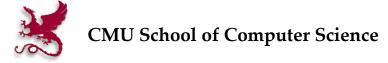
15-780: Graduate Al Computational Game Theory

Michael Benisch

Carnegie Mellon University, School of Computer Science



<u>Outline</u>

- What is a game?
- Multi-Objective Optimization vs. Game Theory
- Importance of Game Theory in AI
 - ☐ Helps agents select strategies
 - ☐ Guarantees about artificially designed mechanisms
 - ☐ Automated analysis of strategic models
 - ☐ Games in the real world
- Solving games with AI
 - ☐ Computing Nash equilibria
 - ☐ Complexity results on solving games
 - ☐ Alternative solution concepts

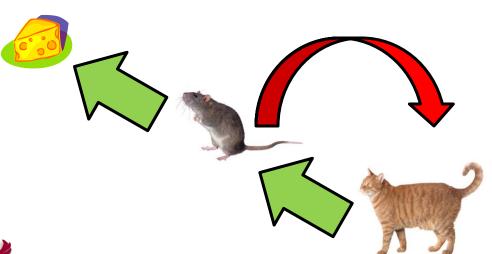
Outline (cont'd)

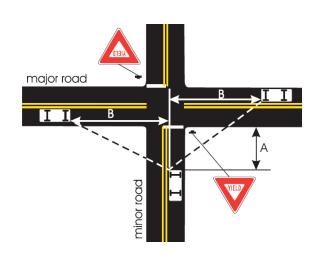
- Building games with AI
 - ☐ Mechanism design problem and Revelation Principle
 - ☐ Game theoretic properties of auctions: 1st price, 2nd price, eBay
 - ☐ Implementation in dominant strategies
 - ☐ Vickrey-Clarke-Groves Mechanism
 - ☐ Automated Mechanism Design

Background

What is a Game?

- A game is a multi-agent model of the relationships between agent's actions and incentives.
 - ☐ When agents are self-interested the game models an optimization process
 - ☐ Games can have underlying probabilistic models to describe uncertain outcomes





Questions asked about a game

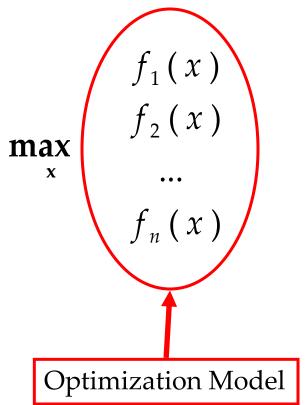
• How should an agent behave?

• What is the most likely state the game will settle in?

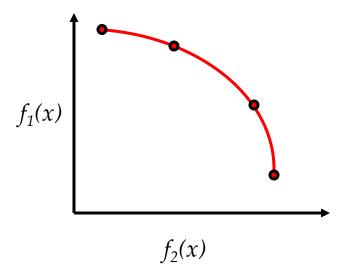
 Can the game be designed to incentivize specific actions?

Multi-Objective Optimization

 Class of optimization models involving simultaneously optimizing multiple objectives:



Solution: Pareto-optimal curve (set of points where each obj. fn. cannot grow larger without decreasing another).



CMU School of Computer Science

Multi-Objective Optimization vs. Game Theory

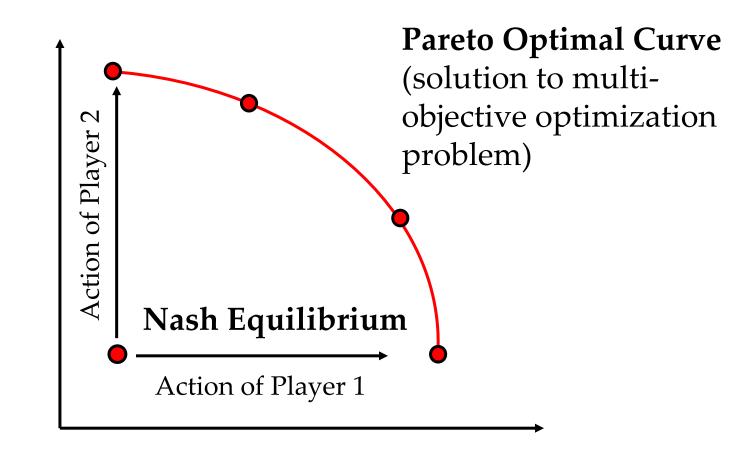
- Games are similar to multi-objective optimization models, differences are:
 - □ Each objective function is *owned* by a different agent.
 - ☐ The decision variables are partitioned into those controlled by the owner of each objective function.

• Agent 1 owns
$$f_1$$
 and controls variables $x_1, ..., x_k$

$$x = \{x_1, x_2, ..., x_k, ..., x_m\}$$

$$f_n(x)$$

Multi-Objective Optimization vs. Game Theory (cont'd)



 $f_1(x)$

 $f_2(x)$

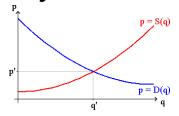
AI + Game Theory

Help agents select strategies

Help design games that have certain properties

Name Your Own PriceSM Per Round-trip Ticket: \$.00

Help analysts understand a system



Real World Games

- Games related to warfare
 - ☐ Pursuit and evasion: dogfights, missiles, troops
 - ☐ Strategic resource deployment: troops, weapons
- Games related to economics
 - ☐ Auctions: FCC Spectrum, Google keywords
 - ☐ Buying/Selling: resource procurement, stock market, dynamic pricing
- Games related to networks
 - ☐ Network formation: social, corporate, P2P
 - ☐ Graphical games: dependency of player actions is described by network between players
- Recreational games
 - ☐ Perfect information: chess, checkers, go
 - ☐ Limited information: poker, football, video games

Solving Games with AI

Review: Notation

- **Agent = player:** set of all players is $N = \{1,...,n\}$
- **Action = move:** choice that an agent can make at a point in the game
- Strategy a_i : mapping from distinguishable states of the game to actions
- Strategy set S_i : strategies available to agent i

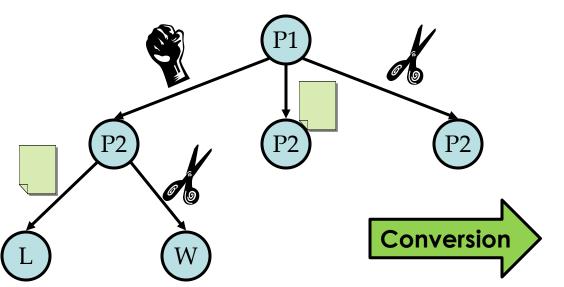
Review: Notation

- Strategy profile $S = \{s_1, ..., s_n\}$: one strategy per agent
- **Utility function** $u_i(S)$: mapping from strategy profiles to utilities for player i
- Opposing profile, S_{-i} : strategies of agents other than i (in general the notation -i excludes i)

- Normal Form (Matrix, Simultaneous) Game:
 - ☐ Outcome functions are matrices for each player
 - ☐ A player's matrix indicates his utility for playing each possible action against any opponent profile.
- Example NFG: Prisoner's Dilemma

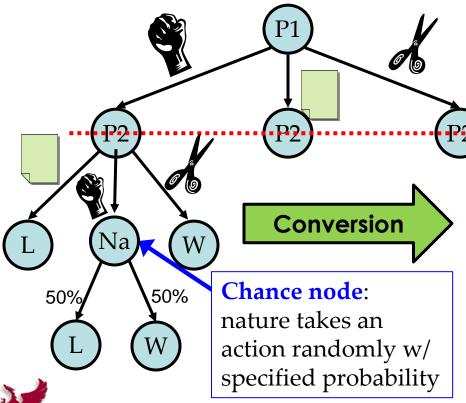
	С	D
С	(3,3)	(0,5)
d	(5,0)	(1,1)

- Extensive Form Game: provides additional tree structure to game, allowing for players to take turns sequentially (also called sequential form).
- Example EFG: Iterative Rock-Paper-Scissors



	RRR	•••	SSS
r	(0,0)	• • •	(1,-1)
p	(1,-1)	• • •	(-1,1)
S	(-1, 1)	•••	(0,0)

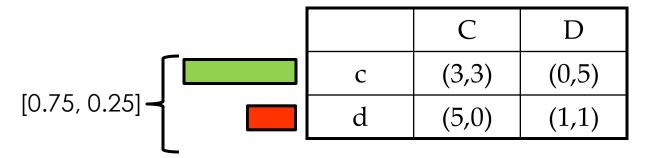
• EFG Imperfect information and Chance nodes: players cannot observe all prior moves and some moves are made by "nature"



Information set: player 2 does not know which node he is in.

	R	Р	S
r	(1,-1) 50% (-1,1) 50%	(-1,1)	(1,-1)
р	(1,-1)	(1,-1) 50% (-1,1) 50%	(-1,1)
S	(-1, 1)	(1,-1)	(1,-1) 50% (-1,1) 50%

• Mixed strategy (profile): a randomized strategy that specifies probabilities with which to take each action.



- **Best response**: the action corresponding to the highest (expected) utility given the actions of other players.
 - ☐ **Proposition:** any player has a pure strategy best response to every opponent (mixed) profile

	С	D
С	(3,3) -	(0,5)
d	(5,0) -	(1,1)

Solving Games

 Solving a game: predicting (or suggesting) agent behavior and the resulting outcome(s) of the game.

- **Solution concept:** the principle by which agents are assumed to act.
 - ☐ Default concept is **Nash equilibrium**: players will settle into a profile when they cannot unilaterally improve.

	С	D
С	(3 ₁ 3) –	→ (0,5)
d	(5,0) —	(1,1)

Finding Nash Equilibria

- Existence: Nash proved at least one equilibrium in (potentially) mixed strategies always exists
 - □ **Proof sketch:** Uses Brouwer's fixed point theorem which states that every "regular" n-D function has at least one fixed point x such that f(x) = x.
- Zero-sum games: linear programming solution
- Pure-strategy equilibrium: one strategy per player
 - ☐ Perfect Info Extensive-form games: mini-max search
 - ☐ **Normal-form games:** enumeration of all combinations

Algorithms for Finding Nash Equilibria

- Supports: a set of strategies with non-zero probability in some mixture
 - □ **Proposition**: Knowing supports of an NE allows computation of strategies in polynomial time by solving a feasibility problem (which is linear for 2-players).
 - □ Constraint equations: find mixtures p_i over supports in S_i such that all players are indifferent between the strategies in their supports

Algorithms for Finding Nash Equilibria

• Feasibility problem: find p and v such that,

$$\forall i \in N, a_i \in S_i$$
:

$$\forall i \in N, a_i \in S_i : \sum_{a_{-i} \in S_{-i}} p(a_{-i}) u_i(a_i, a_{-i}) = v_i$$

Agents are indifferent between all strategies in supports

$$\forall i \in N, a_i \notin S_i$$
:

$$\forall i \in N, a_i \notin S_i : \sum_{a_{-i} \in S_{-i}} p(a_{-i}) u_i(a_i, a_{-i}) \le v_i$$

Strategies outside of supports are worse

$$\forall i \in N:$$

$$\sum_{a_i \in S_i} p_i(a_i) = 1$$

$$\forall i \in N, a_i \in S_i : p_i(a_i) \geq 0$$

$$p_i(a_i) \geq 0$$

$$\forall i \in N, a_i \notin S_i : p_i(a_i) = 0$$

$$p_i(a_i) = 0$$

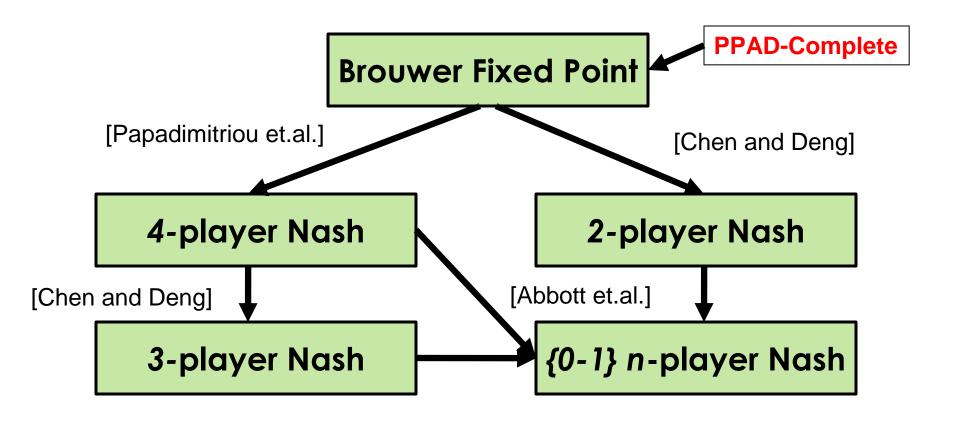
Mixture is valid (sums to 1) and no strategies out of supports are included

<u>Algorithms for Finding Nash Equilibria</u>

- Lemke-Howson Algorithm [1967]
 - ☐ Pivoting based algorithm similar to Simplex; very fast in practice
 - ☐ Strategies are pivoted into and out of supports
- Porter, Nudelman, and Shoam (PNS) [AAAI-04]
 - \square Treat support for each player as $\{0,1\}^{|S|}$ vector
 - ☐ Brute-force support enumeration algorithm
 - ☐ Can be generalized beyond 2-players (with nonlinear program)
- Gilpin, Conitzer, and Sandholm: MIP Nash [AAAI-05]
 - ☐ Mixed-Integer Programming (MIP) formulation
 - ☐ **Main insight:** regret is 0 in equilibrium
- All worst-case exponential time in size of game.

Finding Nash Equilibria: Complexity

General sum normal form reductions (last 2 years)



Finding Nash Equilibria: Complexity

- **Theorem:** Finding a single NE is PPAD-Complete even in 2-Player games with binary payouts.
 - □ **PPAD:** Subclass of TFNP, which is a collection of NP-Complete decision problems which are known to be true
 - ☐ Other TFNP problems: factoring integers, solvable CSPs

Finding Nash Equilibria: Complexity

 Deciding whether a "good" equilibrium exists is NPcomplete from SAT reduction [Conitzer and Sandholm]: **u** equilibrium with high social welfare Pareto-optimal equilibrium • equilibrium with high utility for a given player equilibrium with high minimal utility Also NP-complete (same reduction): Does more than one equilibrium exists? Is a given strategy ever played in any equilibrium? Is there an equilibrium where a given strategy is never played? ☐ Is there an equilibrium with >1 strategies in the players' supports?

Criticisms of Nash equilibrium

- Not necessarily unique: some games have multiple NEs, which will agents settle into?
 - ☐ Social-welfare maximizing?
 - ☐ Pareto-optimal?
- Can be hard to compute
- NE is not consistent
 - ☐ One player can unilaterally move system from one equilibrium to another

