15-780: Graduate Artificial
Intelligence

Hidden Markov Models (HMMs)



What’s wrong with Bayesian
networks

e Bayesian networks are very useful for modeling joint
distributions

e But they have their limitations:
- No mention of time / sequence
- Dag’s (no self or any other loops)

This is not a valid 6\@

Bayesian network!
Y v



Hidden Markov models

 Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor
Hidden states: location (on a map)
- Speech processing
Observations: sound signals
Hidden states: parts of speech, words
- Biology
Observations: DNA base pairs
Hidden states: Genes



Hidden Markov models

 Model a set of observation with a set of hidden states
- Robot movement
Observations: range sensor, visual sensor
@ Hidden states: location (on a map) §

1. Hidden states generate observations

2. Hidden states transition to other hidden states



Examples: Speech processing




Example: Biological data

Biological
sequence
analysis
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Example: Gambling on dice
outcome

« Two dices, both skewed (output model).

o Can either stay with the same dice or switch to the
second dice (transition mode).

-
.



A Hidden Markov model

A set of states {s, ... S}

- In each time point we are in exactly one of these states
denoted by g,

[T, the probability that we start at state s;

A transition probability model, P(q, = s; | 9.5 = S))
A set of possible outputs X

- In time point t we emit a symbol ceX

An emission probability model, p(o, = c | )

0.8
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The Markov property

 Asetofstates {s, ... S}

- In each time point we are in exactly one of these states
denoted by g,

[T, the probability that we start at state s,
* A transition probability model, P(q, = s; | 9., = S))

An impoftant aspect of t.his.definitions IS the Markov property:
J:.1 IS conditionally independent of g, ; (and any earlier time
points) given g,

More formally P(q,; = S;| 0;=S) = P(Q1 =S| 3= 5,01 = S))



What can we ask when using a
HMM?

A few examples:

 “What dice is currently being used?”

« “What is the probability of a 6 in the next role?”

* “What is the probability of 6 in any of the next 3 roles?”

0.2
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Inference In HMMSs

Computing P(Q) and P(qg, = s;)

- If we cannot look at observations

Computing P(Q | O) and P(q, = s;|0O)

- When we have observation and care about the last
state only

Computing argmax,P(Q | O)

- When we care about the entire path



What dice Is currently being used?

There where t rounds so far
We want to determine P(q, = A)

Lets assume for now that we cannot observe any outputs
(we are blind folded)

How can we compute this?

0.2
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P(Q; = A)?

e Simple answer:
Lets determine P(Q) where Q is any path that ends in A
Q=04 .- Qg A

P(Q) =Py - O3, A) = P(A | dy, ... Aq) Py, -
P(A10.1) P, - Gg) = ... = P(A] -

Markov property!

Initial probabllity



P(Q; = A)?

e Simple answer:
1. Lets determine P(Q) where Q is any path that ends in A
Q=0 ... Qs A

P(Q) =P(Qy, ... 01, A) =P(A [0y, ... dey) P(dys --. Gpy) =
P(A|d.) P(Ay ... Gq) = ... =P(A[ Q1) ... P(d, | 9y) P(qy)

2. P(gq,=A) =ZP(Q)

where the sum is over all sets of t
sates that end in A



P(Q; = A)?

e Simple answer:
1. Lets determine P(Q) where Q is any path that ends in A

Q=0 - Gy, A

P(Q) =P(dy, -.- 9u1, A) =P(A[ 0y, ... Geq) P(@y, .. Qpy) =
P(A|d.) P(Ay ... Gq) = ... =P(A[ Q1) ... P(d, | 9y) P(qy)
2. P(q;,=A) = ZP(Q) Q: How many sets Q

where the sum is over all sets of t are there?

sates that end in A
A: A lot! (2t1)

Not a feasible solution



P(g, = A), the smart way

 Lets define p,(i) = probability state i at time t = p(q, = S;)

* We can determine p,(i) by induction

1. p,(1) =17,
2. pi) =7



P(g, = A), the smart way

 Lets define p,(i) = probability state i at time t = p(q, = S;)

* We can determine p,(i) by induction

1. p,(1) = I
2. p(1) = % p(0; = S; | Gra = $)Pr20)



P(g, = A), the smart way

 Lets define p,(i) = probability state i at time t = p(q, = S;)

* We can determine p,(i) by induction
1. p,(1) = I
2. p1) = Z; p(q; = i | Qg = 5)Pr10)

This type of computation is
called dynamic programming

Complexity: O(n%*t)

Time / t1 |t2 |[t3
State

sl 3

s2 4




Inference In HMMSs

« Computing P(Q) and P(q;=s;) \/

e Computing P(Q | O) and P(q, = s;|O)

- Computing argmax,P(Q)



But what If we observe outputs?

e So far, we assumed that we could not observe the
outputs

* In reality, we almost always can.

P(v]A) |P(v|B)
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But what If we observe outputs?

e So far, we assumed that we could not observe the

outputs

« In reality, we almost a Does observing the sequence

Y P(v|A) | P(v|B)
1 3 A1
2 2 1
3 2 A
4 1 2
5 1 2
6 1 3

5,6,4,5,6,6

Change our belief about the state?

0.8 0.2



But what If we observe outputs?

e So far, we assumed that we could not observe the

outputs

« In reality, we almost a Does observing the sequence

\Y; P(v|A) | P(v|B)
1 3 i
2 2 1

: HMMs are often
represented by the
- following structure:

6

A

3

5,6,4,5,6,6

Change our belief about the state?

ﬁ@ :



P(g, = A) when outputs are

observed
 We want to compute P(g,=A| O, ... O)

* For ease of writing we will use the following notations

(common In literature)
* &;=P(q =50 =5)

+ b(0) =P(o,|s)



P(g, = A) when outputs are

observed

We want to compute P(g,=A| O, ... O)

Lets start with a simpler question. Given a sequence of
states Q, whatis P(Q | O, ... O) = P(Q | O)

- We already know how to move from P(Q) to P(q, = A)
- In some cases P(Q) is the more important question

- Speech processing
- NLP



P(Q | O)

 We can use Bayes rule:

P(OQ)P(Q)
P(O)

P(QO) =

Easy, P(O | Q) =P(o, | ay) P(0; ] a,) ... P(o; | qy)



P(Q | O)

 We can use Bayes rule:

P(O[Q)P(Q)

P(QO) = o

Easy, P(Q) =P(q,) P(q, | 9y) --- P(q,] 9;1)



P(Q | O)

 We can use Bayes rule:

P(O[Q)P(Q)

P(QO) = P(O)

/

Hard!



P(O)

What is the probability of seeing a set of observations:

- An important guestion in it own rights, for example
classification using two HMMs

Define o,(i) = P(04, 0, ..., O, A ¢;=S))
a(1) Is the probability that we:

1. Observe 04, 0, ..., O,

2. End up at state |

How do we compute o, (1)?



Computing a,(1)

* () =P(og A q=1)=P(0, | .= S)IT,

We must be at a state in time t

chain rule
A/

Markov property



Example: Computing a4(B)

* We observed 2,3,6

o, (A)=P2 A q;=A)=P(2|q,=A)1, =2*7=.14, o (B) =.1*.3 = .03

0, (A) = Zip sDA(3)a o g ( J)=.2*.8%.14+.2%.2*.03 = 0.0236, a,(B) = 0.0052
03(B) = T Pa(6)a; g a( [)=.3*.2*.0236+.3*.8*.0052 = 0.00264

P(vIA) | P(v|B)

0.8 0.2
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Where we are

« We want to compute P(Q | O)
* For this, we only need to compute P(O)
« We know how to compute o(i)

From now its easy
o(l) = P(04, 0,..., 0, A Q;=S)
SO
P(O) = P(0, 0,...,0) =XP(0,,0,..., 0, A Q,=S;)) = Z, o (i)
note that

P(A|B)=P(AAB)/P(B)



Complexity

 How long does it take to compute P(Q | O)?
* P(Q): O(n)

* P(O|Q): O(n)
e P(O): O(n4)



Inference In HMMSs

« Computing P(Q) and P(q;=s;) \/

« Computing P(Q | O) and P(g; = s;|O) \/

- Computing argmax,P(Q)



Most probable path

 We are almost done ...
* One final question remains

How do we find the most probable path, that is Q* such
that

P(Q* | O) = argmaxyP(Q|O)?

e This Is an important path
- The words in speech processing
- The set of genes in the genome
- etc.



Example

 What is the most probable set of states leading to the

seguence.

I1,=0.7
I1,=0.3

1,2,2,5,6,5,1,2,3 ?

P(v|A)

P(v |B)
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Most probable path

PO Q)PQ)
P(O)

= argmax, P(O |Q)P(Q)

argmax, P(Q |O) = arg max,

We will use the following definition:

6, (1) = qIIl%)_( P(Q; ... Gy AG =5; AO,..0,)

In other words we are interested in the most likely
path from 1 to t that:

1. Ends in S,
2. Produces outputs O, ... O,



Computing o(1)
5,() = p(q, =s; AO,) S(i) = max p(d; .-Gy AG =5 A 0,..0,)

=p(q, =s)pPO, |q, =5;)
:ﬂibi(ol)

Q: Given (1), how can we compute J,,,(1)?
A: To get from §,(1) to 6,,,(1) we need to
1. Add an emission for time t+1 (O,,,)
2. Transition to state s,
O.,,(1) = rq?ggtc p(q,...9, AQ,,, =S ~0,..0,,,)

:m?th(j)p(Qt+1 =S, |q = Sj)p(om |G =Si)
- max 3, (1)a, (0,

Jii



The Viterbi algorithm

0., (1) = max p(q,...9, A0, =S, A0,..0,,))
=m?X]5t;1(j) P(G. =i [G =$;)P(Oy | Ay =8;)
=max 6., (1)a;;b(Op,)

e Once again we use dynamic programming for
solving d,(1)
« Once we have (1), we can solve for our P(Q*|O)
By:
P(Q* | O) = argmaxyP(Q[O) = P(Q* | O) =

path defined by argmax; ,(),



Inference In HMMSs

« Computing P(Q) and P(g, = s) \/

+ Computing P(Q | O) and P(q; = 5;,|0) 4/

» Computing argmax,P(Q) \/



Building — from an existing alignment

ACA| --- ATG
TCA ACT |ATC

ACA | C - - JAGC
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A HMM model for a DNA motif alignments, The transitions are
shown with arrows whose thickness indicate their probability. In
each state, the histogram shows the probabilities of the four
bases.
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Building — Final Topology
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Matching states ' Delétion states

Insertion states

No of matching states = average sequence length in the family
PFAM Database - of Protein families
(http://pfam.wustl.edu)




What you should know

wWhy HMMs? Which applications are suitable?
Inference in HMMs

- No observations

- Probability of next state w. observations

- Maximum scoring path (Viterbi)



Computing oy(l)

+ ay(i) =P(0; A q=1) = P(0, | g,= S)I],
We must be at a state in time t

at+1(i) — P(Ol o 'Ot+1 A qt+1 — Si) = chain rule
ZP(OI ...0, AQ =3, AOL AQy =) =«

ZP(OHI/\th_S 1O,...0, /\qt_S)P(O O, /\qt_s)_
Markov property

ZP(OHI AQy =5 10,...0, AQ, = Sj)at(J) =

j

ZP(Om |Gy =S)P(0y, =S [0, = Sj)at(j) =

j

Zbi (Ot+1)aj,iat(j)



