
CMU School of Computer Science

1515--780: Graduate AI780: Graduate AI
Computational Game TheoryComputational Game Theory

Michael Benisch

Carnegie Mellon University,
School of Computer Science

CMU School of Computer Science

OutlineOutline
• What is a game?
• Multi-Objective Optimization vs. Game Theory
• Importance of Game Theory in AI
q Helps agents select strategies
q Guarantees about artificially designed mechanisms
q Automated analysis of strategic models
q Games in the real world

• Solving games with AI
q Computing Nash equilibria
q Complexity results on solving games
q Alternative solution concepts

CMU School of Computer Science

O utline (c o nt’d)O utline (c o nt’d)
• Building games with AI
q Mechanism design problem and Revelation Principle
q Game theoretic properties of auctions: 1st price, 2nd

price, eBay
q Implementation in dominant strategies
q Vickrey-Clarke-Groves Mechanism
q Automated Mechanism Design

CMU School of Computer Science

Background

CMU School of Computer Science

What is a Game?What is a Game?
• A game is a multi-agent model of the relationships

betw een agen t’s action s an d in cen tives.
q When agents are self-interested the game models an

optimization process
q Games can have underlying probabilistic models to

describe uncertain outcomes

CMU School of Computer Science

Questions asked about a gameQuestions asked about a game
• How should an agent behave?

• What is the most likely state the game will
settle in?

• Can the game be designed to incentivize
specific actions?

CMU School of Computer Science

MultiMulti--Objective OptimizationObjective Optimization

• Class of optimization models involving
simultaneously optimizing multiple objectives:



















)(
...

)(
)(

2

1

xf

xf
xf

n

 max
x

f1(x)

f2(x)

Solution: Pareto-optimal curve
(set of points where each obj. fn.
cannot grow larger without
decreasing another).

Optimization Model

CMU School of Computer Science

MultiMulti--Objective Optimization vs. Objective Optimization vs.
Game TheoryGame Theory

• Games are similar to multi-objective optimization
models, differences are:
q Each objective function is owned by a different agent.
q The decision variables are partitioned into those

controlled by the owner of each objective function.

x = {x1, x2, … , xk, … , xm}

•Agent 1 owns f1 and controls
variables x1, … , x k



















)(
...

)(
)(

 2

1

xf

xf
xf

n

CMU School of Computer Science

MultiMulti--Objective Optimization vs. Objective Optimization vs.
G a m e The o ry (c o nt’d)G a m e The o ry (c o nt’d)

Action of Player 1

Pareto Optimal Curve
(solution to multi-
objective optimization
problem)

f1(x)

f2(x)

Nash EquilibriumA
ct

io
n

of
 P

la
ye

r 2

CMU School of Computer Science

AI + Game TheoryAI + Game Theory
• Help agents select strategies

• Help design games that have certain properties

• Help analysts understand a system

CMU School of Computer Science

Real World GamesReal World Games
• Games related to warfare

q Pursuit and evasion: dogfights, missiles, troops
q Strategic resource deployment: troops, weapons

• Games related to economics
q Auctions: FCC Spectrum, Google keywords
q Buying/Selling: resource procurement, stock market, dynamic

pricing

• Games related to networks
qNetwork formation: social, corporate, P2P
q Graphical games: dependency of player actions is described by

network between players

• Recreational games
q Perfect information: chess, checkers, go
q Limited information: poker, football, video games

CMU School of Computer Science

Solving Games with AI

CMU School of Computer Science

Review: NotationReview: Notation

• Agent = player: set of all players is N = {1,… ,n}

• Action = move: choice that an agent can make at
a point in the game

• Strategy ai: mapping from distinguishable states
of the game to actions

• Strategy set Si: strategies available to agent i

CMU School of Computer Science

Review: NotationReview: Notation

• Strategy profile S = {s1, … , sn}: one strategy per
agent

• Utility function ui(S): mapping from strategy
profiles to utilities for player i

• Opposing profile, S-i : strategies of agents other
than i (in general the notation –i excludes i)

CMU School of Computer Science

Review: Key Review: Key ConceptsConcepts
• Normal Form (Matrix, Simultaneous) Game:
q Outcome functions are matrices for each player
q A p layer’s matrix indicates his utility for playing each

possible action against any opponent profile.

• Example NFG: P rison er’s D ilem m a

C D

c (3,3) (0,5)

d (5,0) (1,1)

CMU School of Computer Science

Review: Key Review: Key ConceptsConcepts
• Extensive Form Game: provides additional tree

structure to game, allowing for players to take
turns sequentially (also called sequential form).

• Example EFG: Iterative Rock-Paper-Scissors

P1

P2 P2 P2

L W

RRR … SSS
r (0,0) … (1,-1)
p (1,-1) … (-1,1)
s (-1, 1) … (0,0)Conversion

CMU School of Computer Science

Review: Key Review: Key ConceptsConcepts
• EFG Imperfect information and Chance nodes:

players cannot observe all prior moves and some
m oves are m ad e by “n atu re”

R P S

r
(1,-1) 50%
(-1,1) 50%

(-1,1) (1,-1)

p (1,-1)
(1,-1) 50%
(-1,1) 50%

(-1,1)

s (-1, 1) (1,-1)
(1,-1) 50%
(-1,1) 50%

Conversion

P1

P2 P2 P2

Information set: player 2 does
not know which node he is in.

L WNa

L W

50% 50% Chance node:
nature takes an
action randomly w/
specified probability

CMU School of Computer Science

Review: Key Review: Key ConceptsConcepts
• Mixed strategy (profile): a randomized strategy that

specifies probabilities with which to take each action.

• Best response: the action corresponding to the highest
(expected) utility given the actions of other players.

q Proposition: any player has a
pure strategy best response to
every opponent (mixed) profile

C D
c (3,3) (0,5)
d (5,0) (1,1)[0.75, 0.25]

C D
c (3,3) (0,5)
d (5,0) (1,1)

CMU School of Computer Science

Solving GamesSolving Games
• Solving a game: predicting (or suggesting) agent

behavior and the resulting outcome(s) of the game.

• Solution concept: the principle by which agents
are assumed to act.

q Default concept is Nash equilibrium: players will settle
into a profile when they cannot unilaterally improve.

C D
c (3,3) (0,5)
d (5,0) (1,1)

CMU School of Computer Science

Finding Nash Finding Nash EquilibriaEquilibria
• Existence: Nash proved at least one equilibrium in

(potentially) mixed strategies always exists

q Proof sketch: Uses B rou w er’s fixed point theorem
w hich states th at every “regu lar” n-D function has at
least one fixed point x such that f(x) = x.

• Zero-sum games: linear programming solution

• Pure-strategy equilibrium: one strategy per player
q Perfect Info Extensive-form games: mini-max search
q Normal-form games: enumeration of all combinations

CMU School of Computer Science

Algorithms for Finding Nash Algorithms for Finding Nash EquilibriaEquilibria

• Supports: a set of strategies with non-zero
probability in some mixture

q Proposition: Knowing supports of an NE allows
computation of strategies in polynomial time by solving
a feasibility problem (which is linear for 2-players).

q Constraint equations: find mixtures pi over supports in
Si such that all players are indifferent between the
strategies in their supports

CMU School of Computer Science

Algorithms for Finding Nash Algorithms for Finding Nash EquilibriaEquilibria
• Feasibility problem: find p and v such that,

Mixture is valid (sums to 1)
and no strategies out of
supports are included

Agents are indifferent
between all strategies
in supports

Strategies outside of
supports are worse

CMU School of Computer Science

Algorithms for Finding Nash Algorithms for Finding Nash EquilibriaEquilibria
• Lemke-Howson Algorithm [1967]

q Pivoting based algorithm similar to Simplex; very fast in practice
q Strategies are pivoted into and out of supports

• Porter, Nudelman, and Shoam (PNS) [AAAI-04]
q Treat support for each player as {0,1}|S| vector
q Brute-force support enumeration algorithm
q Can be generalized beyond 2-players (with nonlinear program)

• Gilpin, Conitzer, and Sandholm: MIP Nash [AAAI-05]
qMixed-Integer Programming (MIP) formulation
q Main insight: regret is 0 in equilibrium

• All worst-case exponential time in size of game.

CMU School of Computer Science

Finding Nash Finding Nash EquilibriaEquilibria: Complexity: Complexity

• General sum normal form reductions (last 2 years)

4-player Nash

[Papadimitriou et.al.]

3-player Nash

[Chen and Deng]

{0-1} n-player Nash

2-player Nash

[Chen and Deng]

Brouwer Fixed Point
PPAD-Complete

[Abbott et.al.]

CMU School of Computer Science

Finding Nash Finding Nash EquilibriaEquilibria: Complexity: Complexity

• Theorem: Finding a single NE is PPAD-Complete
even in 2-Player games with binary payouts.

q PPAD: Subclass of TFNP, which is a collection of NP-
Complete decision problems which are known to be true

q Other TFNP problems: factoring integers, solvable CSPs

CMU School of Computer Science

Finding Nash Finding Nash EquilibriaEquilibria: Complexity: Complexity
• Deciding whether a “good ” equilibrium exists is NP-

complete from SAT reduction [Conitzer and Sandholm]:
q equilibrium with high social welfare
q Pareto-optimal equilibrium
q equilibrium with high utility for a given player
q equilibrium with high minimal utility

• Also NP-complete (same reduction):
q Does more than one equilibrium exists?
q Is a given strategy ever played in any equilibrium?
q Is there an equilibrium where a given strategy is never played?
q Is th ere an equ ilibriu m w ith >1 strategies in th e p layers’ su p p orts?

CMU School of Computer Science

Criticisms of Nash equilibriumCriticisms of Nash equilibrium

• Not necessarily unique: some games have
multiple NEs, which will agents settle into?
q Social-welfare maximizing?
q Pareto-optimal?

• Can be hard to compute

• NE is not consistent
q One player can unilaterally move system from one

equilibrium to another

