
15-780: Graduate Artificial 
Intelligence

Decision trees 



Graphical models
• So far we discussed models that capture joint probability 

distributions
• These have many uses, and can also be used to 

determine binary values for variables 
- For example, did a burglary occur? 

• However, they also require us to make many 
assumptions and to fit many parameters:
- model structure
- probability model
- model parameters



Classification
• In many cases we are only interested in one specific 

variable.
• Examples:

- Does the robot have to turn? Slow down?
- What digit is in each of the squares?
- Does the patient have cancer?



Generative vs. discriminative 
models

• Graphical models can be used for classification  
- They represent a subset of classifiers known as 
‘generative models’

• But we can also design classifiers that are more specific 
to a given task and do not require an estimation of joint 
probabilities
- These are often referred to as discriminative models 

• Examples:
- Support vector machines (SVM)
- Decision trees



Decision trees
• One of the most intuitive classifiers
• Easy to understand and construct
• Surprisingly, also works very (very) well*

Lets build a decision tree!

* More on this towards the end 
of this lecture



Structure of a decision tree
A

CI

F

A age > 26

I income > 40K

C citizen

F female

• Internal nodes 
correspond to attributes 
(features)

• Leafs correspond to 
classification outcome

• edges denote 
assignment

1 0

yes no yes

yes no



Netflix



Building a decision tree
Function BuildTree(n,A)    // n: samples (rows), A: attributes

If empty(A) or all n(L) are the same
status = leaf
class = most common class in n(L)

else
status = internal
a ⇐ bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A \ {a}) 
RightNode = BuildTree(n(a=0), A \ {a})

end
end



Building a decision tree
Function BuildTree(n,A)    // n: samples (rows), A: attributes

If empty(A) or all n(L) are the same
status = leaf
class = most common class in n(L)

else
status = internal
a ⇐ bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A \ {a}) 
RightNode = BuildTree(n(a=0), A \ {a})

end
end

n(L): Labels for samples in 
this set

We will discuss this function 
next

Recursive calls to create left 
and right subtrees, n(a=1) is 
the set of samples in n for 
which the attribute a is 1



Identifying ‘bestAttribute’
• There are many possible ways to select the best 

attribute for a given set.
• We will discuss one possible way which is based on 

information theory and generalizes well to non binary 
variables



Entropy
• Quantifies the amount of uncertainty 

associated with a specific probability 
distribution

• The higher the entropy, the less 
confident we are in the outcome

• Definition
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Entropy
• Definition

• So, if P(X=1) = 1 then

• If P(X=1) = .5 then
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Interpreting entropy 
• Entropy can be interpreted from an information 

standpoint
• Assume both sender and receiver know the distribution. 

How many bits, on average, would it take to transmit one 
values?

• If P(X=1) = 1 then the answer is 0 (we don’t need to 
transmit anything)

• If P(X=1) = .5 then the answer is 1 (either values is 
equally likely)

• If 0<P(X=1)<.5 or 0.5<P(X=1)<1 then the answer is 
between 0 and 1
- Why?



Expected bits per symbol
• Assume P(X=1) = 0.8
• Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04
• Lets define the following code

- For 11 we send 0
- For 10 we send 01
- For 01 we send 011
- For 00 we send 0111



Expected bits per symbol
• Assume P(X=1) = 0.8
• Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04
• Lets define the following code

- For 11 we send 0
- For 10 we send 01
- For 01 we send 011
- For 00 we send 0111

• What is the expected bits / symbol? 
(.64*1+.16*2+.16*3+.04*4)/2 = 0.8

• Entropy (lower bound) H(X)=0.7219

so: 010011011100011011101

can be broken to:   01 0 011 011 0 0 011 0111 01

which is: 10 11 01 11 11 01 00 01



Conditional entropy
Movie 
length

Liked?

Short Yes

No

Yes

No

No

Yes

Yes

Yes

Yes

Short

Medium

long

Long

Medium

Short

Long

Medium

• Entropy measures the uncertainty in a 
specific distribution

• What if both sender and receiver know 
something about the transmission?

• For example, say I want send the label 
(liked) when the length is known

• This becomes a conditional entropy 
problem: H(Li | Le=v) 

Is the entropy of Liked among movies with 
length v  



Conditional entropy: Examples for 
specific values

Movie 
length

Liked?

Short Yes

No

Yes

No

No

Yes

Yes

Yes

Yes

Short

Medium

long

Long

Medium

Short

Long

Medium

Lets compute H(Li | Le=v) 

1. H(Li | Le = S) = .92

2. H(Li | Le = M) = 0

3. H(Li | Le = L) = .92



Conditional entropy
Movie 
length

Liked?

Short Yes

No

Yes

No

No

Yes

Yes

Yes

Yes

Short

Medium

long

Long

Medium

Short

Long

Medium

• We can generalize the conditional entropy 
idea to determine H( Li | Le)

• That is, what is the expected number of 
bits we need to transmit if both sides know 
the value of Le for each of the records 
(samples)

• Definition: ∑ ===
i
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We explained how to compute this in 
the previous slides



Conditional entropy: Example
∑ ===
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Movie 
length

Liked?

Short Yes

No

Yes

No

No

Yes

Yes

Yes

Yes

Short

Medium

long

Long

Medium

Short

Long

Medium

• Lets compute H( Li | Le)
H( Li | Le) = H( Le = S)  H( Li | Le=S)+ 

H( Le = M) H( Li | Le=M)+ 

H( Le = L)  H( Li | Le=L) =

1/3*.92+1/3*0+1/3*.92 =

0.61
we already computed: 

H(Li | Le = S) = .92

H(Li | Le = M) = 0

H(Li | Le = L) = .92



Information gain
• How much do we gain (in terms of reduction in entropy) 

from knowing one of the attributes
• In other words, what is the reduction in entropy from this 

knowledge
• Definition: IG(X|Y)* = H(X)-H(X|Y)

*IG(X|Y) is always ≥ 0

Proof: Jensen inequality



Where we are
• We were looking for a good criteria for selecting the best 

attribute for a node split
• We defined the entropy, conditional entropy and 

information gain
• We will now use information gain as our criteria for a 

good split
• That is, BestAttribute will return the attribute that 

maximizes the information gain at each node



Example: Root attribute
P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) =

H(Li | Le) =

H(Li | D) =

H(Li | F) = 

Movie Type Length Director Famous 
actors

Liked
?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Reiner No Yes

m4 animated long Adamson Yes No

m5 Comedy Long Lasseter Yes No

m6 Thriller Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Marshall Yes Yes

m9 Drama Medium Linklater No Yes



Example: Root attribute
P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) = 0.61

H(Li | Le) = 0.61

H(Li | D) = 0.36

H(Li | F) = 0.85

Movie Type Length Director Famous 
actors

Liked
?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes



Example: Root attribute
P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) = 0.61

H(Li | Le) = 0.61

H(Li | D) = 0.36

H(Li | F) = 0.85

IG(Li | T) = .91-.61 = 0.3

IG(Li | Le) = .91-.61 = 0.3

IG(Li | D) = .91-.36 = 0.55

IG(Li | Le) = .91-.85 = 0.06

Movie Type Length Director Famous 
actors

Liked
?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes



Example: Root attribute
P(Li=yes) = 2/3

H(Li) = .91

H(Li | T) = 0.61

H(Li | Le) = 0.61

H(Li | D) = 0.36

H(Li | F) = 0.85

IG(Li | T) = .91-.61 = 0.3

IG(Li | Le) = .91-.61 = 0.3

IG(Li | D) = .91-.36 = 0.55

IG(Li | Le) = .91-.85 = 0.06

Movie Type Length Director Famous 
actors

Liked
?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes



Building a tree

D

Adamson

Singer
Lasseter

Movie Type Length Director Famous 
actors

Liked
?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes

yes yes



Building a tree

D

Adamson

Singer
Lasseter

Movie Type Length Director Famous 
actors

Liked
?

m2 Animated Short Lasseter No No

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m9 Drama Medium Lasseter No Yes

yes yes

We only need to focus on the records (samples) 
associated with this node



Building a tree We eliminated the 
‘director’ attribute. All 
samples have the same 
director 

D

Adamson

Singer
Lasseter

Movie Type Length Famous 
actors

Liked
?

m2 Animated Short No No

m4 animated long Yes No

m5 Comedy Long Yes No

m9 Drama Medium No Yes

yes yes

P(Li=yes) = 1/4   H(Li) = .81

H(Li | T) = 0

H(Li | Le) = 0

H(Li | F) = 0.5



Building a tree

D

Adamson

Singer
Lasseter

Movie Type Length Famous 
actors

Liked
?

m2 Animated Short No No

m4 animated long Yes No

m5 Comedy Long Yes No

m9 Drama Medium No Yes

yes yes

P(Li=yes) = 1/4   H(Li) = .81

H(Li | T) = 0        IG(Li | T) = 0.81

H(Li | Le) = 0      IG(Li | Le) = 0.81

H(Li | F) = 0.5     IG(Li | F) = .31



Building a tree

D

Adamson

Singer
Lasseter

Movie Type Length Famous 
actors

Liked
?

m2 Animated Short No No

m4 animated long Yes No

m5 Comedy Long Yes No

m9 Drama Medium No Yes

yes yesT

animated

comedy
drama

no yes no



Final tree

D

Adamson

Singer
Lasseter

Movie Type Length Director Famous 
actors

Liked
?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes

yes yesT

animated

comedy
drama

no yes no



Additional points
• The algorithm we gave reaches homogonous nodes (or 

runs out of attributes)
• This is dangerous: For datasets with many (non relevant) 

attributes the algorithm will continue to split nodes
• This will lead to overfitting!



Avoiding overfitting: Tree pruning

• Split data into train and test set
• Build tree using training set

- For all internal nodes (starting at the root)
- remove sub tree rooted at node
- assign class to be the most common among training set
- check test data error

- if error is lower, keep change
- otherwise restore subtree, repeat for all nodes in 

subtree



Continuous values
• Either use threshold to turn into binary or discretize
• Its possible to compute information gain for all possible 

tresholds (there are a finite number of training samples)
• Harder if we wish to assign more than two values (can 

be done recursively)



The ‘best’ classifier
• There has been a lot of interest lately in decision trees.
• They are quite robust, intuitive and, surprisingly, very 

accurate


