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OutlineOutline
• What is a game?
• Multi-Objective Optimization vs. Game Theory
• Importance of Game Theory in AI
q Helps agents select strategies
q Guarantees about artificially designed mechanisms
q Automated analysis of strategic models
q Games in the real world

• Solving games with AI
q Computing Nash equilibria
q Complexity results on solving games
q Alternative solution concepts



CMU School of Computer Science

O utline  (c o nt’d )O utline  (c o nt’d )
• Building games with AI
q Mechanism design problem and Revelation Principle
q Game theoretic properties of auctions: 1st price, 2nd

price, eBay
q Implementation in dominant strategies
q Vickrey-Clarke-Groves Mechanism
q Automated Mechanism Design
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What is a Game?What is a Game?
• A game is a multi-agent model of the relationships 

betw een  agen t’s action s an d  in cen tives.
q When agents are self-interested the game models an 

optimization process
q Games can have underlying probabilistic models to 

describe uncertain outcomes
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Questions asked about a gameQuestions asked about a game
• How should an agent behave?

• What is the most likely state the game will 
settle in?

• Can the game be designed to incentivize
specific actions?
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MultiMulti--Objective OptimizationObjective Optimization

• Class of optimization models involving 
simultaneously optimizing multiple objectives:
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Solution: Pareto-optimal curve
(set of points where each obj. fn. 
cannot grow larger without 
decreasing another).

Optimization Model
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MultiMulti--Objective Optimization vs. Objective Optimization vs. 
Game TheoryGame Theory

• Games are similar to multi-objective optimization 
models, differences are:
q Each objective function is owned by a different agent.
q The decision variables are partitioned into those 

controlled by the owner of each objective function.

x = {x1, x2, … , xk, … , xm}

•Agent 1 owns f1 and controls 
variables x1, … , x k 
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MultiMulti--Objective Optimization vs. Objective Optimization vs. 
G a m e  The o ry (c o nt’d )G a m e  The o ry (c o nt’d )

Action of Player 1

Pareto Optimal Curve
(solution to multi-
objective optimization 
problem)
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AI + Game TheoryAI + Game Theory
• Help agents select strategies

• Help design games that have certain properties

• Help analysts understand a system
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Real World GamesReal World Games
• Games related to warfare

q Pursuit and evasion: dogfights, missiles, troops
q Strategic resource deployment: troops, weapons

• Games related to economics
q Auctions: FCC Spectrum, Google keywords
q Buying/Selling: resource procurement, stock market, dynamic 

pricing

• Games related to networks
qNetwork formation: social, corporate, P2P
q Graphical games: dependency of player actions is described by 

network between players

• Recreational games
q Perfect information: chess, checkers, go
q Limited information: poker, football, video games
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Solving Games with AI
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Review: NotationReview: Notation

• Agent = player: set of all players is N = {1,… ,n}

• Action = move: choice that an agent can make at 
a point in the game

• Strategy ai: mapping from distinguishable states 
of the game to actions

• Strategy set Si: strategies available to agent i
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Review: NotationReview: Notation

• Strategy profile S = {s1, … , sn}: one strategy per 
agent

• Utility function ui(S): mapping from strategy 
profiles to utilities for player i

• Opposing profile, S-i : strategies of agents other 
than i (in general the notation –i excludes i)
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Review: Key Review: Key ConceptsConcepts
• Normal Form (Matrix, Simultaneous) Game:
q Outcome functions are matrices for each player
q A p layer’s matrix indicates his utility for playing each 

possible action against any opponent profile.

• Example NFG: P rison er’s D ilem m a

C D

c (3,3) (0,5)

d (5,0) (1,1)
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Review: Key Review: Key ConceptsConcepts
• Extensive Form Game: provides additional tree 

structure to game, allowing for players to take 
turns sequentially (also called sequential form).

• Example EFG: Iterative Rock-Paper-Scissors

P1

P2 P2 P2

L W

RRR … SSS
r (0,0) … (1,-1)
p (1,-1) … (-1,1)
s (-1, 1) … (0,0)Conversion



CMU School of Computer Science

Review: Key Review: Key ConceptsConcepts
• EFG Imperfect information and Chance nodes: 

players cannot observe all prior moves and some 
m oves are m ad e by “n atu re”

R P S

r
(1,-1) 50%
(-1,1) 50%

(-1,1) (1,-1)

p (1,-1)
(1,-1) 50%
(-1,1) 50%

(-1,1)

s (-1, 1) (1,-1)
(1,-1) 50%
(-1,1) 50%

Conversion

P1

P2 P2 P2

Information set: player 2 does 
not know which node he is in.

L WNa

L W

50% 50% Chance node: 
nature takes an 
action randomly w/ 
specified probability
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Review: Key Review: Key ConceptsConcepts
• Mixed strategy (profile): a randomized strategy that 

specifies probabilities with which to take each action.

• Best response: the action corresponding to the highest 
(expected) utility given the actions of other players. 

q Proposition: any player has a
pure strategy best response to
every opponent (mixed) profile

C D
c (3,3) (0,5)
d (5,0) (1,1)[0.75, 0.25]

C D
c (3,3) (0,5)
d (5,0) (1,1)
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Solving GamesSolving Games
• Solving a game: predicting (or suggesting) agent 

behavior and the resulting outcome(s) of the game.

• Solution concept: the principle by which agents 
are assumed to act.

q Default concept is Nash equilibrium: players will settle 
into a profile when they cannot unilaterally improve.

C D
c (3,3) (0,5)
d (5,0) (1,1)
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Finding Nash Finding Nash EquilibriaEquilibria
• Existence: Nash proved at least one equilibrium in 

(potentially) mixed strategies always exists

q Proof sketch: Uses B rou w er’s fixed point theorem 
w hich  states th at every “regu lar” n-D function has at 
least one fixed point x such that f(x) = x.

• Zero-sum games: linear programming solution

• Pure-strategy equilibrium: one strategy per player 
q Perfect Info Extensive-form games: mini-max search
q Normal-form games: enumeration of all combinations
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Algorithms for Finding Nash Algorithms for Finding Nash EquilibriaEquilibria

• Supports: a set of strategies with non-zero 
probability in some mixture

q Proposition: Knowing supports of an NE allows 
computation of strategies in polynomial time by solving 
a feasibility problem (which is linear for 2-players).

q Constraint equations: find mixtures pi over supports in 
Si such that all players are indifferent between the 
strategies in their supports
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Algorithms for Finding Nash Algorithms for Finding Nash EquilibriaEquilibria
• Feasibility problem: find p and v such that,

Mixture is valid (sums to 1) 
and no strategies out of 
supports are included

Agents are indifferent  
between all strategies 
in supports

Strategies outside of 
supports are worse
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Algorithms for Finding Nash Algorithms for Finding Nash EquilibriaEquilibria
• Lemke-Howson Algorithm [1967]

q Pivoting based algorithm similar to Simplex; very fast in practice
q Strategies are pivoted into and out of supports

• Porter, Nudelman, and Shoam (PNS) [AAAI-04]
q Treat support for each player as {0,1}|S| vector
q Brute-force support enumeration algorithm
q Can be generalized beyond 2-players (with nonlinear program)

• Gilpin, Conitzer, and Sandholm: MIP Nash [AAAI-05]
qMixed-Integer Programming (MIP) formulation
q Main insight: regret is 0 in equilibrium

• All worst-case exponential time in size of game.
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Finding Nash Finding Nash EquilibriaEquilibria: Complexity: Complexity

• General sum normal form reductions (last 2 years)

4-player Nash

[Papadimitriou et.al.]

3-player Nash

[Chen and Deng]

{0-1} n-player Nash

2-player Nash

[Chen and Deng]

Brouwer Fixed Point
PPAD-Complete

[Abbott et.al.]
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Finding Nash Finding Nash EquilibriaEquilibria: Complexity: Complexity

• Theorem: Finding a single NE is PPAD-Complete 
even in 2-Player games with binary payouts.

q PPAD: Subclass of TFNP, which is a collection of NP-
Complete decision problems which are known to be true

q Other TFNP problems: factoring integers, solvable CSPs
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Finding Nash Finding Nash EquilibriaEquilibria: Complexity: Complexity
• Deciding whether a “good ” equilibrium exists is NP-

complete from SAT reduction [Conitzer and Sandholm]:
q equilibrium with high social welfare 
q Pareto-optimal equilibrium
q equilibrium with high utility for a given player 
q equilibrium with high minimal utility

• Also NP-complete (same reduction):
q Does more than one equilibrium exists?
q Is a given strategy ever played in any equilibrium?
q Is there an equilibrium where a given strategy is never played?
q Is th ere an  equ ilibriu m  w ith  >1 strategies in  th e p layers’ su p p orts?
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Criticisms of Nash equilibriumCriticisms of Nash equilibrium

• Not necessarily unique: some games have 
multiple NEs, which will agents settle into?
q Social-welfare maximizing?
q Pareto-optimal?

• Can be hard to compute

• NE is not consistent
q One player can unilaterally move system from one 

equilibrium to another


