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Recap: What is a game?Recap: What is a game?
• Multi-agent model of incentives 

• Multi-Objective Optimization vs. Game Theory
q Agents own variables and objective functions

• Games are natural models of real-world processes
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Recap: Key ConceptsRecap: Key Concepts

• Normal-form game
q Exhaustive representation with n matrices
q Size is exponential in number of players

• Extensive form game
q Represents sequential actions more compactly
q Conversion to NFG can result in exponential blow-up
q Can encode imperfect information (information sets) 

and random events (chance nodes)



CMU School of Computer Science

Recap: Key ConceptsRecap: Key Concepts
• Mixed strategy:  play strategies in supports with 

probability > 0 (total mixture must sum to 1)

• Best response: strategy that provides highest 
expected utility given actions of other players
q Every opponent profile has a pure strategy BR

• Nash equilibrium: profile of (potentially mixed) 
strategies such that no agent can unilaterally 
improve
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Recap: Finding Nash Recap: Finding Nash EquilibriaEquilibria
• Theorem: Every NFG has at least one NE in 

potentially mixed strategies [Nash].
q Knowing supports gives feasibility problem

• Algorithms for finding NE in 2-player games
q Lemke-Howson (like Simplex)
q Porter-Nudelman-Shoham (support-enumeration)
q MIP Nash (mixed-integer program formulation)

• {0,1} 2-player Nash is PPAD-Complete
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Recap: Criticisms Recap: Criticisms of Nash equilibriumof Nash equilibrium

• Not necessarily unique: some games have 
multiple NEs, which will agents settle into?
q Social-welfare maximizing?
q Pareto-optimal?

• Can be hard to compute

• NE is not consistent
q One player can unilaterally move system from one 

equilibrium to another
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OutlineOutline
• Solving games with AI
q Alternative solution concepts
q Learning games empirically 
q Compact forms

• Building games with AI
q Mechanism design problem and Revelation Principle
q Game theoretic properties of auctions: 1st price, 2nd

price, eBay
q Implementation in dominant strategies
q Vickrey-Clarke-Groves Mechanism
q Automated Mechanism Design
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Solving Games with AI: 
Alternative Solution Concepts
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Iterated DominanceIterated Dominance

• Iterated Dominance: iteratively remove strategies 
that are (weakly) dominated (games solvable this 
w ay are called  ‚D om in an ce solvable‛)
q Strict ID: path independent, Weak ID: path dependent
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RationalizabilityRationalizability

• Rationalizability: rationality restricts players to 
playing only strategies that are best responses to 
rationalizable strategies *(note the recursive definition)

q In 2-player games: set of rationalizable strategies equals 
set of strategies that survive iterated dominance

• Nash equilibrium strategies are rationalizable

q We can preprocess games for NE search by removing 
non-rationalizable strategies
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SubSub--Game Perfect EquilibriumGame Perfect Equilibrium

• Proper sub-game: everything following an internal 
node in an extensive form game

• Sub-game Perfect Equilibrium [Selten 72]: EFG 
strategy profile in NE in every proper sub-game

Khrush-
chev

Arm

Fold (-1,1)

Fold (10,-10)

(-100,-100)Nuke

Kennedy

Two Nash equilibria:
• Khru: Fold, Ken: Nuke
• Khru: Arm, Ken: Fold

One SGP equilibrium:
• Khru: Arm, Ken: Fold

Nuke is not a credible 
threat!
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CURB CURB SetsSets

:B asu  &  W eibu ll, ‘91 ‚A  m u tu ally con sisten t set of p layer beliefs.‛

Def. S is CURB if it contains all rationalizable strategies 
with supports in S

Def. S is minimally CURB if for every subset S ’, S ’ is not CURB 
CURB set Facts:
• A full game is trivially CURB
• All games contain a minimal CURB set
• Not all strategies are in a minimal CURB set
• Pure Nash equilibrium = CURB set with one 

strategy per player

(Closed Under Rational Behavior)
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Example CURB SetsExample CURB Sets

(1,0) (0,0) (0,0) (0,1)

(0,0) (1,0) (0,1) (0,0)

(0,0) (0,1) (1,0) (0,0)

(0,1) (0,0) (0,0) (1,0)

(1,0) (0,0) (0,0) (0,1)

(0,0) (1,0) (0,1) (0,0)

(0,0) (0,1) (1,0) (0,0)

(0,1) (0,0) (0,0) (1,0)
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Computing CURB SetsComputing CURB Sets

• Thrm: If two CURB Sets share strategies, their 
intersection must also be CURB [Benisch et. al.]

• Thrm: all minimal CURB sets can be found in 
polynomial time [Benisch et. al.]

S3

S1

S2
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CURB sets and NECURB sets and NE

B asu  &  W eibu ll, ‘91 : Every minimal CURB set contains supports of a 
mixed-strategy Nash equilibrium

• Thrm: The complexity of finding 
a Nash equilibrium in a 2-player 
game is super-polynomial only in 
the size of its smallest CURB set 
[Benisch et. al.].

Minimal CURB sets capture all the complexity of finding an NE
(… bu t can  lead  to arbitrarily large or sm all savin gs in  a p articu lar in stan ce)
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C U RB se ts a nd  N E (c o nt’d )C U RB se ts a nd  N E (c o nt’d )

PPAD

P

LFP

CURB Sets

NE

Factoring
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Empirical Game TheoryEmpirical Game Theory

• We have many tools for analyzing games, but how 
can we apply them in real situations?

• Ask experts for models of real world games 
q GAMUT: library of economic game models

• Learn approximate games empirically [Wellman, et. al.]
q Simulate or observe outcomes from strategy profiles

C D
c (3,3) (0,5)
d (5,0) (1,1)

Game
Simulation
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Compact FormsCompact Forms

• Compact Forms: game representations that exploit 
structure in some games.

• Compact forms can ease reasoning about games
q Typically allow exponentially faster algorithms for 

computation of NE
q Occasionally allow better theoretical analysis

• Compact forms also reduce representation size
q Typically exponential reduction in representation size

• Can we learn games in a compact form?
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Compact Forms: ExamplesCompact Forms: Examples
• Some examples of compact forms:

q Extensive form games: represent sequential structure

q Graphical games: players represented by nodes in a 
graph can only influence neighbors [Kearns et. al.].

q Local effect games (LEGs): actions effect agents who 
take other locally related actions (e.g. where to build a 
Starbucks) [Leyton-Brown et. al.]

q Game factors (new): underlying games that are 
completely independent [Davis, Benisch, et.al.].

o N orm al form  gam es can be ‚factored ‛ in p olynom ial tim e.
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Compact Forms: ExamplesCompact Forms: Examples

• Graphical Games: neighbors effect utilities

• Factor games: independent strategic interactions
q Direct flight game: airlines pay cost to service direct 

flights and split resulting revenue

P4

P1 P3 P5

P2 P6
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Building Games with AI: 
Mechanism Design
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Social Choice ProblemsSocial Choice Problems
• A group of (selfish) agents collectively choosing 

among outcomes solve a social choice problem
q Auctions, voting, allocation of goods, tasks, resources

• Agents have preferences over outcomes

• Social choice function takes preferences as input 
and p icks ‚op tim al‛ ou tcom e

• Will agents tell the truth about their preferences?
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NonNon--Truthful MechanismsTruthful Mechanisms
• Non-truthful mechanisms are used commonly, 

sometimes they have other properties (e.g. higher 
expected revenue when bidders are asymmetric)

• Example: 1st-price auction (equivalent to Dutch 
auction/descending auction) protocol,
q Auctioneer has one item up for auction
q Sealed bids are accepted
q Highest bidder wins, pays bid price

• Optimal strategy: shaving, valuation – f(bidders)
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Mechanism Design ProblemsMechanism Design Problems
• Build a mechanism that properly implements a 

social choice function even when agents can lie

• Make lying against the best interest of the agents 
in various ways:
q All non-truthful strategies are dominated
q Only truthful strategies are NE
q At least one truthful strategy is a NE

• Alternatively, mechanism can guarantee some 
p rop erty even  if agen ts lie, bu t…
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Revelation PrincipleRevelation Principle
• Any outcome that can be enforced by a Nash (or dominant 

strategy) equilibrium in a one shot mechanism where 
agents lie can be enforced in Nash (dominant strategy) 
equilibrium in a mechanism where agents tell the truth

Original 
Non-truthful 
Mechanism

Outcome

Strategy

Strategy

Strategy
Formulator

Truth

Truth
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Dominance ImplementationDominance Implementation
• A mechanism is implementable in dominant 

strategies if truth-telling is (weakly) dominant

• Agents do not need to counter-speculate about 
each other, in particular they can ignore:

q The preferences of other agents
q The rationality of other agents
q The capabilities of other agents
q …
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GibbardGibbard--SatterthwaiteSatterthwaite ImpossibilityImpossibility
• Consider the following three desiderata of a 

social choice function, f:
q f is implementable in dominant strategies
q Every outcome can be chosen by some input to f
q f is not dictatorial (depends on the preferences of more 

than one agent)

• Theorem: with more than 3 outcomes no such f
exists for all possible preferences.
q Proof: based  on A rrow ’s theorem  for social choice.
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VickreyVickrey AuctionsAuctions
• But we can still design dominant strategy 

mechanisms in some cases
q When preferences of agents have special structure
q When computing a good lie is hard

• Example: 2nd-price auction (a.k.a. Vickrey
auction, English/ascending auction) protocol,
q Auctioneer has one item up for auction
q Sealed bids are accepted
q Highest bidder wins, pays 2nd highest price
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VickreyVickrey AuctionsAuctions
• Proof that 2nd-price auction is truth-dominant:
q Consider when bidder values good at $v and highest 

com p etin g bid  is $v’

q If v < v’ th en  bid d er can only win by bidding more 
th an  v’ an d  p ayin g m ore th an  valu ation , so sh e sh ou ld   
bid truth

q If v > v’ th en  bid d er w ill on ly p ay v’ on any bid 
between the two values and could lose by bidding less, 
so she can only be hurt by lying
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Auction MechanismAuction Mechanism
• Almost same as 2nd-price auction
q Proxy-bidding designed to act as strategy formulator 

from Revelation Principle

q Optimal bidding strategy: bid truth to proxy at last 
second and nothing prior (sniping)

automatically bids 
on your behalf up 
to your maximum 
bid.
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VickreyVickrey--ClarkeClarke--Groves MechanismGroves Mechanism
• Generalization of the 2nd-price auction for 

allocating multiple goods (e.g. pair of shoes)
q Implements social welfare maximizing outcome for:

o quasi-linear preferences: u(x + money) = v(x) + money

q Agents submit all preferences and pay the difference 
between the total utility of other agents under the 
outcome selected with their bids considered and the 
outcome selected without their bids considered

q Payment of agent i =  ji vj(s(v)) -  ji vj(s(v-i))
o s(X) = social welfare maximizing outcome given preferences X
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VCG ExampleVCG Example
Goods to be allocated: Agents:

Outcomes:       Preferences:

275

0

250

30

0

285

50

250
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VCG ExampleVCG Example
Outcomes:       Preferences:

275

0

250

30

0

285

50

250

: 50 – 285 = –235 : 250 – 275 = -25

Payments:

: 235 + 25 = +260
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Automated Mechanism DesignAutomated Mechanism Design
• Main idea: search for values of payment function 

and allocation rule that satisfy certain constraints

qIncentive Compatibility: no agents have an incentive 
to lie about private info in equilibrium

qIndividually Rational: agents are no worse off 
participating (in expectation) than not

• Key Insight: formulating this question as an 
optimization problem and using standard AI 
techniques to answer it [Conitzer and Sandholm].
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Automated Mechanism DesignAutomated Mechanism Design
• Instance inputs:
q Set of possible outcomes
q Set of agents with distribution over preference profiles
q Objective function maps outcomes to values  (e.g. 

maximize social welfare)

• Outputs:
q Mechanism that maps revealed preferences to 

outcomes and payments to and from each agent
q Mechanism must satisfy IR and IC constraints
q Mechanism must (nearly) maximize objective function 

in expectation


