariate regression
• What if we have several inputs?

- Stock prices for Yahoo, Microsoft and Ebay for the 
Google prediction task 

• This becomes a multivariate regression problem
• Again, its easy to model:

y = w0 + w1x1+ … + wkxk + ε

Notations: 

Lower case: variable or parameter (w0)

Lower case bold: vector (w)

Upper case bold: matrix (X)



Multivariate regression: Least 
squares

• We are now interested in a vector wT = [w0, w1 ,… , wk]
• It would be useful to represent this in matrix notations:
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• We can thus re-write our model as y = wTX+ε

• The solution turns out to be: w = (XTX)-1XTy

• The is an instance of a larger set of computational solutions which 
are usually referred to as ‘generalized least squares’



Multivariate regression: Least 
squares

• We can re-write our model as y = wTX

• The solution turns out to be: w = (XTX)-1XTy

• The is an instance of a larger set of computational solutions which 
are usually referred to as ‘generalized least squares’

• XTX is a k by k matrix

• XTy is a vector with k entries

Why is (XTX)-1XTy the right solution?

Hint: Multiply both sides by  (XTX)-1XT



Multivariate regression: Least 
squares

• We can re-write our model as y = wTX

• The solution turns out to be: w = (XTX)-1XTy

We need to invert a k by k matrix

• This takes O(k3)

• Depending on k this can be rather slow



Where we are
• Linear regression – solved!
• But

- Solution may be slow
- Does not address general regression problems of the 
form 

y = f(wTx)



Back to NN: Preceptron
• The basic processing unit of a neural net

y=f(∑wixi)
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Linear regression

y=wixi
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• Lets start by setting f(∑wixi)=∑wixi

• We are back to linear regression
• Unlike our original linear regression 

solution, for perceptrons we will use a 
different strategy

• Why?
- We will discuss this later, for now lets 
focus on the solution …



Gradient descent

Slope = ∂z/ ∂w

∆w

z=(f(w)-y)2

∆z

w

• Going in the opposite direction to the slope will lead to 
a smaller z

• But not too much, otherwise we would go beyond the 
optimal w



Gradient descent
• Going in the opposite direction to the slope will lead to 
a smaller z

• But not too much, otherwise we would go beyond the 
optimal w

• We thus update the weights by setting:

where λ is small constant which is intended to prevent 
us from passing the optimal w
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Example when choosing the ‘right’
λ

• We get a monotonically decreasing error as we perform 
more updates



Gradient descent for linear 
regression

• We compute the gradient w.r.t. to each wi

• And if we have n measurements then

where xj,i is the i’th value of the j’th input vector
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Gradient descent for linear 
regression

• If we have n measurements then

• Set 

• Then our update rule can be written as
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Gradient descent algorithm for 
linear regression

1.Chose λ
2.Start with a guess for w
3.Compute δj for all j
4.For all i set 

5. If no improvement for 

stop. Otherwise go to step 3 
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Gradient descent vs. matrix 
inversion 

• Advantages of matrix inversion
- No iterations
- No need to specify parameters
- Closed form solution in a predictable time

• Advantages of gradient descent
- Applicable regardless of the number of parameters
- General, applies to other forms of regression



Perceptrons for classification 
• So far we discussed regression
• However, perceptrons can also be used for classification
• For example, output 1 is wTx > 0 and -1 otherwise
• Problem?



Perceptrons for classification 
• So far we discussed regression
• However, perceptrons can also be used for classification
• For example, output 1 is wTx > 1/2 and 0 otherwise
• Problem?

Best least squares fit

Best classifiery

x



The sigmoid function
• To classify using a perceptron we 

replace the linear function with the 
sigmoid function:

• Using the sigmoid we would minimize

• Where yj is either 0 or 1 depending on 
the class
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Gradient descent with sigmoid
• Once we defined our target function, we can minimize it using 

gradient descent 
• This involves some math, and relies on the following derivation*:

• So,
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*I have included a derivation of this at the end of 
the lecture notes



Gradient descent with sigmoid
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Revised algorithm for sigmoid 
regression

1.Chose λ
2.Start with a guess for w
3.Compute δj for all j
4.For all i set 

5. If no improvement for 

stop. Otherwise go to step 3 
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Multilayer neural networks
• So far we discussed networks with one layer.
• But these networks can be extended to combine several 

layers, increasing the set of functions that can be 
represented using a NN

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Often called the ‘hidden layer’



Multilayer neural networks
• So far we discussed networks with one layer.
• But these networks can be extended to combine several 

layers, increasing the set of functions that can be 
represented using a NN

v1=g(wTx)
w0,1
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v2=g(wTx)

v1=g(wTv)

w1,1

w2,1
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Often called the ‘hidden layer’
The book contains an interesting discussion about 
the types of Boolean functions that can be 
computed using various multilayer neural 
networks. We won’t cover it in class so you should 
look it up yourself.



Learning the parameters for 
multilayer networks

• Gradient descent works by connecting the output to the 
inputs.

• But how do we use it for a multilayer network? 
• We need to account for both, the output weights and the 

hidden layer weights
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Learning the parameters for 
multilayer networks

• Its easy to compute the update rule for the output weights 
w1 and w2:

where
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Learning the parameters for 
multilayer networks

• Its easy to compute the update rule for the output weights 
w1 and w2:

where
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But what is the error associated with each of the 
hidden layer states?



Backpropagation
• A method for distributing the error among hidden layer states
• Using the error for each of these states we can employ gradient 

descent to update them
• Set
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Backpropagation
• A method for distributing the error among hidden layer states
• Using the error for each of these states we can employ gradient 

descent to update them
• Set

• Our update rule changes to:
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Backpropagation
• A method for distributing the error among hidden layer states
• Using the error for each of these states we can employ gradient 

descent to update them
• Set

• Our update rule changes to:
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The correct error term for each hidden state can be 
determined by taking the partial derivative for each 
of the weight parameters of the hidden layer w.r.t. 
the global error function*:
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Revised algorithm for multilayered 
neural network

1.Chose λ
2.Start with a guess for w, wi
3.Compute values vi,j for all hidden layer states i and inputs j
4.Compute δj for all j:
5.Compute ∆j,I
6.For all i set

7. For all k and i set 

8. If no improvement for                        stop. Otherwise go to 
step 3 
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What you should know
• Linear regression

- Solving a linear regression problem
• Gradient descent
• Perceptrons

- Sigmoid functions for classification
• Multilayered neural networks

- Backpropagation



Deriving g’(x)
• Recall that g(x) is the sigmoid function so

• The derivation of g’(x) is below 
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