
15-780: Graduate Artificial 
Intelligence

Hidden Markov Models (HMMs) 



What’s wrong with Bayesian 
networks

• Bayesian networks are very useful for modeling joint 
distributions

• But they have their limitations:
- No mention of time / sequence
- Dag’s (no self or any other loops)  

This is not a valid 
Bayesian network!



Hidden Markov models
• Model a set of observation with a set of hidden states

- Robot movement
Observations: range sensor, visual sensor
Hidden states: location (on a map)

- Speech processing
Observations: sound signals
Hidden states: parts of speech, words

- Biology
Observations: DNA base pairs
Hidden states: Genes



Hidden Markov models
• Model a set of observation with a set of hidden states

- Robot movement
Observations: range sensor, visual sensor
Hidden states: location (on a map)

- Speech processing
Observations: sound signals
Hidden states: parts of speech, words

- Biology
Observations: DNA base pairs
Hidden states: Genes

1. Hidden states generate observations

2. Hidden states transition to other hidden states



Examples: Speech processing



Example: Biological data

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG
ATATTTGCCGACTTAAAAAGCTCAAG 
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT
CTGAAGAACAACTGGGAGTGTCGCTAC 
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG
GCACATCTGACAGAAGTGGAATCAAGG 
CTAGAAAGACTGGAACAGCTATTTCTACTGATTT
TTCCTCGAGAAGACCTTGACATGATT







Example: Gambling on dice 
outcome

• Two dices, both skewed (output model).
• Can either stay with the same dice or switch to the 

second dice (transition mode). 
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A Hidden Markov model
• A set of states {s1 … sn}

- In  each time point we are in exactly one of these states 
denoted by qt

• Πi, the probability that we start at state si

• A transition probability model, P(qt = si | qt-1 = sj)
• A set of possible outputs Σ

- In time point t we emit a symbol σ∈Σ
• An emission probability model, p(ot = σ | si)
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The Markov property
• A set of states {s1 … sn}

- In  each time point we are in exactly one of these states 
denoted by qt

• Πi, the probability that we start at state si

• A transition probability model, P(qt = si | qt-1 = sj)
• A set of possible outputs Σ

- In time point t we emit a symbol ot∈Σ
• An emission probability model, p(ot | si)
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An important aspect of this definitions is the Markov property: 
qt+1 is conditionally independent of qt-1 (and any earlier time 
points) given qt

More formally P(qt+1 = si | qt = sj) = P(qt+1 = si | qt = sj ,qt-1 = sj)



What can we ask when using a 
HMM?

A few examples:
• “What dice is currently being used?”
• “What is the probability of a 6 in the next role?”
• “What is the probability of 6 in any of the next 3 roles?”
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Inference in HMMs
• Computing P(Q) and P(qt = si)

- If we cannot look at observations
• Computing P(Q | O) and P(qt = si |O)

- When we have observation and care about the last 
state only

• Computing argmaxQP(Q | O)
- When we care about the entire path



What dice is currently being used?

• There where t rounds so far
• We want to determine P(qt = A)
• Lets assume for now that we cannot observe any outputs 

(we are blind folded)
• How can we compute this?
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P(qt = A)?
• Simple answer:

Lets determine P(Q) where Q is any path that ends in A
Q = q1, … qt-1, A
P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 
P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1)
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Markov property!

Initial probability



P(qt = A)?
• Simple answer:

1. Lets determine P(Q) where Q is any path that ends in A
Q = q1, … qt-1, A
P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 
P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1)

2. P(qt = A) = ΣP(Q)
where the sum is over all sets of t 
sates that end in A



P(qt = A)?
• Simple answer:

1. Lets determine P(Q) where Q is any path that ends in A
Q = q1, … qt-1, A
P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 
P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1)

2. P(qt = A) = ΣP(Q) Q: How many sets Q 
are there?

A: A lot! (2t-1)

Not a feasible solution

where the sum is over all sets of t 
sates that end in A



P(qt = A), the smart way
• Lets define pt(i) = probability state i at time t = p(qt = si)
• We can determine pt(i) by induction

1. p1(i) = Πi

2. pt(i) = ?



P(qt = A), the smart way
• Lets define pt(i) = probability state i at time t = p(qt = si)
• We can determine pt(i) by induction

1. p1(i) = Πi

2. pt(i) = Σj p(qt = si | qt-1 = sj)pt-1(j) 



P(qt = A), the smart way
• Lets define pt(i) = probability state i at time t = p(qt = si)
• We can determine pt(i) by induction

1. p1(i) = Πi

2. pt(i) = Σj p(qt = si | qt-1 = sj)pt-1(j) 

Time / 
state

t1 t2 t3

s1 .3

s2 .7

This type of computation is 
called dynamic programming

Complexity: O(n2*t)



Inference in HMMs
• Computing P(Q) and P(qt = si)

• Computing P(Q | O) and P(qt = si |O)

• Computing argmaxQP(Q)

√



But what if we observe outputs?
• So far, we assumed that we could not observe the 

outputs
• In reality, we almost always can.
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v P(v |A) P(v |B)
1 .3 .1
2 .2 .1
3 .2 .1
4 .1 .2
5 .1 .2
6 .1 .3
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But what if we observe outputs?
• So far, we assumed that we could not observe the 

outputs
• In reality, we almost always can.

v P(v |A) P(v |B)
1 .3 .1
2 .2 .1
3 .2 .1
4 .1 .2
5 .1 .2
6 .1 .3

Does observing the sequence 

5, 6, 4, 5, 6, 6

Change our belief about the state?
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But what if we observe outputs?
• So far, we assumed that we could not observe the 

outputs
• In reality, we almost always can.

A

B

0.2

0.2

0.8 0.8

v P(v |A) P(v |B)
1 .3 .1
2 .2 .1
3 .2 .1
4 .1 .2
5 .1 .2
6 .1 .3

Does observing the sequence 

5, 6, 4, 5, 6, 6

Change our belief about the state?

HMMs are often 
represented by the 
following structure:



P(qt = A) when outputs are 
observed

• We want to compute P(qt = A | O1 … Ot)
• For ease of writing we will use the following notations 

(common in literature)
• ai,j = P(qt = si | qt-1 = sj)
• bi(ot) = P(ot | si)



P(qt = A) when outputs are 
observed

• We want to compute P(qt = A | O1 … Ot)
• Lets start with a simpler question. Given a sequence of 

states Q, what is P(Q | O1 … Ot) = P(Q | O)
- We already know how to move from P(Q) to P(qt = A ) 
- In some cases P(Q) is the more important question

- Speech processing
- NLP 



P(Q | O)
• We can use Bayes rule:

)(
)()|()|(

OP
QPQOPOQP =

Easy, P(O | Q) = P(o1 | q1) P(o2 | q2) … P(ot | qt)



P(Q | O)
• We can use Bayes rule:

)(
)()|()|(

OP
QPQOPOQP =

Easy, P(Q) = P(q1) P(q2 | q1) … P(qt | qt-1)



P(Q | O)
• We can use Bayes rule:

)(
)()|()|(

OP
QPQOPOQP =

Hard!



P(O)
• What is the probability of seeing a set of observations:        

- An important question in it own rights, for example 
classification using two HMMs

• Define αt(i) = P(o1, o2 …, ot ∧ qt = si)
• αt(i) is the probability that we:

1. Observe o1, o2 …, ot

2. End up at state i

How do we compute αt (i)?



Computing αt(i)
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• α1(i) = P(o1 ∧ qt = i) = P(o1 | qt = si)ΠI

We must be at a state in time t

chain rule

Markov property



Example: Computing α3(B) 
• We observed 2,3,6

α1(A) = P(2 ∧ q1 = A) = P(2 | q1 = A)ΠA =.2*.7 = .14, α1(B) = .1*.3 = .03 

α2(A) = Σj=A,,BbA(3)aj,A α1( j)=.2*.8*.14+.2*.2*.03 = 0.0236, α2(B) = 0.0052

α3(B) = Σj=A,,BbB(6)aj,B α2( j)=.3*.2*.0236+.3*.8*.0052 = 0.00264
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Where we are
• We want to compute P(Q | O)
• For this, we only need to compute P(O)
• We know how to compute αt(i)

From now its easy
αt(i) = P(o1, o2 …, ot ∧ qt = si)
so
P(O) = P(o1, o2 …, ot) = ΣiP(o1, o2 …, ot ∧ qt = si) = Σi αt(i)
note that
p(qt=si | o1, o2 …, ot ) =

∑
j

t

t

(j)α
(i)α

P(A | B) = P(A ∧ B) / P(B)



Complexity
• How long does it take to compute P(Q | O)?
• P(Q): O(n)
• P(O|Q): O(n)
• P(O): O(n2t)



Inference in HMMs
• Computing P(Q) and P(qt = si)

• Computing P(Q | O) and P(qt = si |O)

• Computing argmaxQP(Q)

√

√



Most probable path
• We are almost done …
• One final question remains

How do we find the most probable path, that is Q* such 
that 

P(Q* | O) = argmaxQP(Q|O)?

• This is an important path
- The words in speech processing
- The set of genes in the genome
- etc.



Example
• What is the most probable set of states leading to the 

sequence:
1,2,2,5,6,5,1,2,3 ?

A B

v P(v |A) P(v |B)
1 .3 .1
2 .2 .1
3 .2 .1
4 .1 .2
5 .1 .2
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Most probable path
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We will use the following definition:

In other words we are interested in the most likely 
path from 1 to t that:

1. Ends in Si

2. Produces outputs O1 … Ot
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Computing  δt(i)
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Q: Given δt(i), how can we compute δt+1(i)?

A: To get from δt(i) to δt+1(i) we need to

1. Add an emission for time t+1 (Ot+1)

2. Transition to state si
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The Viterbi algorithm
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• Once again we use dynamic programming for 
solving δt(i)

• Once we have δt(i), we can solve for our P(Q*|O)

By:

P(Q* | O) = argmaxQP(Q|O) = P(Q* | O) =   

path defined by argmaxj δt(j),



Inference in HMMs
• Computing P(Q) and P(qt = si)

• Computing P(Q | O) and P(qt = si |O)

• Computing argmaxQP(Q)  
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ACA   - - - ATG     
TCA  ACT  ATC
ACA  C - - AGC
AGA   - - - ATC
ACC  G - - ATC

Building – from an existing alignment

Transition probabilities
Output Probabilities

insertion

A HMM model for a DNA motif alignments, The transitions are 
shown with arrows whose thickness indicate their probability. In
each state, the histogram shows the probabilities of the four 
bases.



Building – Final Topology

Matching states
Insertion states

Deletion states

No of matching states = average sequence length in the family
PFAM Database - of Protein families
(http://pfam.wustl.edu)



What you should know
• Why HMMs? Which applications are suitable?
• Inference in HMMs

- No observations
- Probability of next state w. observations
- Maximum scoring path (Viterbi)



Computing αt(i)
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• α1(i) = P(o1 ∧ qt = i) = P(o1 | qt = si)ΠI

We must be at a state in time t

chain rule

Markov property


